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Abstract. The unsteady axisymmetric problem being considered is related to the 
identification of the components of electromagnetic field in moving space with spherical 
enclosure filled with homogeneous isotropic conductor. The model used includes Maxwell’s 
equations and generalized Ohm’s law. In order to find a solution, a series expansion in 
Legendre polynomials and Laplace time transform are applied. Integral representations of the 
components of the electromagnetic field with Green’s function kernels have been generated. 
 
 
1. Introduction 
As of today, the problem related to wave propagation in electromagnetoelastic bodies has 
been mainly considered in regard to stationary problems (see example [1]). When researching 
non-stationary processes in such bodies (example [2]), the small parameter method is 
convenient to be used represented by mechanical and electromagnetic field interaction factor.  
At the same time, a solution is required for the auxiliary problem of identification of the 
electromagnetic field parameters in accordance with the predetermined motion law. This 
problem is considered below in respect of a plane with spherical enclosure. It also has its own 
independent value in terms of, for example, research on the motion of various aircrafts 
affected by electromagnetic field. 
 
2. Setting up the problem 
It is assumed that the space with the spherical enclosure of radius R is filled with 
homogeneous isotropic conductor and moves in accordance with the predetermined law. 
Axisymmetric change of the electromagnetic field in it is described using the Maxwell's 
equations and generalized Ohm's law in the spherical coordinate system , ,r θ ϑ  
( )0, 0 ,r θ π π ϑ π≥ ≤ ≤ − < ≤ : 
 

( ) ( ) ( ) ( )1 2 1 1 2
, ,

, sin sin ,e e r rr
r rH j E r H j Eθ θ θ

η γ θ θ η γ− − −− = + = +   
 

( ) ( )1 1
, , ,,

, ctg 2 ;r r r r er
r rE E H E r E E Eθ θ θ θ θ θ ρ− − − = − + + + = 

         (1) 
 

0 0, .r r e ej E u j E vθ θρ γ ρ γ= + = +              (2) 
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From now on, dots stand for time derivatives while the variable after the coma in the 
lower index indicates its derivative. The following dimensionless quantities are also used (if 
the tracing is the same, the prime corresponds to dimensional analogues): 
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where t  - time; u  and v , rE  and Eθ , rj  and jθ  - radial and tangential displacements, 
components of electric field and current density vectors; H  - magnetic field vector nonzero 
component; eρ  - surface charge density; c  and 1c  - speed of light and tension wave 
propagation; ε  and eµ  - dielectric and magnetic conductivity factors; σ  - electric 
conductivity factor; L  and E∗  - electric field linear dimension and intensity. 

The Ohm’s law linearization was performed in regard to initial electromagnetic field 
(which has a correspondent additional index 0) with the following components: 

 

( )0 0 0 0 0 0 00, , 0.r rE E E E r H H Hϑ θ θ ϑ= ≡ = = = ≡  
 

At the enclosure boundary, the following electric field intensity is specified: 
 

( )
0

0 ,
r r

E eθ τ θ
=

= .                                                                            (3) 
 

All the required functions are bounded while the initial conditions are homogeneous: 
 

0 0 00 0 0
0.r rE E E E H Hθ θτ τ ττ τ τ= = == = =

= = = = = =                  (4) 
 

Equations (1), (2) lead to the following equation further used as the basic: 
 

( ) ( )

( ) ( )

2 2 2 1 2
0 0 ,,

2 2 1
, , ,,

sin ,

sin sin

e e e er

r r

H H H r H r r v u

H r r H H

θ

θ θ

η γ θ η ρ ρ

θ θ

− − −

− −

 + = ∆ − + − 
 ∆ = + 

   

 

                 (5) 

 

and the following charge density ratio: 
 

( ) ( )2 2 1 1
0 0 ,,

sin sine e e er
r r u r v

θ
ρ γρ ρ θ ρ θ− − −+ = − −   .                    (6) 
 
3. Integral solutions 
In order to solve initial boundary value problem (3)-(5) with consideration of (1), functions 

, , ,r e rE j uρ  and 0, , , ,E H j v eθ θ  are expanded in Legendre ( )nP x  and Gegenbauer ( )3 2
1nC x−  

polynomials accordingly (two series are given for example): 
 

( ) ( ) ( ) ( ) ( ) ( )3 2
1

0 1
, , , cos , , , sin , cosr rn n n n

n n
E r E r P H r H r Cθ τ τ θ θ τ θ τ θ

∞ ∞

−
= =

= =∑ ∑ .           (7) 
 

This leads to the following equations in regard to bounded factors ( ) ( ), 1nH r nτ ≥ : 
 

( ) ( ) ( )2 2 2 2
, ,

, , ,e n n n n e H n n n r r
H H H l u v H r r H mHη γ η −  + = ∆ + ∆ = − 
  

   

( ) ( ) ( )1
0 0,

1 , , .H e er
m n n l u v r r v uρ ρ−  = + = +                   (8) 
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Ratios for other electromagnetic field component expansion factors follow from 
formulas (1) and (6): 

 

( ) ( ) ( ) ( )2 1 2 2 1 2
,

1 , ;e n n n e n e rn rn n e nr
E E r rH v n E E mr H uθ θη γ η η γ η− −+ = − − ≥ + = − 

             (9) 
 

( ) ( ) ( )2 2 1
0 0,

, , , .n n n n n n e er
l u v l u v r r u mr vρ ρρ γρ ρ ρ− −+ = − = +               (10) 

 

In the last ratio, nρ  are the factors of series (7) for function eρ . 
Boundary and initial conditions (3) and (4) with consideration of the first equality in (9) 

is transformed as follows: 
 

( ) ( ) ( ) ( ) ( )
0

1 2
0 0 0 0,

, , 1 , , ,n e n nr r r
r rH h v r e n h v e v e eη τ τ γ−

=
= − ≥ = + +               (11) 

 

( ) ( )0 0 00 0 0
0 0 , 0 1 .nr nr n n n nE E n E E H H nθ θτ τ ττ τ τ= = == = =

= = ≥ = = = = ≥         (12) 
 

Next, we apply Laplace time transform τ  ( s  means its parameter while index L  points 
to its view) [3] to ratios (8)-(11) with consideration of conditions (12): 

 

( ) ( ) ( )2 2 2 , 1 ,L L L L
e e n n n e H n n es H H sl u v n s s sη η γ= ∆ + ≥ = + ;                (13) 

 

( ) ( ) ( ) ( )2 1 2 2 1 2

,
1 , ;L L L L L L

e n n e n e rn n e nr
s E r rH sv n s E r mH suθη γ η η γ η− −+ = − − ≥ + = −            (14) 

 

( ) ( ),L L L
n n n ns sl u vργ ρ+ = − ;                        (15) 

 

( ) ( ) ( ) ( ) ( ) ( )
0

1 2
0 0 0 0,

, , 1 , , .L L L L L
n e n nr r r

r rH h v r s e s n h v e sv s eη γ−

=
 = − ≥ = + +              (16) 

 

It is convenient to represent the solution for boundary-value problem (13), (16) as 
integrals: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

2 2
0 0 0 0, , , , , , , , ,L L L L L L L L

n e Hn H n n e Hn n nr
H r s s G r s l u s v s d G r s h v r s e sη ξ ξ ξ ξ η

∞
   =− −   ∫ .    (17) 

 

Here, ( ), ,L
HnG r sξ  and ( )0 ,L

HnG r s  are the Green’s functions, i.e. bounded solutions of 

the problems ( ( )xδ  - Dirac delta function [3]): 
 

( ) ( )
0

2 2 1

,
, 0L L L

n Hn e e Hn Hn r r r
G s G r r rGη δ ξ −

=
∆ − = − = ;              (18) 

 

( )
0

2 2 1
0 0 ,

0, 1L L L
n Hn e e Hn Hn r r r
G s G r rGη −

=
∆ − = = .                (19) 

 

Similar (17) representations for functions ( ),L
rnE r s  and ( ),L

nE r sθ  may be obtained from 
equalities (14). Original representation (17) has the following view (asterisk stands for time 
convolution): 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

2 2
0 0 0 0, , , , , , , , ,n e Hn H n n e Hn n nr

H r G r l u v d G r h v r eτ η ξ τ ξ τ ξ τ ξ η τ τ τ
∞

= − ∗ − ∗      ∫   . (20) 
 

Similarly, functions ( ),rnE r τ  and ( ),nE rθ τ  may be represented. The formula for the 
surface charge expansion factors follows from (15): 

 

( ) ( ) ( ), , , ,n n n nr l u r v r e γτ
ρρ τ τ τ −= − ∗    .               (21) 
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4. Green’s functions 
The solutions for boundary-value problems (18) and (19) have the following view ( ( )h x  - 
Heaviside function [3]): 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

1
0 1 3 0

, , , , , , ,

, , , ;

L L L
Hn Hn Hn

L
Hn e e en e e e e n e e n e e

G r s G r s h r G r s h r

G r s s S r s rs Z s Y r s

ξ ξ ξ ξ ξ ξ

ξ η η η η ξ η−

 = − + − 
=

 



       (22) 

 

( ) ( ) ( )1 1 1
0 1 3 0,L

Hn e e n e e n e eG r s s Z rs Y r sη η η− − −= − ,                    (23) 
 

where 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2
1 1 2 2 1 2 1 4 3 2

3 2 3 2
3 1 2 3 2 4 1 2 3 2

, , , ,

1 , 1 .
n n n n en n n n n

n n n n n n

Z z z K z Z z z I z S x y Z y Y x Y x Z y

Y z z n K z zK z Y z z n I z zI z

− −
+ +

− −
+ + + +

= = = −

   = − + − = − + +   
 

Here, ( )1 2nK z+  and ( )1 2nI z+  are modified Bessel functions. 
When building formulas (22) and (23), the Bessel function expressions through 

elementary functions [4] were used from which follow the below listed equalities for ( )1nZ z , 

( )2nZ z  and ( )3nY z , ( )4nY z : 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 21 1
1 0 2 0 0

1 22 2
3 3 4 3 3

2, 1 2 ,

2, 1 2 ,

nn z n z z
n n n n n

nn z n z z
n n n n n

Z z z R z e Z z z R z e R z e

Y z z R z e Y z z R z e R z e

π π

π π

−− − − − − −

−− − − − − −

 = = − − − 

 = = − − − 
 

 

where 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )0 3 1 0 1 1,0 0

0

!
, , , .

2 ! !

n
n k

n nk nk n n n n n nk
k

n k
R z A z A R z R z R z R z R z nR z

n k k
−

+
=

+
= = = − = −

−∑  

 

In this case, Green’s functions in (22) and (23) obtain the following view: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )02 00
2

,0 , 022 1
0 0 0

1
, , , , , , , e ee k e r r sk L r s LL L n n

Hn Hn Hn Hn
k

G r s G r s e G r s r r G r s e ττ ξξ ξ −− + − −

=

= =∑  , 
 

where 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

101 1
0 0

02 1
0 0 3 0

02 1
0 0 3 0

1 2 1
01 02 0

, , 1 , ,

, , 1 , ,

, ,

, 2 , , , , 2 .

nL
Hn n e e n e e n e e

nL
Hn n e e n e e n e e n e e

L
Hn n e e n e e

n n
n e e e e

G r s R s R rs D r s

G r s R s R rs R r s D r s

G r s R rs R r s

D x y x y r r r r r

ξ η ξ η ξ η

ξ η ξ η η ξ η

η η

τ ξ η ξ τ ξ η ξ

+ −

−

−

+ +

= − −

= − −

= −

= = − = + −





 

 

Their originals may be analytically found using operator calculus theorems. However, 
since for real mediums 1eη << , serious challenges arise during calculations associated with 
the small parameter. That is why quasistatic analogues of Green’s functions with 0eη =  will 
be further used. 

 
5. Quasistatic solution 
In this version, equations in boundary problems (18) and (19) are simplified and have the 
following fundamental system of solutions: ( )1nr− + , nr . Then, similar to p. 3, we come to the 
following formulas for Green’s functions: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2

2 1 2 1 2
0 0

0 01 1 1

, , , , , ,

1
, , , .

2 1

L c c c
Hn Hn Hn Hn

n n n
c L c
Hn Hn Hnn n n

G r s G r G r h r G r h r

n r nr rG r G r s G r
n n r nr

ξ ξ ξ ξ ξ ξ ξ

ξ
ξ

+ + +

+ + +

 = = − + − 
+ +

= − = = −
+

 



            (24) 

 

Then, formula (17) is also simplified by substituting kernels ( ), ,L
HnG r sξ  and ( )0 ,L

HnG r s  

with functions ( ),c
HnG r ξ  and ( )0

c
HnG r . Its original (20) is substituted with the following 

equality: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

2 2
0 0 0 0, , , , , , , .c c

n e Hn H n n e Hn n nr
H r G r l u v d G r h v r eτ η ξ ξ τ ξ τ ξ η τ τ

∞
= − −      ∫       (25) 

 

The algorithm is followed by the summation of series presented as (7) and the 
identification of the current density component vector using formulas (2). 

 
6. Example 
Let's assume that the space material is aluminium ( 40,111 10 ; 5,06e

−η = ⋅ γ = ) while the other 
initial values are represented as: ( ) 3 2 2 2

0 0 01, 2 , 2cos , 2sin , 0er r ar u v e−
+ += ρ = = τ θ =− τ θ ≡ . 

Then, the electromagnetic field components calculated using formulas (7), (21), (24) 
and (25) are determined as follows: 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 3 3 2 3 2
0 0

2 5 2

2, , 2 sin ,
3

, , 3 1 cos .

e

e

aH r wr r r r h

r awr e hγτ

θ τ η τ τ θ

ρ θ τ γ γτ τ θ

−

− − −

 = + +  

= − +
 

 
7. Conclusions 
An analytical solution of the axisymmetric non-stationary problem is presented related to the 
identification of the components of the electromagnetic field in the space filled with 
homogeneous isotropic conductor with spherical enclosure. Its movement law and field 
distribution at the cavity boundary are predetermined. It is shown that the kernels of the 
integral representations built may be substituted with their quasistatical analogues, which 
significantly simplifies the evaluation of the correspondent integrals. The solution obtained 
may serve as the basis for the research of problems with more complex geometry. 
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