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Abstract. In this work, a boundary element method (BEM) is applied for time-harmonic
analysis of three-dimensional linear piezoelectric solids. Coupled frequency domain boundary
value problems of the linear theory of piezoelectricity are considered assuming zero initial
conditions, in the absence of the body forces and free electric charges. The elastic and electric
variables are combined into the extended vectors and tensors. Proposed boundary element
approach employs regularized weakly singular frequency domain boundary integral equations
(BIEs) for the extended displacements. A standard collocation procedure for the mixed
boundary elements is used. Integral expressions of the three-dimensional frequency domain
dynamic piezoelectric fundamental solutions are employed. Results of the boundary-element
analysis of a test problem are provided to validate the proposed BEM formulation.
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1. Introduction

Piezoelectric materials show two kinds of coupling effects and are extensively used to convert
energy between two different forms: electric and mechanic. The direct effect consists in the
ability to accumulate electric charge as a response to applied mechanical loads; the converse
effect is characterized by the ability to produce mechanical deformation when electric loads
are applied. Piezoelectric materials proved to be indispensable and very effective in many
engineering  applications such as vibration-based energy harvesters [1-3],
microelectromechanical systems devices [4,5], active damping in structural vibrations,
acoustic noise suppression, etc. To utilize the potential of piezoelectric structures subjected to
transient dynamic or time-harmonic loadings to full extent it is essential to properly model
their coupled behavior with reliable numerical method.

Various numerical techniques, such as Finite Difference Method (FDM) or Finite
Element Method (FEM), can be employed to study dynamic behavior of complex
piezoelectric structures. Among them is Boundary Element Method, a well-known boundary
integral equations based method. Compared to the domain-based numerical methods like
FDM and FEM, BEM has the distinct advantage of unknown field variables being located
only on the boundary of the domain under consideration. This feature leads to the lack of
necessity to mesh the interior of the domain, which results in the smaller number of unknowns
in the discrete model.

The development of conventional direct boundary element procedure for transient
dynamic and time-harmonic problems in linear piezoelectric solids as usual relies on
reduction of the boundary value problems to a corresponding system of boundary integral
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equations with utilization of the reciprocal theorem and fundamental solutions. It is known,
that the dynamic fundamental solutions and the corresponding stress fields for generally
anisotropic piezoelectric materials are not available in the closed-form expressions. Various
approaches for numerical and semi-analytical treatment of the static anisotropic elastic and
piezoelectric fundamental solutions were proposed (e.g. [6-13]). Review of the available
scientific literature reveals only a few BEM implementations concerning time-harmonic
analysis for piezoelectric solids [14-18] including those based on Dual Reciprocity approach,
which utilizes only the static fundamental solution.

In this paper, a formulation of the frequency domain direct boundary element approach
is present and applied for the time-harmonic analysis of three-dimensional (3D) homogeneous
anisotropic and linear piezoelectric solids. The boundary integral equations are regularized
employing the static part of the fundamental solution. The frequency domain displacement
fundamental solutions for linear piezoelectric material are expressed in an integral form.
Mixed boundary elements and standard collocation procedure are used for the spatial
discretization. The versatility and reliability of the proposed formulation is demonstrated by
numerical examples for piezoelectric solid under complex electro-mechanical loading. The
obtained boundary element results are compared with those obtained by a finite element
method.

2. Problem statement

Consider a three-dimensional homogeneous finite anisotropic and piezoelectric solid Q  R®
with smooth boundaryT" =0Q. Piezoelectric linear constitutive equations are given as
follows [19,20]:

oy =CiuSa —€yEi, 1,1,k 1=13, (1)
D, =€y Su + & B (2)
where o is the stress tensor, D; are the electric displacements, s, is the strain tensor and E,
is the electric field. The tensors Cy,, e, and g, denote, respectively, the elastic stiffness

constants, the piezoelectric coupling coefficients and the dielectric properties.
For the generally anisotropic piezoelectric material, the following symmetry conditions
are satisfied:

Ci:'zkl = CkEIij = CjEikl = Ciﬁk, (3)
i = i (4)
gij = gji . (5)

Applying the quasi-electrostatic assumption, the strain — displacement and the electric
field — electric potential relationships are written as

s :%(ui'j +Uj), (6)

Ei = _¢,i' (7)
where u, are the elastic displacements and ¢ is the electric potential.

In the absence of applied volume forces and free electrical charges the equilibrium
equations and the electrical balance equations (the electrostatic equations) in the time domain
are given as follows
Oy,; = PU;, (8)
Di,i =0, 9)
where p is the mass density.
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It is practical to combine the elastic and electric variables into the extended vectors and
matrices using the extended notation [6] as follows

_Ju, k=13,
] (10)
_ s kI=13 11
Skl {—El,k=4,|=1, ' ( )
O---,i,j:l,_s,
Y =7 _- 12
1) {Di,izl, 1j:41 ( )
Ciar 1, 1.k, 1=13,
e, i,I,j=13k=4
C" — lij? 1y et ' 13
ijkl eiku |,|,k=_1,3,j=4, ( )
—g, i,l=13k, j=4

Considering the symmetry conditions (3) — (5) we can write the following relationship
for the extended piezoelectricity matrix C,, :

Cijkl = Clkji . (14)

Taking into account the extended notation (10) — (13) we rewrite the time-domain
equations of motion of a linear piezoelectric solid in a simplified form in terms of the
extended displacements:

CijaUri = p5;kuk’ i1=13 jk=14, (15)

= e, o
We consider vanishing initial conditions and the following boundary conditions:

U,(x,t) =U,(x,t)=0,t <0, (17)

U, (x,t) =U"(x,t), xeT, (18)

T.(x,t) =T, (xt), xel;, (19)

where I'; is the part of I" on which the extended displacements U, (x,t) have the prescribed
values U;" and I'; is the part of I" on which the extended tractions T, :

_Jt.=o,n,, k =13,
T = 5n _ [k)irﬁi’ K=4, (20)
have the prescribed values T, with n, being the outward unit normal vector.

For the prescribed frequency @ and zero initial conditions (17), we rewrite the
governing equations (15) and boundary conditions (18) — (19) in the frequency domain:

CijkIUk,iI + pw25;kljk =0, i,1=13, jk=14 (21)
U (x,0) =U’(x,), Xxel, (22)
T.(X,0) =T, (X,w), XeTl, (23)

where overbar denotes a variable in the frequency domain.

3. BEM formulation

In the present work, we use the frequency domain direct BEM approach to solve the linear
boundary-value problem defined in equations (21) — (23). To solve the prescribed
boundary-value problem first it is needed to be reformulated as boundary integral equations.
For the extended displacement in the frequency domain, the following system of non-strongly
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singular BIEs can be obtained using the static singular part of the piezoelectric traction

fundamental solution:

[0y, @, (v, %, 0) -0, (x, )5, (y,x,@) ]dT(y) - [ T, (v, @)T, (v, %, @)dT(y) =0, (24)
r

r
where g,, h, and hj are the frequency domain dynamic piezoelectric extended

displacement and traction fundamental solutions and the static part of traction fundamental
solution, respectively; x eT" is the source point and y is the field point. All integrals in the

regularized boundary integral equations (24) have the O (1/r)singularity.

For numerical solving the BIEs (24), we follow the standard boundary element
procedure and start with the discretization of the boundary I'. Geometry of the boundary is
approximated with the quadrangular boundary elements with quadratic shape functions. To
describe the behavior of the extended displacements and tractions on the boundary elements
we implement the mixed representation approach: for the displacements, linear interpolation
functions are adopted and tractions are approximated by constant functions. After collocation
procedure a system of complex-valued linear algebraic equations is obtained for the
prescribed frequency w:

[A(@) |{p(@)} = {T(a)}, (25)
where [ﬂ(w)] is the rearranged system matrix according to the boundary conditions, {f(a))}
and {p(w)} are the vectors, containing the known and unknown boundary data.

4. Frequency domain piezoelectric fundamental solutions

For homogeneous generally anisotropic linear piezoelectric solids, dynamic fundamental
solutions are not available in an explicit form. Representations of the fundamental solutions in
the frequency domain can be separated into singular (static, denoted with superscript "S™) and
regular (dynamic, denoted with superscript "D") parts as

g; (¥, X, @) = G, (r, ) = g; (1) + Gy (1, ), (26)
ﬁij (Y, X, @) = ﬁij (r,o)= hi?(r) + ﬁijD(r’ w), (27)
with r=y-x, r=|r|.

Using the approach based on the application of the Radon transform [21,22] the

expressions for the dynamic and static parts of the piezoelectric displacement fundamental
solutions are given as follows [11]:

=D i S kmF_)]r[])1 (n) ik n-r| . A

95 (ro)=—— f D e Mds(n), j,p=14, (28)

8r |nj=1 m=1 pcm
n-r>0

S 1 -1
2 (r)=— | T (d)dL(d), 29
95,(r) 87r2rdj_1 p(A)dL(d) (29)
here
ij;, j’pzla 1
— r, P —
Pj;;: _ Lkl j=13 p=4, (30)
1—‘44
1—14k I:’krlnl_‘M — p =4
Ffm 1 H
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" QI

m A m -

Pl = A =ati(Ly =iy ). Ly(m) = Typ(m) -4t @
[ 44
A w

Cn = 7’ km=C—, Fij(d):CkijldkdI' Fij(n):Ckijlnknp (32)

where 4, are the Q distinct eigenvalues of L.

The variables involved in the definition of domains of integration (see Fig. 1), i.e. a half
of a unit sphere for the dynamic part and a unit circumference for the static part are defined as

follows:

dL(d(¢))eD® ={0<p <27}, dS(n(b,p))eD° ={0<b<10<¢p <27}, (33)
n(b,p)=v1-b’d+be, e=r/r, e=[e,e, 6], (34)
[ez cosyo+e1e3singo,—elcosq>+ezegsingo,—(l—esz)singo}
d(p)= _ . (35)
J1-¢€
/// efn
/ \
\Il
/
,’ |
' :
: ,’ n-r=0
\\\ /,d

Fig. 1. Geometry of r, e, nand d

For the unit normal vector to the boundary n,(y) at the field point y, the piezoelectric
traction fundamental solutions are defined by
h;, (Y, X, ®) = Cyy, Ty, (Y, X, @)y (Y), J,p=14. (36)

5. Numerical example
Our test model involves rectangular piezoelectric solid as shown in Fig. 2. The solid is

clamped at x, =0m. On the surface X, =0.2m the electric potential is assumed to be zero.
Two cases of harmonic excitation on the surface X,=1m is considered: traction
t,=-1.10°Pa and electric potential ¢ =0V (case A), traction t,=-1-10°Pa and electric
displacements D, =1C/m? (case B). Other surfaces are free of the extended tractions. For
both loading cases, two frequencies are considered: @, =10000 rad/s and @, = 20000 rad/s.
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Fig. 2. A rectangular piezoelectric solid
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PVDF is chosen as a piezoelectric material, which has the mass density p =1780 kg/m®

and the following material parameters:

238398219 0 0 0
398236192 0 0 0
e 219192106 0 0 0
C="9""0 "0 2150 0 |CPa
0 0 0 0 440
0 0 0 0 0643

[1.1068 0 0
g=| 0 10607 0 [-10*°C/Vm,
0 0 1.0607

0 0 0 0 -0010
e=| 0 0 0 -001 0 0|C/m’
|-0.13-0.14-028 0 0 O

(37)

(38)

(39)

The solid is uniformly meshed with 1408 boundary elements in total. For loading
case A, Figs. 3 — 6 and for loading case B, Figs. 7 — 10 show a comparison of the obtained

BEM solutions and results of FEM analyses for the displacements u, and u,, electric
potential ¢ and electric displacements D,. Results for the u,, u, ¢ are calculated along the

line (0.1,0,x,) and for the D, along the line (0.1,0.2,x;).
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Fig. 3. Displacements u, (0.1,0,x,) Fig. 4. Displacements u, (0.1,0, x,)



X
3

,m

262 L.A. Igumnov, |.P. Markov, A.V. Boev
7
o X1
. _BEM Tor o ~ 006 _BEM for Wi
BEM for w E BEM for
2 o
% 4 FEMfor - 004 __Femor
— 3 o
| remor 002 __FEMfor
2
0
g o
5 2 o,
S g
L 2 8
3 g 0.04
© 3
“ £ o0
2
s
-6 | | | -0.08 ; | i |
0 02 0.4 06 08 1 0 02 04 056 08 1
X m X m
3 3
Fig. 5. Electric potential ¢(0.1,0,x,)  Fig. 6. Electric displacements D, (0.1,0.2, x,)
0.02 .
BEM for
— Wy
0.015 BEM for 0.06
oor _ FEM for W 0.04
£ : FEM for €
5" — 57 o
0.005
0
2 0 2
g % 0,02 __oemor o
8 0008 g BEM for
g 3 -0m
° ° FEM for
— w,
-0.01 -0.06 FEM for
— w,
0.015 : : : : -0.08 : : f :
0 02 0.4 06 08 1 0 02 04 06 08 1
X m X m
3 3
Fig. 7. Displacements u, (0.1,0,x,) Fig. 8. Displacements u,(0.1,0, x,)
10 °
5 X 05
~
£ 0
[}
. 0 -
S o o5 [
-5 -1
g
g BEM for £ BEM for
g — Wi g as | |— w,
g o BEM for W, % BEM for ws
s ___FEMfor w % » __FEMfor w
_FEM for W, é _FEM for W,
3
15 ] | \ | 25 I L
0 0.2 0.4 06 08 1 0.2 04

X
3

,m

Fig. 9. Electric potential ¢(0.1,0,x,) Fig. 10. Elect. displacements D, (0.1,0.2,x,)

6. Conclusions

The frequency domain boundary element formulation based on non-strongly singular
displacement BIEs for homogeneous three-dimensional linear piezoelectric solids is
presented. Mixed boundary elements are used for the spatial discretization. Integral
expressions of the piezoelectric fundamental solutions are adopted. The versatility and
reliability of the present boundary element formulation for time-harmonic piezoelectric
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analysis is demonstrated by numerical examples. Obtained solutions show good agreement
with the finite element results.
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