
 

 

AB INITIO MODELLING OF NONLINEAR ELASTOPLASTIC 

PROPERTIES OF DIAMOND-LIKE C, SiC, Si, Ge CRYSTALS UPON 

LARGE STRAINS 
R.S. Telyatnik1,2* , A.V. Osipov1-3, S.A. Kukushkin1-4 

1Institute of Problems of Mechanical Engineering of Russian Academy of Sciences,  

Bolshoy pr. 61, V.O., St. Petersburg, 199178, Russia 
2Saint-Petersburg Academic University of Russian Academy of Sciences,  

Hlopina ul. 8/3, St. Petersburg, 194021, Russia 
3St. Petersburg National Research University of Information Technologies, Mechanics, and Optics,  

Kronverkskii pr. 49, St. Petersburg, 197101, Russia 
4Peter the Great Saint-Petersburg Polytechnic University, 

 Politekhnicheskaya ul. 29, St.-Petersburg, 195251, Russia 

*e-mail: statphys@ya.ru 

 
 
Abstract. 5-th order nonlinear elastic properties of diamond-like single crystals are investigated 
by computational quantum chemistry, brief introduction to which is supplied. DFT LDA and 
DFT GGA methods are used to calculate curves of stress dependency on tensile, compressive 
and shear strains with account of structure relaxation in huge strain range until irreversible 
deformation occurs at strength limit. Limits of linear elastic proportionality, maximal stresses, 
regions of necking non-plastic creep are indicated. Relations between linear limits of axial and 
shear stresses, determined by bilinear approximations of the curves, are represented by Hill’s 
surface as an estimation of plastic anisotropy. Elastic constants are calculated both for finite 
and small strains. Polynomial approximations are made for dependencies of full energy, crystal 
volume, Poisson coefficient on strain. Determined parameters can be used for finite-element 
modelling in mechanical engineering and for reexamination of indentation tests. 
 
 
1. Introduction 
Development of advanced semiconductor (Si, SiC, Ge) engineering requires new detectors, 
generators, microelectromechanical systems (MEMS) and other devices using such phenomena 
like magneto- and electrostriction, piezoelectric, piezoresistive and other effects conjugated 
with deformation [1, 2]. Nonlinear elastic and plastic material properties are required and 
essential for finite-element modeling (FEM) of large deformations in mechanical engineering, 
e.g. for modeling indentation test, which can help to extract elastic-plastic properties from 
corresponding experiment [3]. However, there is usually a lack of experimental data on elastic 
constants for new materials, while for the majority of anisotropic materials, there is no 
information about limits of linear proportionality, nonlinearity, yield, creep, and strength at 
failure upon large strains, both axial and shear. Moreover, one cannot simply extract by 
experiment nonlinear elastic properties of non-ideal crystals exhibiting also plastic behavior. 
That is why over the last decades the interest to chemical calculations predicting elastic linear 
and nonlinear properties up to structural transformations under high pressure (usually 
volumetric and not directional) has grown significantly for materials with an absence of 
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experimental data. Methods of computational quantum chemistry [4, 5, 6], known as ab initio 
methods (Latin “from first-principles”), are very attractive in this sense, because they don’t 
require any empirical data on atomic potentials, but they rely on different approximations of 
many-electron problem. The most rapid and popular solution of the problem is Density 
Functional Theory (DFT) in Local Density Approximation (LDA) or Generalized Gradient 
Approximation (GGA) [7, 8]. Pseudopotential approximations of core (non-valence) electrons 
are usually incorporated. 

In this paper, it is presented a brief introduction to essentials of ab initio methods and 
calculation of elastic constants of crystals. For diamond C and diamond-like semiconductors, 
such as silicon Si, germanium Ge, silicon carbide SiC of sphalerite polytype, stress 
dependencies on large axial and shear strains are calculated for absolute zero temperature by 
DFT LDA and DFT GGA pseudopotential methods using ABINIT software [8]. Effective for 
large strains elastic constants and nonlinear stress-strain dependencies are determined along 
with linear proportionality limits, maximal stresses, necking regions (non-plastic creep) and 
strength limits. Anisotropic elastic constants are also calculated by method of response 
functions to small perturbations of atoms positions for comparison with the finite strain method. 
Correlation between computed stress-strain curves representing pure nonlinear elastic behavior 
until strength limit and real curves incorporating also plastic strain is discussed. Comparison 
with exterior experimental data is provided. 

 
2. Calculation of strain related material constants 
Deformation of a crystal is determined by a transformation of undeformed Bravais lattice 
vectors 𝑏𝑏�⃗ 𝑖𝑖 to deformed ones 𝑏𝑏�⃗ 𝑖𝑖′. In case of small deformation, the transformation is expressed 
by strain tensor ε (δ – Kronecker delta, Einstein’s summation rule over repeated indices is used 
hereafter): 
 

( )i i  ,  , , ,  ,  i 1,2,3b b x y zα αβ αβ βδ ε α β′ = + = = .  (1) 
 

Hook’s law for anisotropic materials relates stress to strain via 4-rank tensor of stiffnesses. This 
relation can be expressed in matrix form by Voight notations with indices 1,…, 6 corresponding 
to xx, yy, zz, yz, xz, xy, except for strains ε4=2εyz, ε5=2εxz, ε6=2εxy [10]: 
 

i ij j ( , , , , , )   (i, j 1,...,6)с x y z сαβ αβµν µνσ ε α β µ ν σ ε= = ↔ = = . (2) 
 

Cubic symmetry keeps only 3 independent elastic constants: 
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In this case, engineering Young's modulus E, Poisson coefficient ν and shear modulus G can be 
expressed from inverse stiffness matrix, i.e. matrix of compliances s=c-1: 
 

2 2
11 11 12 12 12 12

44
11 11 12 11 11 12 44

1 2 1;  ;  c c c c s cE v G c
s c c s c c s

+ −
≡ = ≡ − = ≡ =

+ +
  (4) 

 

To calculate elastic constants of a crystal, it is enough to obtain second derivatives on 
strains of full energy (per unit volume) of a primitive cell in small strain limit of harmonic 
approximation. In the nonlinear theory of elasticity and finite strains [11, 13] the strain energy 
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can be expanded with higher order elastic constants (using the Lagrangian definition of strain 
tensor): 

 

2 3
strain

ij i j ijk i j k ij ijk
i j i j k0 0

1 1 ... ,   ,   ,  ...
2 6

U UU c c c c
ε ε

ε ε ε ε ε
ε ε ε ε ε

= =
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∂
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∂ ∂ ∂ ∂
 (5) 

Second and third order elastic constants can be determined experimentally by sound 
propagation [14, 15] as well as by ab initio methods [16]. In this paper, for big strains up to 
phase transformation (leading to new local minimum of the energy), the total energy has been 
calculated ab initio and approximated with 5th order polynom. In general anisotropic case of 
triclinic symmetry, there are 21 cij independent constants, 56 cijk, 126 4th order cijkl, 352 5th order 
cijkl constants. In cubic crystals, there are 6 or 8 independent cijk constants depending on 
symmetry (6 for diamond-like one: c111, c112, c123, c456, c144, c166). Nevertheless, determination of 
such large amount of coefficients to describe required 5th order anharmonicity is inefficient. In 
mechanical applications, it is much simpler to use approximations of Hook’s formula with some 
functional dependency of cij(εk) on strain. For diamond-like crystals we have made simple 
approximations to dependencies of 3 engineering moduli (Young modulus, Poisson coefficient, 
shear modulus) on “true” logarithmic Hencky axial strain (and angular shear strain) for ability 
to use them in finite-element calculations, which integrate small deformations upon 
loading [17]: 
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Experimental data on true stress (per area of deformed body, not undeformed one) relative to 
true strain are usually supposed as input in FEM software like ANSYS. Poisson coefficient is 
considered here as relation of true strains. Logarithmic strains cause additional tension-
compression asymmetry of a stress-strain curve.  

Ab initio perturbation methods, such as Density Functional Perturbation Theory (DFPT) 
[18, 19] realized in ABINIT package, allow to calculate system response not only on atomic 
displacements, but on external electric and magnetic fields as well. Energy second derivatives 
on such perturbations, including mixed ones, give dielectric permittivity tensor, piezoelectric 
constants, and allow to calculate phonon and Raman spectra. Diatomic diamond-like (i.e. 
sphalerite type) crystals have only one nonzero component e14 of piezoelectric coefficients 
tensor. In mechanic sense, response function, i.e. lattice Green’s function of solid state theory 
[20], in the limits of spatial continuity and zero-frequency phonons, reduces to elastic static 
tensorial Green’s function, which characterize displacement field caused by unit force. In this 
paper, we calculated cij stiffness coefficients in the limit of small strains by response function 
method to be assured in consistency with used finite strains method. 

Nonlinearity of stress-strain curve may represent not only reversible nonlinear elasticity, 
but also irreversible plastic deformations (see the theory of plasticity [21-23]). Elastoplastic 
stress-strain curve usually have simple bilinear law described by elastic modulus E1 and tangent 
modulus E2 (Θ(ε) - Heaviside function): 
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Here, εY is the yield limit above which residual plastic strain remains after unloading, σC is 
maximal stress at strain εC, above which response stress doesn’t increase, and the body undergo 
creep elongation under constant pressure σC until fracture or structural transformation occurs at 
some ultimate strain εU. [23]). In single crystals, plasticity is caused mostly by formation and 
movement of dislocations along slip planes and by formation of other lattice defects and grains 
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in polycrystals and nanocrystalline materials [24, 25]. Dislocations, as quite big strain 
discontinuities, may be formed either in linear or nonlinear range of elasticity [26]. In the first 
case, the yield limit is lower than the limit of linear proportionality in pure nonlinear elasticity, 
otherwise in the second case. One cannot simply indicate the yield limit in the nonlinear range 
of stress-strain curve without unloading. In our ab initio calculations, nonlinear dependencies 
of stress on axial and shear strain (Figs. 1 – 9) don’t exhibit plastic deformation until strength 
limit εU is reached (see the results chapter), but the linear proportionality limits obtained by the 
bilinear approximations of the curves may serve as comparative limited estimations of the yield 
limits.  

The yield stresses for axial and shear strains together allow us to understand at what 
moment plastic deformation starts during arbitrary complex loading. The von Mises criterion 
for the onset of plasticity in isotropic medium was first generalized for orthotropic case by Hill 
[23, 27], who predicts plastic deformation outside the limiting 6-dimensional Hill’s surface in 
the space of three axial and three shear stresses: 
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The Hill’s criterion is supported, for example, by ANSYS package of FEM analysis. 
Subsequently, this criterion also got various modifications and generalizations [28, 29]. In 
crystals of cubic symmetry, the elastic-plastic law is the same for different axial components 
(with a possible difference between tension and compression), and the same for different shear 
components, however, the isotropic ratios between axial and shear components is no longer 
satisfied – namely, the isotropic ratio between elastic moduli, 
 

( )
11 12

44  
2 1 2

E c cG c
ν

−
= ⇔ =

+
 (elastic isotropy), (9) 

 

and the condition of spherical symmetry of Mises surface: 
 

Y,

Y,

3
1xy

xx

h
σ

σ
≡ =  (plastic isotropy).  (10) 

 

The 2D-projections of Hill’s surfaces based on calculated linear proportionality limits (not 
directly yield limits, as discussed above) are presented on Fig. 10. 

Since our paper is designed for mechanical engineers, we ought to provide hereafter brief 
introduction to the essentials of computational quantum chemistry. 
 
3. Essentials of ab initio methods 
Basic concept of quantum mechanics is wave function, characterizing state of a system 
depending on time and particles coordinates. It is possible to calculate wave function only for 
very simple systems, while for complex systems it is impossible in principle, so different 
approximations for many-body problem are used. In ordinary case, exploited by the theory of 
chemical binding, the Born-Oppenheimer adiabatic approximation is supposed by separating 
wave functions of atomic nucleus and electrons, since a motion of nucleus is much slower than 
that of electrons.  
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Fig. 1. Computed axial deformation of Ge. Stress, Poisson coefficient and relative 
total energy versus logarithmic strain. 

 

 
 

Fig. 2. Computed axial deformation of Si. Stress, Poisson coefficient and relative total energy 
versus logarithmic strain. 
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Fig. 3. Computed axial deformation of SiC. Stress, Poisson coefficient and 
relative total energy versus logarithmic strain. 

 

 
 

Fig. 4. Computed axial deformation of C. Stress, Poisson coefficient and relative 
total energy versus logarithmic strain. 
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Fig. 5. Hyperelastic behavior upon big axial compression for all considered 
diamond-like crystals exemplified by C and SiC. 

 

 
 

Fig. 6. Computed shear deformation of Ge. Stress, relative volume and relative 
total energy versus angle. 
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Fig. 7. Computed shear deformation of Si. Stress, relative volume and relative 
total energy versus angle. 

 

 
 

Fig. 8. Computed shear deformation of SiC. Stress, relative volume and relative 
total energy versus angle. 
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Fig. 9. Computed shear deformation of C. Stress, relative volume and relative 
total energy versus angle. 

 

  

  

 

Fig. 10. Hill’s surfaces (as relation between stress limits of linearity) in projection 
on the semi-plane (σxx,σxy≥0) for different crystals (by averaged results of DFT 

LDA TM and DFT GGA ONCV calculations). 
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functions factorized in form of Slater determinant accounting Pauli exclusion principle. The 
second one is the DFT method (based on Hohenberg-Kohn theorems) introducing formalism of 
electronic density 𝜌𝜌(𝑟𝑟) determined by normalized multi-electron wave function. Electronic 
density, compared to wave function, is a physical quantity, which can be measured 
experimentally by X-ray diffraction. Kohn–Sham equation is the Schrödinger equation of a 
fictitious system of non-interacting particles that produce the same density as a given system of 
interacting particles. It is derived by varying the total energy expressed as a functional of 𝜌𝜌(𝑟𝑟). 
The dependency of electronic energy on 𝜌𝜌(𝑟𝑟) has the following form [7]: 

 

ext k
1 ( ) ( )[ ] ( ) ( ) [ ] [ ]
2 xc

r rU V r r dr drdr U U
r r

ρ ρρ ρ ρ ρ
′

′= + + +
′−∫ ∫ ∫

 

    

 

. (11) 
 

Here, the first term describes interaction of electrons with external field incorporating also 
attraction to nuclei according to Born-Oppenheimer approximation, the second term is 
Coulomb repulsion of electrons, Uk[ρ] is kinetic energy of known form in Kohn-Sham 
approach, while Uxc[ρ] is an unknown functional comprising exchange interaction energy and 
electron correlation as a correction to the SCF approach. Many methods to evaluate Uxc[ρ] have 
been proposed. The simplest of them is LDA approximation, according to which exchange 
functional for homogeneous electron gas model has the form 

1/3
LDA 4/3
x

3 3[ ] ( )
4

U r drρ ρ
π
 = −  
  ∫

 

,  (12) 
 

while the correlation integrand is a rational approximation fitting exact solutions in limit cases 
of infinitely weak and infinitely strong correlation. More advanced GGA approximation of 
Uxc[ρ] takes into account also gradients of electronic density ∇��⃗ 𝜌𝜌(𝑟𝑟). 

Minimization of the functional (11) is carried out using a set of basis functions, linear 
combinations of which compose molecular orbitals. Methods of the minimization can be 
figuratively divided by two classes. In methods of the first class, crystal orbitals are 
approximated by a sum of atomic orbitals centered on each nucleus. Angular components of 
atomic orbitals are spherical harmonics Ylm(θ,φ), while radial functions are approximated by 
analytic functions selected as a basis set. Optimal atomic orbitals should provide correct 
behavior of electrons near nucleus, as well as far away from them. Most popular basis set is 
Gaussian-type orbitals having the following form: 

 
21

lm( , , ) ~ Y ( , )n arg r r eθ ϕ θ ϕ− − .  (13) 
 

Here, r is a distance from the given nucleus, n,l,m are principal, azimuthal and magnetic 
quantum numbers. Despite some disadvantages of Gaussian orbitals, there is a significant 
advantage, namely, a product of two Gaussian functions centered on two different nuclei is a 
Gaussian function centered on a line intersecting the nuclei. This fact simplify calculation of 
Coulomb and exchange integrals. A significant kind of the methods of the first class is a 
“muffin-tin” (MT) approximation, which consider crystal potential as non-intersecting spheres 
centered on atoms, so potential is equaled to zero beyond the spheres. Inside MT spheres, 
solutions of atomic type are constructed, while beyond them wave functions are described by 
plane waves in such a way, that there was no discontinuity (though the first derivative has it). 
This method is quite efficient for calculation of elastic constants for many materials [30]. 

A disadvantage of methods of the first class is a bad convergence of SCF requiring about 
102 iterations. In methods of the second class, the solution is initially expanded by plane waves 
taking into account a symmetry of a crystal. To describe nodal structure of plane waves inside 
atomic core, it is required about 106 plane waves. To accelerate solution, some approximations 
are used, such as Orthogonalized Plane Waves (OPW), Augmented Plane Waves (APW), etc. 
Moreover, for crystals consisting of heavy atoms (i.e. with a big amount of electrons), a 
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pseudopotential (PSP) method is used. It usually regards only valence electrons, while 
chemically inactive electrons are united with atomic core resulting in effective potential, which 
is applicable outside some cutoff radius rc. PSPs are usually prescribed by the most precise 
calculations, such as relativistic Hartee-Fock method. Plane wave PSP method is realized in 
ABINIT code. 
 
4. Ab initio model used for calculation 
We use ABINIT free software for ground state (T=0 K) computation mostly by two methods: 
1) DFT LDA with Pade approximation of exchange-correlation functional in the form of GTH 
[31] (reproducing PW [32]) and TM (Troullier-Martins [33]) pseudopotentials generated by A. 
Khein and D.C. Allan [www.abinit.org]; 2) DFT GGA with PBE [34] exchange-correlation 
functional and ONCV (Optimized Norm-Conserving Vanderbilt [35]) pseudopotentials by D.R. 
Hamann [36] from ONCVPSP-PBE-PDv0.2 library [www.abinit.org]. Compression, tension 
and shear deformations have been modelled for a cubic cell with 8 atoms, which, in an ideal 
diamond face-centered cubic structure, have regular tetrahedral neighborhood with the 
following Bravais coordinates (in units of the lattice parameter, coincide with Cartesian 
coordinates for undeformed cell): (0,0,0), (1/2,1/2,0), (0,1/2,1/2), (1/2,0,1/2), (1/4,1/4,1/4), 
(3/4,3/4,1/4), (1/4,3/4,3/4), (3/4,1/4,3/4). When the last four quaternary positions are occupied 
by another kind of atoms (e.g. by C in SiC), it is called sphalerite or zinc-blende structure. 
Consideration of the bigger cells having more degrees of freedom unrestricted with periodic 
conditions, allow to account low-energy transformations on larger scale, which should slightly 
lower the stress and the elastic limit of crystals. 

The accuracy of the reported results is determined by 6×6×6 Monkhorst-Pack [37] 
computational grid in the reverse k-space (shifted by (0.5,0.5,0.5)), and by energy cutoff of 
plane wave expansions 60 Ha ≈ 1633 eV, that provides a numerical error of the unstrained cell 
energy less than 0.001 %. ABINIT has effective 3-level parallelization of computations by k-
points, bands, and fast Fourier transforms, which is suitable for supercomputers. The stress 
tensor in ABINIT is calculated by Nielsen-Martin formalism [38]. 

For axial strains along the standard crystallographic axis [100] (Miller notation), the cell 
has been allowed to change its transverse dimensions, so the Poisson's ratio can be determined. 
For pure shear strains, a volume of the cell has been optimized. This also secures the 
applicability of the used pseudopotentials with cutoff radius rc~0.6 Å. Relaxation of atomic 
positions has been carried out in a process of minimization of the total energy and its 
gradient [39] by BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm until the tolerance 
5∙10-5 Ha/Bohr ≈ 4∙10-12 N on forces is reached. Deformation of a cell with atoms can be 
performed by two ways: by changing only Bravais vectors without shifting atoms, allowing 
them to relax to an equilibrium positions, or by changing Bravais vectors with proportional shift 
of atoms closely to the equilibrium. The first method may “feel” along the deformation path 
structural instabilities which may be unnoticed by the second method. But the last method has 
faster relaxation and better convergence of SCF cycles. Since we have quite dense graduation 
of strain increasing, we have chosen the second way, so the reduced coordinates (relative to cell 
sides) of atoms instead of Cartesian ones are chosen as initials for each strain step from the last 
step. However, any kind of metastabilities may be checked with molecular dynamics 
(MD)  [40]. For strained silicon, MD has been calculated by GGA method using Noze-Hoover 
thermostat [41] at T = 300 K for the time of one atomic oscillation to get representative mean 
stress.  

 
5. Results and discussion 
Regarding stress-strain dependencies (Figs. 1-9) obtained by ab initio calculations of diamond-
like crystals C, SiC, Si, Ge, we will outline some their remarkable features we have observed: 
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1). First of all, ab initio calculations give lattice parameters of the crystals close to 
experimental values [42], as well as elastic coefficients [46] obtained both by finite strain 
method and small atomic perturbations method (Tabs. 1 and 3). DFT LDA calculation with TM 
PSP coincides with DFT GGA with ONCV PSP having a regardless scalar difference in total 
energy and not big stress overvaluation upon large tension and shear. DFT and GGA exchange-
correlation functionals give different signs for small but non-zero piezoelectric coefficient of 
SiC. Nonetheless, this is a sufficient basis, from which we can proceed to an investigation of 
nonlinear elastic properties. 
 
Table 1. Lattice parameter a (Å) of the crystals, and elastic constants (GPa, ν is dimensionless) 
with piezoelectric constant e14 (C/m2) obtained by response function calculation for small 
atomic displacements. 

 a  𝑐𝑐11 𝑐𝑐12 𝑐𝑐44=G E[100] ν 𝑒𝑒14 Method 

C 3.54 1092 147 588 1057 0.119 0 1 
C 3.57 1050 123 559 1024 0.105 0 2 
C 3.57  1079 124 578 1053 0.103  exp [42, 46] 

SiC 4.33 403 142 254 329 0.261 +0.06 1 
SiC 4.38 385 127 242 322 0.248 -0.06 2 
SiC 4.31 409 140 259 338 0.255 0.01 3 
SiC 4.37 383 125 242 321 0.246 -0.08 4 
SiC 4.35 395 132 236 329 0.251  exp [43, 47] 
Si 5.40 161 65 77 124 0.288 0 1 
Si 5.47 153 57 75 122 0.271 0 2 
Si 5.43 166 64 80 130 0.278  exp [44, 48] 
Ge 5.53 135 52 67 106 0.278 0 1 
Ge 5.65 129 48 67 103 0.271  exp [45, 49] 

1 – DFT LDA, GTH functional, TM pseudopotentials, 
2 – DFT GGA, PBE functional, ONCV pseudopotentials, 
3 – DFT LDA with FHI (Fritz-Haber-Institute) pseudopotentials, 
4 – DFT GGA with FHI pseudopotentials, 
exp – experimental data, 1st ref. to lattice parameter, 2nd ref. to stiffness constants. 
 

2). We explore ~5th order elastic nonlinearity (the order of polynomial approximation of 
strain energy in Tab. 4) until ultimate strain 𝜀𝜀𝑈𝑈 (Tab. 2), at which stress changes its sign, as well 
as the first derivative of the total energy U, so the system tends to another stable phase described 
by a new local energetic minimum. Although, SiC doesn’t exhibit clear change of signs neither 
for axial (Figs. 3, 5), nor for shear strains (Fig. 8). All examined crystals have the same 
compressive ultimate strain 𝜀𝜀𝑈𝑈𝑐𝑐 ≈ −0.6 , but at high compression beyond 𝜀𝜀𝑈𝑈𝑐𝑐  they restore 
positive stiffness with strong hyperelastic behavior (Fig. 5), while preserving their diamond-
like atomic structure in respect to Bravais translations. It is known, that diamond structure may 
transform to β-Sn or rock salt phases under high hydrostatic (volumetric) pressure [50], but we 
have not regarded this question for uniaxial stress.  

3). At any axial strain, equilibrium positions of atoms remains at their initial reduced 
coordinates in the basis of Bravais translations. Stress discontinuity and jumps correlate only 
with Poisson coefficient dependency on strain, i.e. with the cell area associated with the stress. 
If we allow relaxation from the deformed state, even from the one similar to creep flow beyond 
𝜀𝜀𝐶𝐶𝑐𝑐 or 𝜀𝜀𝐶𝐶𝑡𝑡  (corresponding to flat or lowering stress absolute values), the cell returns during energy 
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minimization to its initial cubic shape without residual strain. So, formally, the bilinear 
approximations don’t describe elastic-plastic law here, but only nonlinear elasticity, while the 
limit stress σY and strain εY of linear proportionality usually fit the first stress discontinuity. Real 
crystals with preexisting defects and big temperature fluctuations happening in large crystal 
volume, surely, may accumulate plastic strain.  
 
Table 2. Limit true axial ε and shear γ strains with corresponding true stresses σ (in GPa): linear 
proportionality limits (Y), maximal stress limits of bilinear proportionality (C), strength limits 
(U) – for compression (с), tension (t), or shear (s); see Figs. 1-9. 
ℎ𝑠𝑠/𝑐𝑐,𝑡𝑡 = �√3σY𝑠𝑠 σY

𝑐𝑐,𝑡𝑡⁄ � – Hill’s parameters of assumed anisotropic plasticity. 
 𝜀𝜀𝑌𝑌𝑐𝑐 𝜀𝜀𝐶𝐶𝑐𝑐 𝜀𝜀𝑈𝑈𝑐𝑐  𝜀𝜀𝑌𝑌𝑡𝑡  𝜀𝜀𝐶𝐶𝑡𝑡  𝜀𝜀𝑈𝑈𝑡𝑡  𝛾𝛾𝑌𝑌 𝛾𝛾𝐶𝐶 𝛾𝛾𝑈𝑈 Method 

Ge -0.045 -0.15 -0.62 0.130 0.20 0.29 0.055 0.21 0.36 1 
Si -0.060 -0.17 -0.60 0.171 0.22 0.30 0.079 0.23 0.28 1 
Si -0.069 -0.19 -0.62 0.169 0.22 0.31 0.109 0.25 0.39 2 

SiC -0.103 -0.30 -0.63 0.236 0.31 ~0.47 0.180 0.31 ~0.41 1 
SiC -0.111 -0.30 -0.63 0.212 0.29 ~0.47 0.171 0.32 ~0.42 2 
C -0.165 -0.27 -0.62 0.189 0.33 0.52 0.226 0.35 0.40 1 
C -0.156 -0.27 -0.62 0.176 0.32 0.52 0.206 0.323 0.38 2 

 𝜎𝜎𝑌𝑌𝑐𝑐 𝜎𝜎𝐶𝐶,𝑈𝑈
𝑐𝑐  ℎ𝑠𝑠/𝑐𝑐 𝜎𝜎𝑌𝑌𝑡𝑡 𝜎𝜎𝐶𝐶𝑡𝑡 ℎ𝑠𝑠/𝑡𝑡 𝜎𝜎𝑌𝑌𝑠𝑠 𝜎𝜎𝐶𝐶𝑠𝑠   

Ge -4.4 -9.5 1.46 14.7 18.3 0.44 3.7 12.1  1 
Si -6.8 -11.9 1.55 24.3 28.8 0.43 6.1 15.3  1 
Si -7.7 -12.7 1.84 23.1 27.0 0.61 8.2 15.7  2 

SiC -27.5 -49.7 2.82 91.0 98.4 0.85 44.7 65.1  1 
SiC -28.3 -49.8 2.48 78.1 90.3 0.90 40.6 64.4  2 
C -167.9 -219.5 1.29 182.4 222.7 1.19 125.4 149.1  1 
C -155.6 -220.0 1.22 164.7 204.2 1.15 109.7 133.9  2 

1 – DFT LDA, TM PSP; 2 – DFT GGA, ONCV PSP. 
 

4). Bilinear approximations of stress-strain curves up to (𝜀𝜀𝐶𝐶 ,𝜎𝜎𝐶𝐶) point in respect to true 
logarithmic Hencky strain cause considerable difference (for SiC and Si) of approximated 
Young moduli for tension 𝐸𝐸1𝑡𝑡, for compression 𝐸𝐸1𝑐𝑐, and for the limit of small strains 𝐸𝐸0 (tangent 
line to the curves at zero strain). One should take this into account when computing large strains 
or using bilinear model for plasticity in case of early elastic nonlinearity. 

5). One can see on Figs. 1-9, that Poisson coefficient is not constant and decreases for a 
wide interval of axial strains linearly for C and quadratically for SiC, Si, Ge. This decrease have 
nearly the same rate in the first order ν ≈ ν0-0.5ε characterizing mostly the crystal geometry 
than atomic forces. Inconstancy of Poisson coefficient even at small strains should be accounted 
in common indentation tests for diamond tip as well. At the stretching strain ε ≈ 0.2, Poisson 
coefficient of diamond becomes negative. This is explained by that the atoms in a sublattice of 
the quaternary positions behaves like an “accordion” structure of other auxetic materials with 
negative Poisson coefficient [51]. 

6). For Si and SiC, results (Tab. 2) on maximal tension stress 𝜎𝜎𝐶𝐶𝑡𝑡 and corresponding strain 
𝜀𝜀𝐶𝐶𝑡𝑡  are close to the results of rod-extension experiment [52] and molecular dynamics studies 
with Tersoff semi-empirical potential in the same work [52]. For diamond, results on 𝜎𝜎𝐶𝐶𝑡𝑡 and 
maximal compression stress 𝜎𝜎𝐶𝐶𝑐𝑐 are close to another ab initio calculation in [53] (note, that other 
researchers usually represent engineering strains). Our MD simulation for Si at room 
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temperature conjugated with DFT GGA calculation of forces results in a bit lower averaged 𝜎𝜎𝐶𝐶𝑡𝑡 
(Fig. 2). 

 
Table 3. Approximated from finite strains moduli (in GPa) of elasticity (E1, G1) and tangent 
moduli of nonlinearity (E2, G2). E0, G0 are obtained from derivative of spline interpolation at 
zero strain. Polynomial approximations for Poisson coefficient (as relation of logarithmic 
strains) upon axial true strain ν=ν0+ ν1ε+ ν2ε2 and relative crystal volume upon shear angular 
strain V/V0=1+v2γ2+ v4γ4. 

 𝐸𝐸0 𝐸𝐸1𝑐𝑐 𝐸𝐸2𝑐𝑐 𝐸𝐸1𝑡𝑡 𝐸𝐸2𝑡𝑡 v2 v4 Method 

Ge 105 98 48 114 51 0.029 -3.628 1 
Si 124 114 44 142 91 -0.135 -3.719 1 
Si 124 111 43 136 77 -0.051 -3.761 2 

SiC 329 266 112 386 99 0.334 - 1 
SiC 320 256 113 368 167 0.431 - 2 
C 1056 1016 492 965 286 0.731 3.029 1 
C 1025 1000 563 935 285 0.595 6.801 2 

 𝐺𝐺0 𝐺𝐺1 𝐺𝐺2 𝜈𝜈0 𝜈𝜈1 𝜈𝜈2   

Ge 69 68 55 0.283 -0.574 -0.845  1 
Si 77 77 60 0.287 -0.416 -0.585  1 
Si 75 75 54 0.271 -0.450 -0.616  2 

SiC 253 248 157 0.257 -0.486 -0.681  1 
SiC 242 238 156 0.247 -0.511 -0.754  2 
C 592 599 378 0.121 -0.579 0.031  1 
C 560 532 207 0.108 -0.600 0.003  2 

1 – DFT LDA, TM PSP; 2 – DFT GGA, ONCV PSP. 
 

7). Excluding diamond having 𝜎𝜎𝐶𝐶𝑐𝑐 ≈ −𝜎𝜎𝐶𝐶𝑡𝑡 , other crystals (SiC, Si, Ge) have |𝜎𝜎𝐶𝐶𝑐𝑐| much 
less than 𝜎𝜎𝐶𝐶𝑡𝑡. Same goes for limit strains and stresses of linear proportionality (𝜀𝜀𝑌𝑌, 𝜎𝜎𝑌𝑌) which we 
designate as yield limit assuming their scale correlation, since the coincidence of the computed 
elastic modulus and maximal stress point (εC, σC) with experimental values give minor 
differences with experimental stress-strain curve to fit yield point with bilinear law. So the 
conclusion about plastic axial anisotropy can be made. Moreover, shear limit stress of linear 
proportionality 𝜎𝜎𝑌𝑌𝑠𝑠 doesn’t satisfy the condition of plastic isotropy as well, that is demonstrated 
with the Hill’s parameters h (Tab. 2) and surfaces (Fig. 10). 

8). Unlike axial deformation, the shear deformation in (𝑏𝑏�⃗ 1, 𝑏𝑏�⃗ 2) plane cause changing of 
b3-components of the atomic reduced coordinates in Bravais basis, while b1 and b2 components 
remain the same. Upon shear deformation, atoms in quaternary positions tends to the cell 
planes, and only diamond successfully introduce them there in line chains at ultimate shear 
strain 𝛾𝛾𝑈𝑈  ≈ 0.39 ≈ 22°, while fracturing, i.e. transforming into compliant one-face-centered 
orthorhombic structure with doubled volume and Bravais coordinates of the considered cell 
atoms (0, 0, -1/8), (1/2, 1/2, -1/8), (0, 1/2, 3/8), (1/2, 0, 3/8), (1/4, 1/4, 3/8), (3/4, 3/4, 3/4), (1/4, 
3/4, 5/8), (3/4, 1/4, 5/8). 

9). Despite of the similar way of atomic relaxation, pure shear deformation causes volume 
expansion for C and SiC, but contraction for Si and Ge. The dependency of the cell volume 
(related to undeformed cell volume) has been approximated with quadratic or biquadratic 
polynoms (Fig. 6-9, Tab. 3). 
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Table 4. Polynomial approximation of the cell total energy on strain in the anharmonic range 
having continuous differentiability. 𝑈𝑈/|𝑈𝑈0| = −1 + 𝑢𝑢2𝜀𝜀2 + 𝑢𝑢3𝜀𝜀3 + 𝑢𝑢4𝜀𝜀4 + 𝑢𝑢5𝜀𝜀5, where it is 
engineering strain 𝜀𝜀 = ∆𝐿𝐿/𝐿𝐿0  for axial deformation (the energy is redrawn in logarithmic 
strains on Figs. 1-9).  

 strain U0 (eV) u2 u3 u4 u5 Method 

Ge axial -1101.30 0.0446 0.0452 -0.1470 -0.2580 1 
Ge shear -1101.30 0.0285 0.0280 -0.0326 -0.3315 1 
Si axial -966.24 0.0602 0.0673 -0.1751 -0.3185 1 
Si axial -921.24 0.0642 0.0585 -0.1690 -0.2544 2 
Si shear -966.24 0.0445 -0.1109 0.5904 -1.1508 1 
Si shear -921.24 0.0465 -0.0966 0.5421 -1.0852 2 

SiC axial -1142.80 0.0699 0.0496 -0.0675 -0.1811 1 
SiC axial -1117.93 0.0720 0.0466 -0.0749 -0.1897 2 
SiC shear -1142.80 0.0577 -0.0166 0.0963 -0.1926 1 
SiC shear -1117.93 0.0607 -0.0524 0.2437 -0.3729 2 
C axial -1314.55 0.1107 -0.0443 -0.1189 0.0859 1 
C axial -1310.27 0.1105 -0.0489 -0.1218 0.0947 2 
C shear -1314.55 0.0639 -0.0303 0.1668 -0.2652 1 
C shear -1310.27 0.0621 -0.0230 0.1368 -0.2436 2 

1 – DFT LDA, TM PSP, 2 – DFT GGA, ONCV PSP. 
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