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Abstract. The gradient thermoelasticity problem for a composite rod based on the applied 
one-parameter model is investigated. To find the Cauchy stresses, the Vishik-Lyusternik 
asymptotic approach is used, taking into account the presence of boundary-layer solutions in 
the vicinity of the rods' boundaries and interface. A new dimensionless parameter equal to the 
ratio of the second rod length and the gradient parameter are introduced. Simplified formulas 
are constructed in order to find the distribution of the Cauchy stresses depending on the new 
parameter. After finding the Cauchy stresses distribution, moment stresses, total stresses, 
displacements, and deformations are further calculated. The dependence of the Cauchy stress 
jump on the ratio of the rods' physical characteristics and the scale parameter is investigated. 
The analysis of the results provided is performed. 
Keywords: composite rod, gradient model, thermoelasticity, Cauchy stresses, moment 
stresses, asymptotic approach, boundary layer 

1. Introduction
An interest in studying the stress-strain state (SSS) of composite structures of small sizes is 
associated with the prospects for the development of microelectronics, nanostructures, 
aerospace systems, and highly sensitive equipment. In such structures, especially in coatings, 
the sizes of the studied elements may become comparable with the characteristic sizes of the 
material's microstructure. In addition, large stress concentrations can occur at the interface 
between dissimilar materials, which greatly affects the product strength. In classical 
mechanics, the constitutive equations do not include any scale parameters; therefore, they 
cannot be used in modeling scale effects. At present, gradient elasticity theories are 
commonly used to model the effects observed in ultrathin structures, as well as in 
nanostructured materials, geomaterials, and biomaterials which include length dimension 
parameters in the constitutive relations. 

The gradient elasticity theory is a generalization of the classical theory of elasticity. It 
was formulated in the 60s of the last century in the works of Toupin [1] and Mindlin [2,3]. 
Subsequently, a large number of researchers dealt with the development of the gradient 
elasticity theory [4-27]. The scientific schools of Aifantis [4-9] and Lurie [13-20] made a 
particularly large contribution to the development of gradient mechanics. In the gradient 
elasticity theory, the strain energy density depends not only on the strain but also on the first 
strain gradient. The mathematical formulation of the gradient theory of elasticity in the 
general case is completely determined by the variational Lagrange principle. The equilibrium 
equations of the gradient theory with respect to displacements or stresses have a higher order 
of differential equations compared to the classical theory, and in order to construct a solution, 
it is required to satisfy additional boundary conditions. Note that the practical use of the 
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model [3] raises the question of identifying five additional gradient modules. To overcome 
this difficulty, the applied gradient deformation models were proposed: the three-parameter 
model by D.C.C. Lam [23], the one-parameter models by E.C. Aifantis [7] and  
S.A. Lurie [13]. 

On the basis of the one-parameter model of the gradient elasticity theory, many 
problems have been recently solved, both one-dimensional and two-dimensional. In [10], the 
solutions of the gradient elasticity theory for a rod were obtained, both for static and dynamic 
statements. In [9], the problems of the gradient theory of elasticity for composite bodies are 
considered. The conditions of conjugation at the interface of materials modified in 
comparison with the classical theory are obtained. For the one-dimensional problem, the exact 
analytical solutions are obtained. In [16,17], a refined gradient theory on the bending of scale-
dependent hyperfine rods was constructed. In [13], the equilibrium problem of a two-layer 
coating under the influence of localized normal load in the framework of the plane problem is 
numerically studied. The problem statement is given on the basis of the interfacial layer 
model, which is a one-parameter version of the gradient theory of elasticity. Based on the 
variational formulation, the authors obtained the equilibrium equations, boundary conditions, 
and conjugation conditions. The solution was carried out using the integral Fourier transform 
and its numerical inversion. The dependence of the stress distribution on the layer thickness 
and the gradient parameter of the model are investigated. In [26], based on a three-parameter 
gradient model, the static deformation of a two-layer microplate was studied. It was found 
that the Cauchy stresses break at the boundary of the layers. In [27], the problem of bending a 
microbeam with a partial coating was solved. To study the scale effects, an additional scale 
parameter was introduced - the ratio of the coating thickness to the gradient parameter. The 
effect of a decrease in the scale parameter on changes in the distribution of displacements, 
stresses, and the neutral line was studied. It is found out that gradient effects play an 
important role when the scale parameter is less than unity. 

Starting from the 70s of the last century, gradient theories have begun to be applied to 
problems in the mechanics of coupled fields [12,14,15,18,19,21]. In [12], the formulation of 
the dynamic coupled problem of gradient thermoelasticity was obtained. Further, gradient 
models began to be employed to more accurately estimate the SSS of inhomogeneous 
thermoelastic bodies, including the layered ones made of functionally graded materials 
(FGM). FGM is a composite material manufactured by mixing different material components 
(e.g., ceramic and metal ones) and is characterized by a smooth change of properties along 
with the coordinate [28]. So, in [21], the SSS of a long thick-walled FGM cylinder under the 
influence of thermal and mechanical load is numerically studied. The material characteristics 
of the cylinder vary exponentially in the radial direction. The influence of the inhomogeneity 
parameter and the gradient parameter on the distribution of stresses and displacements is 
studied. In [14], the formulation of the unbound gradient thermoelasticity problem based on 
the model of the interfacial layer for the coating-substrate system is presented under the 
assumption of the one-dimensionality of the original problem. As a result of the numerical 
solution, graphs of the distribution of stresses and strains are built, taking into account the 
influence of both thermomechanical characteristics, and the gradient parameter. 

In this work, we study the SSS of a composite rod under thermomechanical loading 
based on the applied one-parameter model [7]. We have chosen a one-dimensional problem to 
study due to the fact that for such a problem one can obtain simplified analytical solutions that 
can be further used to analyze the stress state of thin coatings. The study begins with finding 
the temperature distribution. Then, on the basis of the Vishik-Lyusternik asymptotic 
approach, simplified analytical expressions for the Cauchy stresses in a dimensionless form 
are obtained. After finding the Cauchy stresses distribution, we calculate moment stresses, 
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total stresses, strains and displacements. A comparative analysis of the results obtained is 
performed. 

 
2. Constitutive relations of gradient mechanics 
In 1968, R.D. Mindlin and N.N. Eshel, put forward a position that the strain energy density is 
a function of not only the strain tensor but also the first strain gradient [3]. For a linear 
isotropic material, the expression for the strain energy density has the form: 

1 , , 2 , , 3 , , 4 , , 5 , ,
1
2 ii jj ij ij ij j ik k ii k kj j ii k jj k ij k ij k ij k kj iw c c c c c= λε ε +µε ε + ε ε + ε ε + ε ε + ε ε + ε ε .      (1)                                                                      

Here λ  and µ  are the Lame parameters, 1c , 2c ,…, 5c  are the additional gradient 

parameters, ( ), ,
1
2ij i j j iu uε = +  is the tensor of small deformations of an elastic body. Note that 

the practical use of this model raises the question of identifying additional modules. 
To overcome this difficulty, B.S. Altan and E.C. Aifantis [7] proposed an applied one-

parameter gradient deformation model based on a simplified form of the strain energy density. 

Putting in (1) 1 2 5 0c c c= = = , 2
3

1
2

c l= λ , 2
4c l= µ , we get: 

2
, , , ,

1 1( )
2 2ii jj ij ij ii k jj k ij k ij kw l= λε ε +µε ε + λε ε +µε ε .                                     (2) 

Here l  is a gradient parameter with a length dimension and associated with sizes of 
microstructural inhomogeneities. 

The constitutive relations for the components of the Cauchy stress tensor ijτ , moment 
stress tensor ijkm , and total stress tensor ijσ  have the form [7]: 

,                                                                                      (3) 

,                                                                        (4) 

.                                          (5) 
The mathematical formulation of the gradient theory of elasticity in the general case is 

completely determined by the variational Lagrange principle. By varying the functional 
compiled in [7], we obtain the equilibrium equation: 

,                                                                                   (6) 
and the natural static boundary conditions on the surface S  bounding the region V  are as 
follows: 

, .                (7)  
Here ,  are the vectors of the given forces in the body volume and on its surface,  

are the components of the unit normal vector to the body surface at the considered point. The 
formulation of the problem is supplemented by the kinematic boundary conditions: i iu u= , 

,
i

i l l
uu n
n

∂
=
∂

. 

In the case of the problem of unbound thermoelasticity, according to [21], we will 
replace  with  in the equation (2), where  is the temperature stress coefficient, 

 is the Kronecker symbol. In addition, the equilibrium equation (6) and the mechanical 

ij
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boundary conditions (7) must be supplemented by the equation of classical thermal 
conductivity: 

                                                                      (8) 

and thermal boundary conditions 
, .                                                                (9) 

Here  is the body surface. 
As an example, we consider the equation of equilibrium, thermal conductivity, and the 

constitutive relations of gradient thermoelasticity for an inhomogeneous rod: 
0′σ = ,                                                                                                           (10) 

( ( ) ) 0k x T ′ ′ = ,                                                                                      (11) 
2l ′′σ = τ − τ ,                                                                                                   (12) 

( ) ( ) ( )E x u x T x′τ = − γ ,                                                                        (13) 
2m l ′= τ .                                                                                                  (14) 
In the formulas (10) - (14), the prime sign denotes the derivative with respect to . 

 
3. Statement of the gradient thermoelasticity problem for a composite rod 
Consider the equilibrium of a composite thermoelastic rod with a length  at the junction at 
the point 0x H= , under the influence of a combined thermo-mechanical load.  One end of the 
rod 0x =  is rigidly fixed and maintained at zero temperature; at the other end x H=  the 
force  acts, and the temperature  is maintained. The Young modulus , the thermal 
conductivity  and the thermal stress coefficient γ  are piecewise continuous functions of the 
coordinate . Because the equilibrium equations in gradient theory have an increased order of 
differential equations compared to the classical theory, then the additional boundary 
conditions are also required. As additional boundary conditions, we take ,  

( ) 0m H = . In addition, according to [14,15], the interface conditions for temperature, heat 
flux, displacements, strains, total stresses, and moment stresses must be satisfied at the 
junction. Further in the formulas, we denote the functions and parameters corresponding to 
the first and second rod by the indices "1" and "2", respectively. To simplify the calculations, 
we assume that the gradient parameter is the same for each rod, i.e. .  

The original aim of the study was to find the distribution of the Cauchy stresses  
along the length of the composite rod. For this, we express the total stresses , moment 
stresses , and displacement gradients  through the Cauchy stresses. Then the 
formulation of the thermoelasticity problem in terms of the Cauchy stresses will take the 
form: 

, ,                                                                 (15) 

,      ,                                                                  (16) 
, ,                                                                                  (17) 
, , ,                                             (18) 

, ,                                              (19) 

,                                (20) 

, .                         (21) 
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x
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x

(0) 0u′ =
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( )xτ
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2
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2 2 0l′ ′′′τ − τ =
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=
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1 0 1 0 2 0 2 0( ) ( ) ( ) ( )H l H H l H′′ ′′τ − τ = τ − τ
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Let us write out the dimensionless problem (15)-(21) by introducing the following 
dimensionless parameters and functions: 

x
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x = , 0
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0

i
i E
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= , 
0
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σ

= , 

0

i
i
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E

= , 
0

i
i

kk
k

= , 
0

i
i

γγ
γ

= , 1, 2i = , 
[ ]0 0,

max ( )
x H

k k x
∈

= , 
[ ]0 0,

max ( )
x H

xγ γ
∈

= , 
[ ]0 0,

max ( )
x H

E E x
∈

= . 

The dimensionless boundary value problem of thermoelasticity (15) - (21) takes the 
form: 

, ,                                                   (22) 

, ,                                                          (23) 

, 2 0(1)W = β ,                                                                              (24) 

, , ,                                              (25) 
, ,                                              (26) 

1 0 1 0 1 0 2 0 2 0 2 0

1 0 2 0

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

h h W h h h W h
s h s h

Ω + γ Ω + γ
= ,                                                (27) 

,   .                                 (28) 
 
4. Solving the thermoelasticity problem for a rod  
The solution of the thermoelasticity problem (22) - (28) begins with finding the temperature 
distribution along the length of the composite rod based on the solution of the classical heat 
conduction problem (23), (24), (26). 

In case when both rods are made of inhomogeneous materials, the solution to the 
problem of thermal conductivity (23), (24), (26) has the form: 

1
1 0

1 0 2

( )( )
( ) (1)

fW
f h f

x
x = β

+
, 1 0 2

2 0
1 0 2

( ) ( )( )
( ) (1)

f h fW
f h f

+ x
x = β

+
, , .   (29) 

In case both rods are made of homogeneous materials, by setting in (29)  and 
, we obtain: 

2
1 0

1 0 2 1

( )
( )

kW
k h k k

x
x = β

+ −
, 1 0 2 1

2 0
1 0 2 1

( )( )
( )

k h k kW
k h k k
x + −

x = β
+ −

.                                  (30)  

After finding the temperature distribution, further, in order to find the Cauchy stresses, 
it is necessary to solve the boundary-value problem (22), (25), (27), (28). The accurate 
analytical solutions were obtained in the work when both rods were made of homogeneous 
materials. These solutions are cumbersome and therefore are not presented here: they are used 
to evaluate the accuracy of the approximate analytical solution. 

The problem (22), (25), (27), (28) contains the differential equations (22) with a small 
parameter in the highest derivative and is singularly perturbed. We obtain the approximate 
analytical solution to the boundary value problem (22), (25), (27), (28) based on the Vishik-
Lyusternik method [29,30]. 

According to the scheme of the Vishik-Lyusternik method, we construct the first 
iterative process. To do this, we present solutions for each of the equations (22) in the form of 
an expansion for the small parameter  in the form: 

,                                    (31) 

2
1 1 0′ ′′′Ω −α Ω = 2

2 2 0′ ′′′Ω −α Ω =

( )1 1( ) 0k W
′′x = ( )2 2( ) 0k W

′′x =

1(0) 0W =

1(0) 0Ω = 2 (1) 0′Ω = 2
2 2 0(1) (1) P′′Ω −α Ω =

1 0 2 0( ) ( )W h W h= 1 0 1 0 2 0 2 0( ) ( ) ( ) ( )k h W h k h W h′ ′=

1 0 2 0( ) ( )h h′ ′Ω = Ω 2 2
1 0 1 0 2 0 2 0( ) ( ) ( ) ( )h h h h′′ ′′Ω −α Ω = Ω −α Ω

1
10

( )
( )

df
k

x η
x =

η∫
0

2
2

( )
( )h

df
k

x η
x =

η∫

1k const=

2k const=

α
(0) (1) 2 (2)

1 1 1 1 1( , ) ( , ) ( ) ( ) ( ) ...G g g gΩ x α ≅ x α = x +α x +α x +
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.                                     (32) 
Substituting the expansions (31), (32) into (22) and performing the splitting by  

powers, we obtain the sequence of boundary value problems: 
(0) (0) (0) (0) (0)
1 2 2 1 0 2 0

(1) (1) (1) (1) (1)
1 2 2 1 0 2 0

( ) 0, ( ) 0, (1) 1, ( ) ( ),

( ) 0, ( ) 0, (1) 0, ( ) ( ),
.................................................................................

g g g g h g h

g g g g h g h

 ′ ′x = x = = =

 ′ ′x = x = = =



                                        (33)                   

Obviously, by solving each of the problems (33), it is impossible to satisfy all the 
boundary and conjugation conditions. It is necessary to build on additional boundary layer 
solutions that should quickly fade away with distance from the border. 

According to the scheme of the Vishik-Lyusternik method, we construct the second 
iterative process. For the first rod, the boundary layers are localized in the vicinity of the 
attachment point  and the interface point  with the second rod. For the second rod, 
the boundary layers are in the vicinity of  and . We introduce the tensile 

coordinates in the vicinity of the boundaries , , , .  

Thus, the expressions for the Cauchy stresses of each rod can be represented as:  

,                              (34) 

,                              (35) 

where ,  

, 

, 

. 

In the expansions (34), (35) we restrict ourselves to only zero approximations. Then 
approximate solutions can be represented as: 

,                                  (36) 

.                                                   (37) 

The functions ,  coincide with the solution of the problem for a 
composite rod obtained on the basis of the classical model of thermoelasticity and have the 
form: 

.                                                                              (38) 

(0) (1) 2 (2)
2 2 2 2 2( , ) ( , ) ( ) ( ) ( ) ...G g g gΩ x α ≅ x α = x +α x +α x +

α

0x = 0hx =

0hx = 1x =

1
x

η =
α

0
2

hx −
η =

α
0

3
h −x

η =
α 4

1x −
η =

α

0
1 1 1 2( , ) ( , ) , ,hG Z Z x −x   Ω x α ≅ x α + α + α   α α   

0
2 2 3 4

1( , ) ( , ) , ,hG Z Z−x x −   Ω x α ≅ x α + α + α  α α  
(0) (1) 2 (2)

1 1 1 1, ...Z z z zx x x x       α = +α +α +       α α α α       
(0) (1) 2 (2)0 0 0 0

2 2 2 2, ...h h h hZ z z zx − x − x − x −       α = +α +α +       α α α α       
(0) (1) 2 (2)0 0 0 0

3 3 3 3, ...h h h hZ z z z−x −x − x − x       α = +α +α +       α α α α       
(0) (1) 2 (2)

4 4 4 4
1 1 1 1, ...Z z z zx − x − x − x −       α = +α +α +       α α α α       

(0) (0) (0) 0
1 1 1 2( , ) ( ) hg z z x −x   Ω x α ≅ x + +   α α   

(0) (0) (0)0
2 2 3 4

1( , ) ( ) hg z z−x x −   Ω x α ≅ x + +   α α  
(0)
1 ( )g x (0)

2 ( )g x

(0) (0)
1 2 0( ) ( )g g Px = x =
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To find the first boundary-layer solution (0)
1 1( )z η , given that

2 2

2 2 2
1

1d d
d dx α η

= , 

4 4

4 4 4
1

1d d
d dx α η

= , we obtain the equation 

,                                                                                             (39) 
with the solution 

.                                                                                     (40) 

Since the boundary-layer solution  must asymptotically tend to zero for  

, we assume  in (40). Therefore, .  

To find the second boundary-layer solution , we have the equation: 

,                                                                                              (41) 
which solution has the form: 

.                                                                          (42) 

As far as the boundary-layer solution  also has to tend asymptotically to zero 

for , we assume in (42) . So, . The expressions for the 
Cauchy stress in the first rod will take the form: 

.                                                          (43) 

To find 3C , we proceed to satisfy the boundary condition on the left end of the rod  

0x = : . From this, we have . Here we take into 

account that when 0x = , only the first boundary-layer solution manifests itself (0)
1z since the 

value 0h  is such that the influence of the second boundary layer solution (0)
2z  can be omitted 

due to the small size of 
0h

e
−
α .  

Then the Cauchy stress in the first rod will take the form: 
0

1 0 5( , ) 1
h

P e C e
x−x

−
α α

 
Ω x α ≅ − + 

 
.                                                                    (44) 

Given the physical meaning, we similarly determine the third and fourth boundary-layer 

solutions in the form , . From the condition  follows the 

relationship between the constants 7C  and 8C  in the form . The expressions for 
the stress in the second rod will take the form: 

.                                                 (45) 

The Unknowns  and  are determined from the boundary conditions (27), (28), 

assuming 
0

1 1
h

e
−
α− ≅  in the calculations.  

(0) (0)
1 1 0z z′ ′′′− =

1 1(0)
1 1 2 3z C C e C eη −η= + +

( )(0)
1 1z η

1η →∞ 1 2 0C C= = (0)
1 3z C e

x
−
α=

( )(0)
2 2z η

(0) (0)
2 2 0z z′ ′′′− =

2 2(0)
2 4 5 6z C C e C eη −η= + +

( )(0)
2 2z η

2η → −∞ 4 6 0C C= =
0

(0)
2 5

h

z C e
x−
α=

0

1 0 5( , ) 1
h

P e C e
x−x

−
α α

 
Ω x α = − + 

 

( )(0) (0)
1 1 1 0 3(0) (0) 0 0g z P CΩ = + = + = 3 0C P= −

0
(0)
3 7

h

z С e
−x
α=

1
(0)
4 8z С e

x−
α= 2 (1) 0′Ω =

0 1

8 7

h

С С e
−
α=

0 0 1 1

2 0 7( , )
h h

P C e e e
−x − x−
α α α

 
Ω x α ≅ + + 

 
5C 7C
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Then the expressions for the dimensionless Cauchy stresses, denoting by 0
0

1 h−
δ =

α
 the 

ratio of the length of the second rod and the gradient parameter α , can be represented as: 

( )
0

02
1 0( , ) 1 1

h

P e e e
x−x

− − δα α
 

Ω x α ≅ − +Κ − 
 

,                                             (46) 

0
0

1

2 0( , )
h

P e e e
−x x−

−δα α
 

Ω x α ≅ −Κ + 
 

,                                              (47) 

where  
( ) ( )

0

0 1 0 2 0 1 0 1 0 2 0 2 0 1 0
2

1 0 2 0 1 0 2 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ( ) ( ))

P s h s h W h s h h s h h
s h s h s h s h e− δ

− + γ − γ
Κ =

+ + −
.                  (48) 

If we put in (46), (47) 0α = , then we obtain the expressions for stresses corresponding 
to the classical thermoelasticity: 1 2 0PΩ = Ω = . 

From the formulas (46), (47) it follows that at the point 0hx =  there is a stress jump. 

Neglecting the magnitude 
0

0

h

P e
−
α  compared with 2K , we get the expression for the stress 

jump:  
1 2 2K∆Ω = Ω −Ω ≅ .                                                                               (49) 

The value of the stress jump, according to (48), (49), is determined by the mechanical 
stress 0P , the temperature 1 0( )W h , and the relation between thermoelastic characteristics and 
the parameter 0δ . From the formula (48) it follows that if a continuous change in the 
thermomechanical characteristics through the junction of the rods is ensured, then there will 
be no Cauchy stress jump. 

If 0 1δ ≤  (the relative length of the second rod is comparable to or less than the value of 
the gradient parameter α ), then scale effects will appear, consisting in the dependence of the 
Cauchy stress jump on the value of the parameter 0δ . When 0 0δ = the Cauchy stress jump is 
minimal; with the increase 0δ  from 0 to 0 1δ   comes the exponential increase of ∆Ω . At 

0 0δ = , the value ∆Ω  for a rod made of homogeneous parts, in the case of mechanical 
loading, is determined by the formula 

2
0

1

1 sP
s

 
∆Ω ≅ − 

 
.                                                                                     (50) 

If the elastic modulus of the first rod is greater than that of the second one, we have the 
following in the dimensionless form: 1 1s = , 2 [0,1)s ∈ . The maximum stress jump, equal to 

0P∆Ω ≅ , will be at 2 0s = . If the elastic modulus of the first rod is less than the second one, 
we have: 2 1s = , 1 [0,1)s ∈ . The absolute value of the maximum stress jump | |∆Ω → +∞  will 
be at 1 0s → . 

At 0 1δ   (the relative length of the second rod is much larger than the gradient 
parameter α ), the exponents 0e−δ  are very small quantities. Then in the expressions (46)-(48) 

one can put  021 1e− δ− ≅ , 0

1

0e e
x−

−δ α ≅ , 02
1 0 2 0 1 0 2 0 1 0 2 0( ) ( ) ( ( ) ( )) ( ) ( )s h s h s h s h e s h s h− δ+ + − ≅ + .  

In this case, the value of the stress jump ∆Ω  is independent of the specific parameter 
value 0δ , and it is determined by the ratio of thermomechanical characteristics. The value ∆Ω  
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for a rod made of homogeneous parts, in the case of mechanical loading, at 0 1δ  , is 
determined by the formula 

1 2
0

1 2

2 s sP
s s
−

∆Ω ≅
+

.                                                                                   (51) 

The absolute value of the maximum stress jump in this case is 0| | 2P∆Ω ≅  and will be 
reached for  1 1s = , 2 0s =  or 2 1s = , 1 0s = . 

After finding the laws of distribution of the dimensionless Cauchy stresses along the 
coordinate x , we further calculate the dimensionless moment stresses 2

i iM ′= α Ω , and the 

dimensionless strains ( )1
i i i i

i

W
s

Ε = Ω + γ , . The total stresses i i iS M ′= Ω − , based on 

boundary conditions (25), (28), are the same and equal  regardless of the 
material and gradient characteristics of the rods. The displacements distributions ,  
by the coordinate x  are found by integrating the expressions for strains , given the 
boundary condition  and the conjugation condition .  
 
5. Computation results  
This section presents the results of calculations on finding the distribution of dimensionless 
Cauchy stresses, moment stresses, total stresses, strains, and coordinate displacements for 
both mechanical and thermal loading. 

Example 1. Consider the case of mechanical loading of a composite rod ( 0β = , 

0 0.1)P = , the parts of which are made of homogeneous materials with the following 
characteristics: 0 5δ = , 1 0.5s = , 2 1s = . The influence of the gradient parameter α  magnitude 
on the accuracy of the calculation of the dimensionless Cauchy stresses by the asymptotic 
formulas (46), (47) is studied. During the calculations, it was found that the error in the 
approximate calculation of the dimensionless Cauchy stresses does not exceed 1% at 

0.02α ≤ .  
 

 
                      a)                                                                        b) 

Fig. 1. Distribution graphs along the coordinate x : a) dimensionless Cauchy stresses;  
b) dimensionless moment stresses under mechanical loading 

 

1, 2i =

1 1 0( ) ( )S S Px = x =

iU 1, 2i =

iΕ

1(0) 0U = 1 0 2 0( ) ( )U h U h=
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                                 а)                                                                     b) 
Fig. 2. Distribution graphs along the coordinate x : a) dimensionless strains; b) dimensionless 

displacements during mechanical loading 
 
Figures 1 and 2 show images of the distribution of the dimensionless Cauchy stresses 

(Fig. 1a), the moment stresses (Fig. 1b), the strains (Fig. 2a), and the displacements (Fig. 2b) 
at 0.01α = . The value 0h  is determined from the expression 0 01h = −δ α . 

From Figure 1a it follows that the Cauchy stresses: 1) near the end face  decay 
exponentially to zero in accordance with the boundary condition ; 2) experience a 
jump at the point 0hx = , which values, according to (51), is determined by the ratio of the 
elastic modulus of the rods. From Figure 1b it follows that the moment stresses equal to zero, 
except for the vicinity of the fixing and conjugation points, and reach a peak at the point of 
contact of the rods.  

Figure 2a depicts the strains and displacements. 
In the case of mechanical loading, we study the dependence of the jump of the Cauchy 

stresses ∆Ω  at the point 0hx = , calculated by the formula (49), on the value of the parameter 

0δ  at 0 0.1P = , 0.01α =  and various ratios of the elastic modulus. Figure 3 presents the results 
of calculations of the dependence of the stress jump on the parameter 0δ  for: 1) , 

2 0.5s =  (Fig. 3а); 2) 1 0.5s = , 2 1s =  (Fig. 3b). In this case, the solid line shows the 
dependence 0( )∆Ω δ , obtained in the course of the exact analytical solution, and the dots – on 
the basis of the formula (49). 

0x =

1(0) 0Ω =

1 1s =
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     а)                                                                 b) 

Fig. 3. Graph of the dependence of the jump in the dimensionless Cauchy stresses on the 
parameter 0δ  under mechanical loading 

 
From Figure 3 it follows that the minimum Cauchy stress jump occurs when 0 1δ 0 , i.e. 

when the length of the second rod is much less than the gradient parameter α . As you 
increase 0δ , the stress jump increases exponentially. Starting from 0 3δ > , i.e. when the length 
of the second rod becomes 3 times greater than the gradient parameter α , ∆Ω  almost reaches 
a stationary value. 

Example 2. Consider the case of thermal loading of a composite rod ( 0 0.1β = , 0 0P = ), 
the parts of which are made of homogeneous materials with the following characteristics: 

0.01α = , 0 8δ = , 1 1s = , 2 1s = , 1 1k = , 2 0.25k = , 1 0.5γ = , 2 1γ = .To find the temperature at 
the point 0h , we use the first formula (30). 

 

     
                        а)                                                                    b) 

Fig. 4. Distribution graphs along the coordinate x : a) dimensionless Cauchy stresses;  
b) dimensionless moment stresses under thermal loading 
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                         а)                                                                    b) 

Fig. 5. Distribution graphs along the coordinate x : a) dimensionless strains; b) dimensionless 
displacements during mechanical loading  

 
Figures 4-5 show images of the distribution of the dimensionless functions: the Cauchy 

stresses (Fig. 4a), the moment stresses (Fig. 4b), the strains(Fig. 5a), and the displacements 
(Fig. 5b). The error in calculating the distribution of the dimensionless functions was less 
than 1%. 

From Figure 4a, it follows that the Cauchy stresses are equal to zero, with the exception 
of the vicinity of the junction of the rods, where a stress jump occurs, due to the difference in 
the coefficients of the thermal stresses of the rods. From Figure 4b it follows that the moment 
stresses are equal to zero, with the exception of the vicinity of the junction of the rods and 
reach a peak at the junction point of the rods.  

The magnitude of the Cauchy stress jump during the thermal way of loading the rod 
made of homogeneous parts is: 

( )
0

1 0 1 2 2 1
2

1 2 1 2

( )
2

( )
W h s s

s s s s e− δ

γ − γ
∆Ω ≅

+ + −
.                                                                   (52) 

For the case of thermal loading, we study the dependence of the Cauchy stress jump 
∆Ω  at a point 0hx =  on the parameter 0δ  at 0 0.1β = , 1 1k = , 2 0.25k = , 1 0.5s = , 2 1s = , 

1 1γ = , 2 0.8γ = , 0.01α = . The value 0h , necessary to find the temperature, is determined 
from the expression 0 01h = −δ α . In Figure 6, the solid line shows the dependence obtained in 
the course of the exact analytical solution, and the dots – on the basis of approximate 
formulas. 
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Fig. 6. Graph of the dependence of the jump in the dimensionless Cauchy stresses on the 

parameter 0δ  under thermal loading 
 

From Figure 6 it follows that in the case of thermal loading, the maximum rate of 
change of the function 0( )∆Ω δ  is observed at 0 1δ < , i.e. when the length of the second rod is 
less than the gradient parameter α . For 0 1δ > , with an increase of 0δ , a smooth change in 
function 0( )∆Ω δ  is observed.  
   
6. Conclusion 
A statement of the gradient thermoelasticity problem for a composite rod based on the one-
parameter Aifantis model is given. After finding the temperature distribution from the 
solution of the classical heat conduction problem, simplified analytical expressions for finding 
the Cauchy stresses are obtained on the basis of the asymptotic Vishik-Lyusternik approach. 
The cases of thermal and mechanical loading of the rod are considered. A new scale 
parameter is introduced, equal to the ratio of the length of the second rod and the gradient 
parameter. After finding the distribution of the Cauchy stresses, moment stresses, total 
stresses, displacements, and deformations are calculated. It was revealed that, within the 
framework of the gradient theory, the deformations are continuous at the point of contact of 
the rods. This fact explains the jump in the Cauchy stresses in the vicinity of the point of the 
rod conjugation. The magnitude of the Cauchy stress jump depends on both the ratio of 
thermomechanical characteristics and the value of the scale parameter. The dependence of the 
Cauchy stress jump on the scale parameter is investigated. It was found out that the stress 
jump function changes most rapidly at values of the scale parameter less than the length of the 
second rod. The moment stresses are continuous, equal to zero, except for the vicinity of the 
fixing and conjugation points, and reach a peak at the rods' conjugation point. The total 
stresses, which are a combination of the Cauchy stresses and the first gradient of the moment 
stresses, are continuous in each rod and equal to the value of the mechanical load at the 
rod's end.  
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