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Abstract. The present paper deals with the axial symmetric cylindrical waves propagating 
through a cylindrical bore in swelling porous elastic medium. The secular equations, 
connecting the phase velocity with wave number, radius of bore and other parameters for 
empty and liquid filled bore are derived. A particular case of interest has also been deduced. 
Numerical computations have been performed and have also been shown graphically to 
understand behavior of phase velocity and attenuation coefficient in swelling porous (SP) and 
elastic medium (EL). 
 
 
1. Introduction 
The dynamic response of porous media is of great interest in various areas such as 
geophysics, soil-mechanics, civil engineering, petroleum engineering and environmental 
engineering. As most of the modern engineering structures are generally made up of 
multiphase porous continuum, the classical theory, which represents a fluid saturated porous 
medium as a single phase material, is inadequate to represent the mechanical behavior of such 
materials especially when the pores are filled with liquid. Due to these different motions, the 
different material properties and the complicated geometry of pore structures; the mechanical 
behavior of a fluid saturated porous medium is very complex and difficult. So from time to 
time, researchers have tried to overcome this difficulty and considerable work has been done 
in this regard. Biot [1] was first who studied the propagation of elastic waves in cylindrical 
borehole containing fluid. Biot [2, 3] developed a linear theory for a fluid saturated porous 
elastic solid. Eringen [4] pointed out the importance of the theory of mixtures to the applied 
field of swelling. He developed a continuum theory of mixtures for porous elastic solids filled 
with fluid and gas. Tomar and Kumar [5], Deswal et al. [6], and Kumar et al. [7] studied 
problems of wave propagation through a cylindrical bore in a micropolar elastic medium with 
a stretch micropolar elastic medium. Kumar and Deswal [8] studied the wave propagation 
through cylindrical bore contained in a microstretch elastic medium.  Kumar and Deswal [9] 
discussed surface wave propagation through a cylindrical bore in a micro stretch generalized 
thermoelastic medium without energy dissipation. Bofill and Quintanilla [10] studied anti 
plane shear deformations of swelling porous elastic soils in case of fluid saturation and gas 
saturation. Gales [11] investigated some theoretical problems concerning waves and 
vibrations within the context of the isothermal linear theory of swelling porous elastic soils 
with fluid or gas saturation. Tersa and Bennethum [12] derived transport equations for porous 
swelling materials that undergo finite deformations. Kleintelter, Park, and Cushman [13] 
discussed the various aspects of mixture theory applied to unsaturated/saturated swelling soils 

Materials Physics and Mechanics 16 (2013) 135-143 Received: February 20, 2013

© 2013, Institute of Problems of Mechanical Engineering



and studied the two and three phase problems. Gales [14] studied the asymptotic spatial 
behavior of solutions in a mixture consisting of two thermo elastic solids. Gales [15] studied 
the spatial behavior of the harmonic vibrations in thermal viscoelastic mixtures. 

The cylindrical bore may be realized by a borehole or a mine gallery. Borehole studied 
are of great interest in exploration seismology, e.g. in the exploration of oils, gases, 
hydrocarbons etc.  In the oils Industry, acoustic borehole logging is commonly practiced. 
A bore hole is drilled in a potential hydrocarbon reservoir and then probed with an acoustic 
tool. Almost all oil companies rely on seismic interpretation for selecting the sites for 
exploratory oil wells. Seismic wave methods also have higher accuracy, higher resolutions 
and are more economical as compared to drilling which is costly and time consuming.  Kumar 
and Panchal [16] studied the propagation of waves through cylindrical bore in a cubic 
micropolar generalized thermoelastic medium. Kessler and Kosloffs [17] studied the elastic 
wave propagation in cylindrical coordinates in geophysics. 

In the present paper we have studied the propagation of waves through a cylindrical 
bore in a swelling porous elastic medium.  Secular equations relating the phase velocity and 
wave number are derived for empty and filled cylindrical bore in SP and EL media. The 
results so obtained are compared and have also been shown graphically for both SP and EL 
media.  The problem has immense application in mines, oil slurries, and structure problems. 

 
2. Basic equations: 
Following Eringen [4], the field equations in linear theory of swelling porous elastic soils are 
 

, , , 0( ) ( )s s f f ff f s s s s
i jj j ji j ji i i i iu u u u u f u              ,      (1) 

 

, , , , 0( ) ( )f f f s ff f ff f s f f f
v i jj v v j ji j ji j ji i i i iu u u u u u f u                  ,    (2) 

 

, , , ,( ) ( ),s f f s s s
ij r r r r ij i j j it u u u u                (3) 

 

, , , , ,( ) ( ),f f s ff f f f f
ij r r r r v r r ij v i j j it u u u u u              i, j=1,2,3    (4) 

 

where, the superscripts s and f denote respectively , the elastic solid and the fluid; s
iu  and f

iu  

are the displacement components of solid and fluid respectively. The functions ( , )s f
i if f  are 

the body forces, 0 0,s f  are the densities of each constituent and , , , , , ,f ff ff
v v        are 

constitutive constants.  Subscripts preceded by a comma denote partial differentiation with 
respect to the corresponding Cartesian coordinate, and a superposed dot denotes time 
differentiation, ,s f

ij ijt t  are the partial stress tensors. 

3. Problem formulation and its solution 
We consider a cylindrical bore of radius a* having circular cross section in a swelling porous 
elastic medium. We use cylindrical polar coordinates (r, ,z) with z-axis pointing upwards 
along axis of cylinder as shown in Fig. 1.  The propagation of axial symmetric waves is 
considered near the bore hole and these waves are the analogue of Rayleigh wave propagation 
at a traction free boundary of a swelling porous elastic medium. This section deals with the 
situation when bore does not contain any fluid. We are discussing a two dimensional problem 
with z-axis coincides with the axis of plate i.e. / 0    Therefore, we take 
 

( , ,0)i i i
ru u u


, (0, , 0)i i

 


, (0, ,0)i i
 


 (where i=s, f).      (5) 

 
We define the non-dimensional quantities: 
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' ' ' ' 2 *1
1* * * * *

0 0

2
, , , , , , , ,

s fi i ff
ij iji i s fr z

r z ij ij s s

t tu u cr z
r z u u t t c t t

a a a a a

  
   

           .   (6) 

 

 
Fig. 1. Geometry of the problem. 

 
The displacement components ,i i

r zu u are connected by the potential functions 
 

,
i i i i i

i i
r zu u

r z z r r

       
    
   

,         (7) 

 
Equations (1)-(4) with the aid of Eqs. (5)-(7), and after suppressing primes reduces to 
 

2
2 2

2 1 22
0s fa a a

t t t
 

                  
,        (8) 

 
2

2 2
2 22 2

1
0s fa a

r t t t
  
                

,        (9) 
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2
2 2 2

1 3 2 3 4 2
0s fh h h h h

t t t t
 

                      
,     (10) 

 

2
2 2

3 1 3 42 2

1
0s fh h h

t r t t t
  

                 
,      (11) 

 
2 2

2 2
2

2
f s s

s f s
rrt

r r z

    
 

  
         

,       (12) 

 
2 2

2 2 21 1
* * 2

2f ff f f
f s f fv v

rr

c c
t

a t a t r r z

      
   

    
              

,   (13) 

 
2 2 2

2 2 2

1
2

rz

s s s s s
st

r z r z r r z

       
    

    
,       (14) 

 
2 2 2

1
* 2 2 2

1
2

rz

f f f f f
f vct

a t r z z r r r r

     


     
           

,     (15) 

 

where, 

1 ,
2

f

a


 



 2 ,

2


 




 
*

1
2 ,

2

ff c a
a


 




 
*

1
1

,
( 2 )

f

v v

a
h

c


 




 
*

2
1( 2 )

ff

v v

a
h

c


 




, 

*2

3 ,
( 2 )

ff

v v

a
h


 




 
*

0 1
4 ,

( 2 )

f

v v

c a
h


 




 
2 2

2
2 2

1
,

r r r z

   
       

 2
1 ( 2 )

v

v v


 




. 

 
4. Boundary conditions 
At the surface r=1 the appropriate boundary conditions are 
 

( ) 0,s f
rr rri t t   

 

( ) 0,s f
zr zrii t t   

 

( ) 0,s f
r riii u u    

 

( ) 0s f
z ziv u u   .          (16) 

 
5. Formal solution of the problem 
Let solution of equations (8)-(11) as 
 

( )
1 0 2 0 3 1 4 1( , , , ) ( ( ), ( ), ( ), ( ))s f s f i kz tb K mr b K mr b K mr b K mr e      ,    (17) 

 

where k is wave number and  is angular frequency. 
Using equation (17) in Eqs. (8)-(11) and solving the resulting differential equations, the 
expressions for , , ,s f s f    are obtained as 
 

( )
1 0 1 2 0 1{ ( ) ( )}s i kz tA K m r A K m r e    ,       (18) 

 
( )

1 1 0 1 2 2 0 1{ ( ) ( )}f i kz tA K m r A K m r e      ,       (19) 
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( )
3 1 3 4 1 4{ ( ) ( )}s i kz tA K m r A K m r e    ,       (20) 

 
( )

3 3 1 3 4 4 1 4{ ( ) ( )}f i kz tA K m r A K m r e      ,       (21) 
 

where 2 2 2 2( 1)k km k c q   ,
 

2
2 2
1 2

4
( , )

2

B B AC
q q

A

  
 , 2 1 1A i h h a    , 

2 1 2 1 0 1 3( )B i h h a         , 1 2 0 3C      , 2
0 ,

ia


  1 01 ,    3
2 ,

ih


  3 4 2h   , 

2 2 2 2 2 2 2
2 1 0 2 1 0 1 1 2 0 32 2

3 4 2 2
1

( ) ( ) 4( )( )
( , )

2

i i i
q q

i

             
 

      



, 

'

'

'

2 2 2
1

2 2 2
1 0

( )
,

( )
l

l
l

m k

a m k

 


 
 


 

 
'

'

2 2 2 2
1

2
0

( )
,r

r

m k  


 
 

  ' '1, 2; 3,4l r   

 
6. Derivation of secular equation 
Making use of equations (18)-(21) in equations (12)-(15) and using boundary conditions (16), 
we obtain four homogeneous equations in four unknowns.  The elimination of these 
unknowns gives the frequency equation: 
 

33 44 43 34 11 22 12 21 32 44 34 42 13 21 11 23 32 43 33 42 11 24 14 21( )( ) ( )( ) ( )( )P P P P P P P P P P P P P P P P P P P P P P P P       
  

31 44 41 34 12 23 13 22 31 43 33 41 13 24 24 12( )( ) ( )( ) 0P P P P P P P P P P P P P P P P       ,   (22) 
 
where, 

  ' '

' ' ' ' ' '
'

1 12 2 21
0 1* * *1

2 1 ( ) 2 ( ) 1 ,
l

f ff f
v vv l l

l l l l l l

i c i ci c
P m k m K m m K m

a a a

       
      

       
      

                  

' ' ' '
1

1 *2
2 ( ) 1 ,v

l l l l

i c
P ikm K m

a




 
   

 
 

'

' ' ' '

1
0 1*1

2 1 ( ( ) ( ))v r
r r r r

c
P ik m K m K m

a

 


 
    

 
, 

' ' ' '

2 2 1
1 *2

( ) ( ) 1 v
r r r r

i c
P k m K m

a




 
    

 
, ' ' ' '13

(1 ) ( )
l l l l

P i m K m   , ' ' '13
( )(1 )

r r r
P K m ik  , 

' ' '04
(1 ) ( )

l l l
P k K m   ' ' ' '04

(1 ) ( )
r r r r

P i m K m   , where ' 1, 2l   and ' 3, 4r  . 

 
7. Propagation of waves in a cylindrical bore filled with liquid 
Here, we consider the same problem as in the previous section with the additional constraint 
that the borehole is filled with homogeneous inviscid liquid. 

The field equation and constitutive relations for homogeneous inviscid liquid are 
 

2

2
( . )

L
L L L u

u
t

  
  




A ,         (23) 

 

( . )L L L
ij ijt u  


,          (24) 

 

where Lu


 is the displacement vector, L  and L  are respectively the bulk modulus and 
density of liquid. Other symbols have their usual meaning as defined earlier. For two 
dimensional problems we take  
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( ,0, )L L L
r zu u u and


/ 0   .        (25) 

 

The dimensionless variables defined in this case, in addition to those defined by (6), are 
 

' ' '

* *
, ,

L L L
L L Lr z rr
r z rr

u u t
u u t

a a 
   .         (26) 

 

We relate the dimensionless displacement components and potential function L as  
 

,
L L

L L
r zu u

r z

  
 

 
.         (27) 

 

Making use of equation (27) in equations (23), (24), with the help of equations (26), (27) after 
suppressing the primes yields 
 

2 2 2
2

2 2 2

1L L L L

Lr r r z t

      
  

   
,        (28) 

 

2

11

L
L L
rrt

C

   ,           (29) 

 

where, 
 

1 ,
L

L L
L

L

c
c

c




  .         (30) 

 
The solution of (30) corresponding to surface waves may be written as 
 

( )
0 0 0( )L i kz tA I m r e   .         (31) 

 
After some simplification, the pressure and radial displacement of liquid are given by 
 

*2 2 ( )
0 0 0( )L L i kz t

rrp t A I m r e      ,        (32) 
 

( )
0 0 1 0( )L i kz tu m A I m r e  ,         (33) 

 
where, 
 

2
2

* 2 2 2 21
0, (1 )

L

L

c
m k c

 


   ,       (34) 

 

where 
0 ( )I  and 

1( )I  are modified Bessel functions of first kind and of order zero and one 

respectively. 
 
8. Derivation of secular equation 
The appropriate boundary conditions for the present situation at r =1 are 
 

,s f L
rr rrt t p    

 

0,s f
rz rzt t     
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0,s f
z zu u    

 

0,s f
r ru u    

 
s f L
r r ru u u  .           (35) 

 

Making use of (31)-(33) and (18)-(21), in the boundary conditions (35), with the help of 
(12)-(15), we obtain five homogeneous equations in five unknowns. The conditions for the 
non-trivial solution yields the frequency equation 
 

*2 2
0 0 1 1 1 22 33 44 34 43 23 32 44 34 42 24 32 43 33 42( )[ ( ){ ( ) ( ) ( )}I m m K m P P P P P P P P P P P P P P P         

 

2 1 2 21 33 44 34 43 23 31 44 34 41 24 31 43 33 41( ){ ( ) ( ) ( )}m K m P P P P P P P P P P P P P P P       

 

1 3 21 32 44 34 42 22 31 44 34 41 24 31 42 32 41( ){ ( ) ( ) ( )}ikK m P P P P P P P P P P P P P P P       

 

1 4 21 32 43 33 42 22 31 43 33 41 23 31 42 32 41( ){ ( ) ( ) ( )}]ikK m P P P P P P P P P P P P P P P       

 

0 1 0 11 22 33 44 34 43 23 32 44 34 42 24 32 43 33 42( )[ { ( ) ( ) ( )}m I m P P P P P P P P P P P P P P P P       

 

12 21 33 44 34 43 23 31 44 34 41 24 31 43 33 41{ ( ) ( ) ( )}P P P P P P P P P P P P P P P P       

 

13 21 32 44 34 42 22 31 44 34 41 24 31 42 32 41{ ( ) ( ) ( )}P P P P P P P P P P P P P P P P       

 

14 21 32 43 33 42 22 31 43 33 41 23 31 42 32 41{ ( ) ( ) ( )}] 0P P P P P P P P P P P P P P P P      

 

.   (36) 

 
9. Particular case 
In absence of swelling porous i.e., taking 0f ff ff

v v         , we obtain the corresponding 

expressions for the elastic medium (EL) with the changed values of mi (i=1, 2, 3, 4). 
 
10. Numerical results and discussion 

For numerical computation, we take the following values of parameters 
10 22.238 10 / ,N m    10 22.05 10 ec/ ,v N S m    3 2 4

0 2.65 10 ec / ,s N S m    
10 22.992 10 / ,N m    10 22.5 10 /v N Sec m   , 3 2 4

0 1.92 10 ec / ,f N S m    
10 21.21 10 / ,f N m    10 20.20 10 / ,ff N m    3 41.13 10 / ,ff N Sec m    

* 15 ,a m  10 22.1904 10 / ,L N m    3 31.01 10 /L Kg m   . Equations (22) and 

(36) determine the phase velocity c of the axial symmetric surface waves as a function of 
wave number k, radius of bore and various physical parameters in complex form.  

If we write 
 

1 1 1c v i q    ,          (37) 
 

then wave number k=R+iq, where R= /v and q is attenuation coefficient of the surface 
waves. The graphical representation is given to depict the behavior of phase velocity and 
attenuation coefficient with respect to R i.e. real part of wave number to compare the results 
for swelling porous elastic medium (SP) and elastic medium. 

Figure 2 depicts the variation of phase velocity with wave number in case of empty and 
liquid filled bore for SP and EL media. From Fig. 2 we notice, that in case of SP medium, 
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phase velocity for empty cylindrical bore decreases with the little change in the magnitude 
values as the wave number increases whereas, for liquid filled cylindrical bore it initially 
increases and then became stationary. In case of elastic medium the phase velocity for both 
empty and liquid filled cylindrical bore decrease with the increase of wave number. In SP 
medium the phase velocity of empty cylindrical bore remains less than that of liquid filled 
cylindrical bore for 1.25k  , whereas for elastic medium the phase velocity for empty 
cylindrical bore remains less than the phase velocity of liquid filled cylindrical bore in whole 
range.  
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Fig. 2. Variation of phase velocity with wave number. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Variation of attenuation coefficient with wave number. 
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Figure 3 depicts the variation of attenuation coefficient with wave number in case of empty 
and liquid filled cylindrical bore for SP and elastic medium. From the figure we notice that 
attenuation coefficient is of oscillatory behavior for empty and liquid filled cylindrical bore in 
SP medium. In elastic medium the attenuation coefficient increases with wave number when 
cylindrical bore is empty, whereas for liquid filled cylindrical bore it is of oscillatory 
behavior. In EL medium the attenuation coefficient of liquid filled cylindrical bore remains 
less than the attenuation coefficient in SP medium. The attenuation coefficient for empty 
cylindrical bore is more than the attenuation coefficient of empty cylindrical bore in SP 
medium for 2k  . 
 
11. Conclusions 
From the above figures and manipulation we notice that phase velocity in SP medium remains 
less than the phase velocity of EL medium in case of empty and filled cylindrical bore. In SP 
medium the phase velocity for liquid filled cylindrical bore is greater than the phase velocity 
for empty cylindrical bore for 1.25k  , whereas for elastic medium, the phase velocity of 
empty cylindrical bore remains less than the phase velocity of liquid filled cylindrical bore in 
whole range. The oscillation of attenuation coefficient in SP medium is greater than that of 
elastic medium. 
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