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Abstract. The exact treatment of first-order phase transition is an important topic in
thermodynamics. This topic exists as an exact branch of thermodynamics, only by virtue of the
occurrence of sharp discontinuities in properties of macroscopic systems. In small systems,
instead of such discontinities, there are more or less gradual changes which approach
discontinuities more closely as the system becomes larger. Metastable macroscopic systems
below a critical temperature show nucleation phenomena and depending on the saturation
degree the number of constitutive elements that form the evolving nuclei may vary from a couple
of tens to hundreds of thousands. In Classical Nucleation Theory specific corrections done on
Gibbs� surface tension term take care of small size effects and theoretical predictions are in fair
agreement with early experimental data. However results obtained by experimental techniques
developed in the last decade revealed systematic deviations from the classical theory. Nuclei that
evolve into the new phase may contain only a few of tens of molecules and continuum
thermodynamics does not apply to such situations. Statistical mechanical methods rely on
complex interaction potentials and the generality of thermodynamic predictions is lost. However
clever modifications introduced in continuum thermodynamics extend its applicability to small
systems even in cases where the thermodynamic limit is not valid anymore. In all those treatments
the grand canonical potential is of central importance and the driving force for nucleation is the
entropy, whatever the nucleation process maybe.

1. INTRODUCTION

Experimental observations reflect the fact that there
are kinetic barriers to first order phase transitions
with metastable phases persisting over large peri-
ods of time. Small fluctuations of the new (stable)
phase tend to disappear while large fluctuations tend
to grow. The critical nucleus is that fluctuation which
lies at the barrier between shrinking and growing
regions of the new phase. The nucleation rate (i.e.
the rate of appearance of critical nuclei) then deter-
mines the time it takes for a phase transition to
occur, as the growth beyond the critical nucleus is
generally fast compared to its formation rate. As
an activated process its rate depends exponentially
on the height of the barrier represented by the work
of formation of the critical nucleus and the calcula-
tion of this value is central in theories of nucleation.

Through most of this century, the study of nucle-
ation has been dominated by the classical capilarity
approximation [1-3]. In this approach, the free en-
ergy change to form a small cluster of a new phase
(surrounded by the old phase) is taken to be the
sum of a bulk and a surface contribution, propor-
tional, respectively, to the volume and the surface
area of the cluster. Classical Nucleation Theory (CNT)
is a simple approach that has provided experimen-
talists with a standart of comparison for their data,
but it cannot be used as a starting point for more
systematic microscopic theories. CNT builds on the
continuum thermodynamics according to which
small droplets are considered to have the same prop-
erties as bulk condensed phases, with bulk surface
properties. This continuum assumption has been
viewed with suspicion, and other models have been
proposed which introduce more microscopic fea-
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tures. [4-7]. However CNT compares well with these
others in accounting for experimental data. Oxtoby
[8] showed that, the qualitatively reasonable but
quantitatively incorrect agreement of CNT results
for condensation of samples of single-component
nonpolar fluids in overall order of magnitude of rates,
is �largely fortuitous�. The reasons for this qualita-
tive success could be traced to a cancellation of
errors, due to two critical physical features of nucle-
ation omitted by CNT: the surface tension depen-
dence on curvature and the vanishing of the nucle-
ation barrier at the spinodal. Oxtoby [8] argues that
these two errors accidentally cancel at some tem-
perature, often within the experimental accessible
region, but together give rise to the systematically
incorrect temperature dependence of CNT.

In order to investigate the failings of CNT it is
necessary to question the underlying approach,
namely the application of continuum thermodynam-
ics to small clusters of molecules. This problem
was addressed by Bowles et al. [9]. They presented
a proof for the Nucleation Theorem (NT) that applies
to any system having an equilibrium nonuniform dis-
tribution of density induced by an external field and
not only to the cluster that constitutes the nucleus
of CNT. This proof shows that the NT extends rigor-
ously down to nonuniformities of molecular dimen-
sions.

Also, Hill [10] as long as 1962, derived the same
result in the context of his development of the Ther-
modynamics of Small Systems (TSS). His insight
was that even though the methods of continuum
thermodynamics cannot be used to analyse a small
cluster, they are valid at treating a large ensemble
of such systems. The thermodynamic relations
which emerge are in terms of averages of system
thermodynamic quantities over the ensemble. These
relations can differ from those expected for large
systems, although in the continuum limit they
concide . Furthermore the questionable introduc-
tion of a well defined cluster surface area can be
avoided.

Mokross [11,12] in analogy to the treatment of
Cahn and Hilliard [13] developed an Entropic Nucle-
ation Theory (ENT) in which entropy is the driving
force for nucleation instead of the difference in Gibbs
free energy. The nucleation process is described
as the result of fluctuations which induce inhomo-
geneities in the enthalpy that eventually evolve into
a critical nucleus. The entropy is maximized rela-
tively to these inhomogenities and the work of for-
mation of a critical nucleus is obtained by multiply-
ing this entropy by the temperature. This model as
discussed [12] is independent of the conditions

(adiabatic, isothermic, etc.) under which nucleation
takes place and is valid for nuclei of any size.

In Section 2 we review the derivation of the work
to form a nucleus (any size) by CNT taking the
change in the grand canonical potential as the driv-
ing force. This development establishes contact with
Bowles� [9] method used to derive the NT, with SST
and with fluctuation theory as will be seen later. In
Section 3 we present Bowles� method for the calcu-
lation of the work necessary to form a critical nucleus.
In Section 4 this is redone in the entropy represen-
tation [14] showing that the driving force necessary
to form an inhomogeneous nucleus is the variation
of the grand canonical potential in the entropic rep-
resentation. This driving force is an exact differen-
tial as in ENT [12] and corresponds to an entropy
variation. In Section 5 and 6 we present a summary
of the SST method and of the ENT. Conclusions
from this work are given in Section 7.

2. CLASSICAL NUCLEATION THEORY
� THE GIBBS METHOD

According to Gibbs treatment the condensate and
vapor can be modelled as though they were homo-
geneous bulk phases with extensive internal ener-
gies and entropies, proportional to the number of
molecules in each. An additional surface phase is
introduced with an excess free energy which car-
ries the non-linear terms. This is defined on an arbi-
trary dividing surface separating the condensed and
vapor phases. The Tolman prediction [15] of the size
dependence of the surface tension emerges from
this formalism. The Gibbs treatment is reasonable
for large clusters, where the thermodynamic limit
applies, but it is a poor approximation to real clus-
ters when the number of molecules is small.

In this teatment a spherical condensed phase
droplet is considered within a homogeneous vapor
phase, with total system volume V, and in contact
with particle and heat reservoirs. The temperature,T,
and chemical potential, µ, are constant throughout.
The internal energy, number of molecules and en-
tropy, U, N and S respectively, characterizing the
whole system, are divided into contributions asso-
ciated with the condensate and vapor separately
(considered to be occupying volumes V

l
 and V

v  
with

V=V
l
+V

v 
, and pressures p

l
 and p

v
 respectively

 
) and

a third phase defined on a notional dividing surface
of area A separating the two. A condition for the
position of the dividing surface must also be cho-
sen.

For a change in entropy, volume and molecular
content, the first law of thermodynamics gives the
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associated changes in internal energy of the liquid
and vapor phases as

 (2.1)

where the indexation l,ν refers to liquid phase, l or
to vapor phase, ν. The continuum assumption pre-
sumes that the internal energy, entropy and volume
of each phase are proportional to the number of
molecules in each phase and which fails for small
systems. Then Eq. (2.1) integrates according to
Euler's theorem to

 (2.2)

The thermodynamic properties of the surface are
then assigned using

 (2.3)

where X may refer to U, S or N, with the suffix s
denoting surface terms, and we may write a relation
similar to Eq. (2.2) for surface properties, i.e.,

 (2.4)

which can be considered a definition of the surface
tension, σ.

The work required to form the cluster from a uni-
form vapor phase is given by the change in internal
energy of the system in going from a vapor system
to the critical droplet plus vapor sate just consid-
ered, with the total number of molecules, volume
and entropy all constant. This can be written as the
change in grand potential in going from a bulk vapor
state to the droplet plus vapor state at constant T, V
and µ [16]

 (2.5)

where Ω
0
=-pνV is the grand potential for the system

containing a uniform vapor phase. Summing Eqs.
(2.2) and (2.4), using Eq. (2.3) and denoting by W
the work required to form a droplet, we obtain

 (2.6)

where ∆µ=µ-µ
eq

. The last result has been obtained
integrating the Gibbs-Duhem relation for the con-
densed phase assuming it to be incompressible, at
constant T, between equilibrium bulk condensed and
vapor phase (µ

eq
), and liquid phase

 (2.7)

The critical cluster is the size which is in un-
stable thermal equilibrium, which means that the

work of formation is obtained by maximizing Eq.
(2.6) with respect to N

l
 and N

s
.

3. BOWLES et al. METHOD

Bowles et al.[9] derived the NT using conventional
thermodynamics. By introducing additional con-
straints they showed that it is possible to reduce
metastable (unstable) states to stable equilibrium
states. For a single component system, the funda-
mental equation of thermodynamics (combined first
and second laws) may be written as

 (3.1)

The term fdF represents an additional fF work to
the pV work. The term f is the intensive parameter
while F is the conjugate extensive parameter. Eq.
(3.1) may be rewritten as

 (3.2)

where it is to be noted that if the term at the right
were to equal zero, the second equation in (3.2)
would simply be the fundamental thermodynamic
equation for a system in a state of stable equilib-
rium that is capable only of pV work. DΦ is not a
thermodynamic state function. If the system is in a
particular state of stable equilibrium it will be set up
to perform only pV work, and in this case DΦ=0.
The system can be reversibly displaced from its state
of equilibrium by the application of a constraint that
can exchange work with the system. In Eq. (3.2) fF
can represent this work. Of course the system on
the path of displacement will have an additional vari-
able corresponding to the constraint, f or F in the
above example. Also, by reference of the second
law of thermodynamics the work fF performed to
displace the system from a state of stable equilib-
rium is positive, i.e., the work is performed on the
system. Therefore

 (3.3)

If we select a path having S, V, N constant, then
from (3.2) and (3.3)

 (3.4)

and dU, along this path, does imitate DΦ. U is a
thermodynamic potential and increases along the
path with S,V,N constant, having a minimum at the
initial state of equilibrium.

Alternatively, if we select a path of constant T,V,
µ then the grand potential

 (3.5)
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will be the thermodynamic potential that must be
used. Since

      (3.6)

and dΩ imitates DΦ along this path. The field f dis-
places an initially homogeneous system, capable
of pV work from its state of equilibrium. This field f,
performs reversible deformation work given by

 (3.7)

The fundamental equation of thermodynamics

 (3.8)

becomes

  (3.9)

and, equating Eqs.(3.7) and (3.9) yields

 (3.10)

and dΩ imitates DΦ along this path. Ω increases
along this path and has a minimum at the initial
state of equilibrium. From these considerations
Bowles et. al. [9] derived the equations of the NT
(see Appendix).

In this energy representation (DΩ)
T,V,µ represents

the reversible work performed by the field associ-
ated with f , required to create an inhomogeneous
system. This field may take on a variety of forms as
for instance a field that can form a small cluster or
drop. The tools so far used belong to macroscopic
thermodynamics and the results so far obtained are
valid even for molecular sized inhomogeneities as
long as they represent the average inhomogeneity
under the constraint. This validity for clusters of all
sizes becomes explicit when applying SST to an
ensemble formed by small systems in a T,V,µ
enviroment as will be seen later.

It is important to note that, albeit the specifica-
tion of the field is not important in the derivation of
the NT (see Appendix) it is essential for the deriva-
tion of the work to form a critical nucleus, i.e., by
maximizing Ω=Ω(T,V,µ,F) with respect to F, i.e.,

 (3.11)

yielding the value F* and the critical work is obtained
by integrating Eq. (3.10)

 (3.12)

where Ω
0
 denotes the value of Ω in the initial equi-

librium state in which the system is set up in a
manner that allows it to perform only pV work. In
that state there are only three independent variables,
µ, V and T so that F in that state, denoted by F

0
 is

itself a function of µ, V and T and is fully determined
when these variables are fixed.

4. BOWLES et al. METHOD �
ENTROPY REPRESENTATION

The derivation of Eq. (3.10) in the entropy represen-
tation [10] will produce further insight into nucle-
ation processes. The fundamental equation of ther-
modynamics, Eq. (3.1), in the entropy representa-
tion

 (4.1)

is

 (4.2)

In this representation the equivalent to DΦ in Eq.
(3.2) is an entropy like exact differential, dΦ, which
henceforth will be designated by dS

F
 [17,18], i.e.,

 (4.3)

The grand potential in this representation is

 (4.4)

and

 (4.5)

From Eq.(4.3)

 (4.6)

Therefore

 (4.7)
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and  is the appropriate
thermodynamic potential along this path and is equal
to the negative of the entropy induced by the field f
necessary to induce the inhomogeneity in the sys-
tem. S

F
 has a maximum at the initial state of equi-

librium. For an isothermal process and for a nucleus
of macroscopic dimensions (in the thermodynamic
limit) TdS

F
 is the latent heat of formation.

The critical nucleus is obtained by maxi-
mizing  yielding F*. The work neces-
sary to form a critical nucleus is

 (4.8)

or

 (4.9)

where S
F0 

and S
F* 

refer to the equilibrium state and
to the critical nucleus respectively.

5. SMALL SYSTEM THERMODYNAMICS
� THE HILL METHOD

Hill [10] considers an ensemble of small systems
in a T, V, µ environment. In his treatment the inter-
nal energy and entropy are not separated into con-
tributions of each phase. The total energy of a col-
lection of N small systems with a total internal en-
ergy, entropy and number of molecules is labelled
by suffix t. A change in the system conditions ,
which includes varying the number N  of subsystems
in the ensemble gives a first law of thermodynam-
ics in the form

 (5.1)

The term -pNdV is a conventional work term for the
ensemble. Each system has the volume V and any
volume change dV is the same for all systems. The
presure p is a mean pressure (ensemble average)
and can be defined formally by

(5.2)

The term WdN  is regarded as another pV work
term for dN  implies that the volume of the ensemble
is changing with S

t
 and N

t
 constant by changing the

number of available systems of volume V rather then
changing V for each of the N systems. This �inte-
gral� pressure is therefore defined by  For
a macroscopic system (V→∞) there is no distinc-
tion between p and  but in general differ for small
systems [10].

 is the subsystem work of

formation since it is the change in internal energy
required to create an additional subsystem of vol-
ume V at constant entropy, S

t
 and number of mol-

ecules, N
t
. For a large ensemble, U

t
 and S

t
 are pro-

portional to N, Ω is a constant and Eq. (5.1)
intergrates at constant V, T and µ to give

 (5.3)

where  Ω
is therefore the grand potential for a single sub-
system written in terms of U and N which are the
ensemble averaged values of the internal energy and
molecular number in each droplet plus vapor sub-
system. The entropy S is not an average since S

t
 is

a property of the entire ensemnble and each sub-
system has the same entropy S. Eq. (5.3) is valid
for all states of the subsystem and not just for equi-
librium states.

The work of formation of one cluster alone, i.e.,
without the surrounding vapor, can be found by con-
sidering a state of the subsystem which contains
just vapor at the same T, V and m and with a grand
potential denoted by Ω

0
. Ω describes the same sub-

system when an additional cluster is included and
so the droplet work of formation W is given by

 (5.4)

where U
0
, S

0
 and N

0
 correspond to pure vapor sys-

tem and U
c
, S

c
 and N

c
 are now thermodynamic vari-

ables associated with the cluster. They are the mean
thermodynamic properties of the cluster minus those
of the vapor displaced in forming it.

The driving force is therefore the change in the
grand potential of a single small subsystem, ex-
pressed by the internal energy and number of par-
ticles averaged over the ensemble of subsystems.
This averaging implies that the bulk vapor phase
contains populations of molecular clusters with a
range of sizes. The state of thermodynamic equilib-
rium of such a system, in contact with a particle
and heat reservoir, has a cluster distribution which
minimizes the system grand potential. In statistical
mechanics this corresponds to choosing a cluster
distribution which maximizes the sistem partition
function and establishes contact with fluctuation
theory [19].

The critical nucleous is obtained by requiring W
to be a maximum with respect to N

c
 , i.e.,
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 (5.5)

6. ENTROPIC NUCLEATION THEORY

This theory [11,12] was developed in analogy to Cahn
and Hilliard�s approach [13] and considers the en-
tropy per unit volume to be a function of the en-
thalpy per unit volume and its spatial derivatives at
constant pressure. i.e.,

 (6.1)

Expansion of Eq. (6.1) in a Taylor series about the
entropy of the system with uniform enthalpy, h, s(h),
yields the entropy of a small element with volume V

 (6.2)

where κ is a function of second order and third-order
derivatives in the Taylor expansion.

The critical nucleus is defined by the func-
tional dependence on position that yields an extre-
mum of Eq. (6.2), subject to the condition that the
average enthalpy of the system remains constant,

i.e., . Performing the variational

calculation one obtains the entropy increase in the
volume V due to the formation of the nucleus in an
initially homogeneous and isotropic system

 (6.3)

where

 (6.4)

and the enthalpy h has a spatial variation that satis-
fies the differential equation

 (6.5)

with b.c. given by

 (6.6)

The minimum work necessary to form a nucleus of
critical size is given by

 (6.7)

where S
0
=s(h

0
)V. In this calculation the variational

procedure is equivalent to the fF work mentioned in
paragraph 3 and 4 where the Bowles et al. method
was presented. Therefore it is easy to conclude that
S

F
defined in Eq.(4.3) is related to S given by Eq.(6.1)

by

 (6.8)

showing that the work necessary to form a nucleus
is independent of the nucleation process, i.e.,
adiabati, isocoric, isothermal, etc.

7. CONCLUSIONS

Homogeneous nucleation is the fundamental first
step in the kinetics of phase transitions. The CNT
is attractive because it predicts nucleation rates in
terms of measurable macroscopic quantities. Early
experimental investigations by Volmer et al. [20,21]
and later by Katz and co-workers [22] seemed to
agree with CNT predictions. When it became pos-
sible during the last decade to actually measure
the rate of nucleation as a function of supersatura-
tion, several experimental investigations revealed
systematic deviations from the predicted by classi-
cal theory [23-25]. The observed discrepancies raise
doubts concerning the validity of CNT as a whole.
CNT involves spatial scales which are large com-
pared to molecular sizes. However critical nuclei
can often contain only a few tens of molecules and
the use of continuum thermodynamics to describe
such systems is of doubtful validity.

An approach often used instead is to apply the
methods of statistical mechanics, since the mo-
lecular nature of the system can be taken into ac-
count in constructing the relevant ensembles and
partition functions. However these approaches
ususally introduce particular choices of interaction
potential, or require definitions of what precisely
constitutes a cluster. The generality of thermody-
namic predictions can be missing.

Even though the methods of continuum thermo-
dynamics cannot be used to analyse small clus-
ters Bowles et al. [9] and Hill [10] showed that with
small modifications the whole apparatus of con-
tinuum thermodynamics can be used for these sys-
tems. In these methods the grand potential shows
to be of central importance when dealing with nucle-
ation processes. It makes contact among Bowles
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et al. method, SST, ENT and the fluctuation theory.
In the entropy representation it shows to be a driv-
ing force of entropic nature, S

F
.

This entropy, , necessary to form a critical
nucleus can be obtained by ENT [11,12] . From 
it is possible to obtain the grand partition function of
a critical nucleus, Ω*=T , yielding the probability
P* for its formation, i.e. .

A suitable master equation may lead the way to
calculate nucleation rates to be comapared with
experimental results.
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APPENDIX: DERIVATION OF THE
NUCLEATION THEOREM

To obtain the NT it is sufficient to integrate Eq. (3.10)
obtaining

 (A.1)

and from the Legendre transformation of Ω in Eq.
(3.5)

 (A.2)

it follows

 (A.3)

By differentiation of Eq.(A.1) we obtain the equa-
tions of the NT

 (A.4)

 (A.5)

 (A.6)
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