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Abstract. Paper continues developments and numerical testing of functional approach [1-3] to 
a posteriori error control for 2D problems of classical [2] and Cosserat elasticity [4,5]. The 
approach yields reliable error bounds (majorants) that are valid for all conforming solutions of 
problems regardless of methods used for a numerical implementation of a solution process. 
Efficiency of the above technique is shown on a set of numerical examples including 
consequent mesh adaptations with MATLAB tools as it was done [6]. 
Keywords: computational mechanics; a posteriori error estimates; finite element method. 
 
 
1. Introduction 
Various boundary-value problems of classical elasticity theory have been intensively used for 
developments, numerical testing and comparison of different approaches to a posteriori error 
control. Such methods are aimed to explicitly compute some quantitative measure of errors, 
which appear during numerical simulations, and indicate subdomains with large errors for 
further refinements. All general frameworks for error estimation and adaptive mesh refinement 
have been applied to linear elasticity. The first theoretical result appeared in [7] (much earlier 
than others, like [8-10]). W. Prager and J.L. Synge considered a “geometrical” method of error 
estimation based on originally intuitive constructions. But this idea gave a rise to another 
approach of P. Ladevèze and colleagues (see [11-14] for reviews). It is based on the concept of 
errors in constitutive relations or CRE. However, [13] shows that computational efforts to get 
sharp error estimates with this method can be significant. 

Another approach that is widely used nowadays is the so-called gradient averaging. It is 
based on pioneering works of O.C. Zienkiewicz and J.Z. Zhu [9,15]. The last paper includes a 
comprehensive study of various computational aspects with different examples of 
implementation of averaging procedures to problems of solid mechanics with different types of 
finite elements. The main advantage of this method is simplicity, but it isn’t able to provide 
reliable error control and often underestimates true errors. Another series of famous 
publications of O.C. Zienkiewicz and J.Z. Zhu appeared in 1992 [16-18] with a new approach 
called superconvergent patch recovery or SPR, which is quite popular nowadays – see  
[19-23].  

Group of residual-based methods for linear elasticity started to develop from paper by 
C. Johnson and P. Hansbo [10], which also includes numerical results for plane strain 
statement. For further research on explicit and implicit residual methods, we refer to [24-33]. 
Recent results on residual-type indicators and other methods in application to plane problems 
of linear elasticity theory one can find, for example, in [27,34,35]. 

Paper [22] contains a comprehensive study and comparison of various modifications of 
the SPR-method with the same conclusion about possible underestimation of the true error that 
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yields unreliability of the method. For extended review of the literature, we mention [19] and 
[36]. In [37] one can find comparison of 6 indicators of different types. Authors of [38] 
compared CRE and SPR methods (see also [39]). In 1994 paper of I. Babuška and colleagues 
[40] provided a special methodology for comparison of indicators of different types and 
presented a review of early results on error estimation theory. Investigation has been continued 
in [41-43], and in [44]  – with adaptations. 

It is necessary to note that collection [45] edited by P. Ladevèze and J.T. Oden, and the 
review by R. Verfürth [46] are also very useful for analysis of various groups of classical 
methods of a posteriori error control for problems of solid mechanics. Nowadays, the theory of 
a posteriori error control forms one of the important directions of modern computational 
mathematics. The amount of the corresponding literature is increasing continuously from the 
end of 1970-s (see, for instance, [3,47,48] for a review). However, summarizing these results, 
one can conclude that computationally inexpensive approaches are unreliable, especially in 
error control of solutions of black-box software for Computer-Aided Engineering (CAE). Some 
modifications, which increase reliability, may lead to extra computational efforts and rather 
technical implementations. All standard approaches are based on the fact that controlled 
numerical solution is an exact solution of a discrete problem generated by Finite Element 
Methods (FEM). Often, this is not the case for commercial software.  

Theoretical background of the functional approach to a posteriori error control, including 
estimates for various problems of continuum mechanics, has been developed starting from 
pioneering work of S. Repin and L.S. Xanthis [49]. The early results were mostly 
theoretical – some references can be found in [2,3,50]. For the last decade, investigations of the 
functional approach by S. Repin and his colleagues become more practice-oriented. Functional-
type a posteriori error majorants for classical linear elastic problems have been obtained in [51] 
and [2] using two different methodologies. 

Cosserat continuum [52] is one of interesting and sufficiently straightforward 
generalizations of the classical theory (see, for example, [53] and [54] for mathematical 
statements). Numerical methods for solving problems related to Cosserat continuum began to 
develop more intensively from the XXI century (see, for example, [55-59]). Nevertheless, first 
results concerning functional-type error estimates have appeared during the last few years. 
Totally, there are only few papers addressed to a posteriori error control for computed 
approximations – [60,61,4,5], and this work requires further developments in construction and 
comparison of adaptive algorithms. 
 
2. Statement 
Majorants for both mathematical models under consideration have some important features in 
common. Estimates for classical and Cosserat elasticity have the form 
|||e|||   ≤   M :=   D(ũ, s*) + R(s*) + penalty terms,      e : = u - ũ,  (1) 
where := means “equality by definition”, u contains all components of the exact solution, which 
is generally unknown, ũ represents approximations of these components, which are explicitly 
provided from computations, e is the corresponding error vector formed by components of 
deviations from exact values, s* is a set of auxiliary variables, and |||...||| denotes the global 
(energy) norm of the error. All components of functional-type error majorants have clear 
physical meaning and interpretation. Term D represents errors in constitutive relations. Term R 
is a residual term with mesh-independent constants (some proper balance of equilibrium 
equations). The estimate (1) may contain optional penalty terms that violate the symmetry 
condition for auxiliary tensors in a weak form. Therefore, the right-hand side of (1), denoted as 
M, depends only on known data – approximate solutions, constants, positive parameters, 
additional variables, and it can be calculated explicitly. This estimate is exact in the sense that 
the equality can be achieved with a proper setting of parameters and variables. For instance, 
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estimates for plane problems of the considered types have the form (1) – see [2,4,61] for details. 
All auxiliary fields can be constructed on a common basis of finite elements suitable for space 
H(div) – the Hilbert space of square summable vector-functions with square summable 
divergence. 

A reasonable choice of approximations for free variables in functional-type error 
estimates allows obtaining accurate guaranteed upper bounds of errors. The functional approach 
does not impose significant additional restrictions (for example, the assumption about exact 
satisfaction of equilibrium equations) on free variables. A functional-type error estimate is 
applicable to any arbitrary approximate solution from the corresponding energy space. It 
remains valid regardless of the approach used for calculating this solution, thus it allows taking 
into account various error sources, what is extremely important for additional verification of 
commercial software for CAE. Additionally to the global error estimation procedure, the 
functional M2 can be split and used as an indicator of the local error distribution, considering 
the contributions to the global error on each finite element. Therefore, it can provide a basis for 
construction of adaptive algorithms. 

Adaptive algorithms for FEM generally consist of four main steps: solve, estimate, mark 
and refine (see, for example, [62,63]). Concerning the estimate (1) the procedure admits the 
following interpretation: 
1. step(solve): compute ũ on some (initial or consequent) finite element mesh; 
2. step(estimate): compute the functional M from all individual contributions to it on every 
element; 
3. step(mark): mark mesh elements with comparatively large local errors by some marking 
strategy (using some error threshold or percent of the total amount of elements); 
4. step(refine): divide marked elements and do local mesh refinements. 

Besides of local refinements, for more sophisticated and efficient algorithms one can 
consider some procedures for local mesh coarsening.  
 
3. Numerical results 
Adaptive algorithms for plane elasticity problems, mentioned in this paper, are implemented in 
MATLAB. In the continuation of previous research the mixed-FEM approximations [64,65] 
are used for computation of upper error bounds and indicators. Extending results of [66], below 
we consider two examples as an illustration. 

For both examples, all material properties are taken from [56]. 
Example 1 (square domain with a hole). We consider the square domain with side 

16.2 mm, which contains a circular hole with radius 0.216 mm in the center. The left edge is 
fully clamped and the tensile loading of 1 MPa is applied to the right edge. Initial mesh is shown 
in Fig. 1 (a). 

Two types of problems are solved – with classical and Cosserat elasticity models. The 
resulting adaptive meshes are compared. Results for classical elasticity are collected in Table 1, 
and for Cosserat model – in Table 3. The lowest-order Raviart-Thomas approximation [64] is 
used for the implementation of the majorant M from (1). 

For this example results were partially presented in [66] with minor modifications of 
computational algorithms. For instance, final mesh for the majorant for the classical elasticity 
now consists of 2960 nodes instead of 2955 in [66]. 

The first block of results in each table corresponds to the uniform mesh refinement with 
no adaptation. The initial mesh (first column) is provided by a standard MATLAB tool and 
remains the same for all refinement algorithms. In any uniform refinement step, each element 
from previous mesh is divided into four new elements. The nodes, elements and relative errors 
are collected in corresponding table rows. Relative errors are computed with the  
so-called reference solution – an approximate solution obtained on a fine mesh. It is very time-
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consuming to calculate the reference solution; therefore, it is provided only for numerical 
experiments on validation and comparison of different approaches. For engineering practice, it 
is never used. But the following results show that functional type error majorants can be 
considered as a reasonable alternative choice. 

 
Table 1. Example 1. Classical elasticity: results for uniform and adaptive mesh refinements. 

Uniform refinement 
MESH 1 2 3 4 5 
NODES 295 1147 4522 17956 71560 
ELEMENTS 557 2228 8912 35648 142592 
RELATIVE ERROR, % 10.1 6.6 4.2 2.6 1.6 
Reference indicator 
NODES 295 353 423 765 2050 
ELEMENTS 557 664 793 1428 3906 
RELATIVE ERROR, % 10.1 6.9 4.9 2.6 1.6 
Majorant-based indicator 
NODES 295 323 536 876 2960 
ELEMENTS 557 606 1002 1648 5701 
RELATIVE ERROR, % 10.1 7.1 3.7 2.7 1.4 
Ieff = M/|||e||| 1.2 1.2 1.3 1.3 1.2 

 
Table 2. Example 1. Classical elasticity: results for another uniform refinement. 

Uniform refinement (another initial mesh) 
MESH 1 2 3 4 5 
NODES 305 1183 4658 18484 73640 
ELEMENTS 573 2292 9168 36672 146688 
RELATIVE ERROR, % 7.5 4.6 2.8 1.7 1.0 

 
In addition, the uniform refinement procedure is repeated from another slightly different 

initial mesh (Fig. 1 (b)). Results are collected in Table 2. If the desired relative error level is 
less or equal to 2%, then for the first uniform sequence the resulting mesh contains 71560 nodes, 
and for the second one a solution process yields the mesh with 18484 nodes only. Thus, choice 
of the initial mesh may dramatically affect the uniform refinement results and may increase 
computational costs caused by necessity to provide accurate results. 
 
Table 3. Example 1. Cosserat elasticity: results for uniform and adaptive mesh refinements. 

Uniform refinement 
MESH 1 2 3 4 5 
NODES 295 1147 4522 17956 71560 
ELEMENTS 557 2228 8912 35648 142592 
RELATIVE ERROR, % 12.0 9.2 6.6 4.4 2.7 
Reference indicator 
NODES 295 348 469 899 2582 
ELEMENTS 557 652 870 1668 4899 
RELATIVE ERROR, % 12.0 9.8 6.8 4.5 2.8 
Majorant-based indicator 
NODES 295 317 527 1039 4111 
ELEMENTS 557 592 956 1894 7674 
RELATIVE ERROR, % 12.0 9.6 7.0 4.7 2.6 
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(a) 295 nodes (initial mesh) (b) 305 nodes (initial mesh 2) 

  
(c) ux (d) uy 

  
(e) 2050 nodes (reference) (f) 2960 nodes (majorant) 

Fig. 1. Example 1. Classical elasticity: initial meshes (a,b), components of the solution 
u (c,d) (displacements), the result of adaptation by the reference indicator (e), the result of 

adaptation by majorant-based indicator (f). 
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(a) 295 nodes (initial mesh) (b) ux 

  
(c) uy (d) w 

  
(e) 2582 nodes (reference) (f) 4111 nodes (majorant) 

Fig. 2. Example 1. Cosserat elasticity: initial mesh (a), components of the solution u and 
w (b-d) (displacements and rotation), the result of adaptation by the reference indicator (e), 

the result of adaptation by majorant-based indicator (f). 
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For the same problem conditions of Cosserat elasticity with the same uniform meshing, 
the relative error is greater than for the classical one – this effect occurs due to solving equations 
that are more complex from mathematical point of view. 

For analyzing adaptation results, reference (target) meshes are constructed. The 
adaptation process takes a large amount of steps, refining only several elements on each. 
Elements to be refined are chosen with reference error indicators, which are based on the energy 
norm of the difference between solutions on coarse and fine meshes. Results for corresponding 
reference meshes are collected in the second block of the Table 1 and Table 3, respectively. 

In the third blocks of the above-mentioned tables, the results for majorant-based 
adaptation process are collected. In Table 1 the functional-type error majorant from [2] is used 
for reliable upper error estimation. The ratio between the error majorant M and the error |||e||| is 
used as a standard quality measure for error control. This parameter is usually called  
the efficiency index – it is denoted by Ieff.  

The results for classical elasticity are presented in Fig. 1 with the following subplots: 
initial mesh, corresponding to Table 1 (a); initial mesh, corresponding to Table 2 (b); classical 
solution components (c-d); the final mesh for the reference indicator (e) and the final mesh for 
the majorant-based indicator (f). For Cosserat elasticity, the results are presented in Fig. 2 with 
the following subplots: initial mesh, corresponding to Table 3 (a); solution components (b-d); 
the final mesh for the reference indicator (e) and the final mesh for the majorant-based 
indicator (f). The difference between solutions of classical and Cosserat elasticity problems is 
moderate. 

The results show that for considered parameters, geometry and loading in both cases 
(classical and Cosserat model) majorant-based error indicators lead to final adaptive meshes, 
which are similar to reference ones. The adaptation process was stopped after reaching the same 
error level as on uniform mesh with 71560 nodes. For classical model the number of nodes in 
the final adaptive mesh is 2960 and for Cosserat model – it is 4111, which is more than 10 times 
less. These results show that adaptive refinements save a lot of computational resources to get 
an approximate solution of a good quality. 

It is also worth noting that adaptive meshes for different elasticity models have different 
structure. In first case, the node concentration regions are around the corners of clamped edge 
and around the hole. In the second case (Cosserat model), the node concentration region is more 
along the whole clamped edge. 

In addition, Table 4 illustrates the behavior of error estimation for several steps with 
uniform mesh refinements for the simplest Arnold-Boffi-Falk approximation [65]. From these 
results for Cosserat elasticity we conclude that the efficiency index of estimates remains stable 
and overestimation of the true error is moderate and acceptable. 

 
Table 4. Example 1. Results for the lowest order Arnold-Boffi-Falk approximation for nested 
meshes [5]. 

MESH 1 2 3 4 
NODES 168 624 2400 9408 
RELATIVE ERROR, % 15.8 11.1 7.3 4.0 
Ieff 1.2 1.2 1.2 1.3 

 
Example 2 (Γ-shaped domain). In this example the Γ-shaped domain is considered. 

Length of the left and upper edge is 2 m, the other edges are of length 1 m. The left edge is fully 
clamped and on the upper edge a loading is applied. 

As for the Example 1, the results for classical elasticity model are grouped in Table 5, 
and for Cosserat model – in Table 6. 
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For this example the difference between the solutions of classical and Cosserat elasticity 
problems is more significant. In addition, the relative error for the solution of Cosserat elasticity 
problem is almost two times larger than for classical one. Nevertheless, for both elasticity 
models the difference in the number of nodes for final adaptive and uniform meshes with the 
same level of relative error is still significant. 

 
Table 5. Example 2. Classical elasticity: results for uniform and adaptive mesh refinements. 

Uniform refinement 
MESH 1 2 3 4 5 6 
NODES 85 305 1153 4481 17665 70145 
ELEMENTS 136 544 2176 8704 34816 139264 
RELATIVE ERROR, % 26.2 17.9 12.0 8.1 5.4 3.7 
Reference indicator 
NODES 85 217 357 694 1591 3409 
ELEMENTS 136 379 639 1278 3004 6557 
RELATIVE ERROR, % 26.2 15.3 11.4 8.1 5.4 3.7 
Majorant-based indicator 
NODES 85 177 532 1041 1898 3582 
ELEMENTS 136 304 983 1969 3643 6942 
RELATIVE ERROR, % 26.2 16.52 9.8 7.3 5.4 3.9 
Ieff = M/|||e||| 1.2 1.2 1.2 1.2 1.2 1.2 

 
Table 6. Example 2. Cosserat elasticity: results for uniform and adaptive mesh refinements. 

Uniform refinement 
MESH 1 2 3 4 5 6 
NODES 85 305 1153 4481 17665 70145 
ELEMENTS 136 544 2176 8704 34816 139264 
RELATIVE ERROR, % 53.0 39.4 27.6 18.9 12.8 8.7 
Reference indicator 
NODES 85 227 674 1640 4229 10036 
ELEMENTS 136 398 1241 3073 8049 19276 
RELATIVE ERROR, % 53.0 37.6 26.4 18.9 12.7 8.7 
Majorant-based indicator 
NODES 85 267 943 1904 5582 15941 
ELEMENTS 136 449 1680 3440 10268 29642 
RELATIVE ERROR, % 53.0 37.7 26.1 20.1 12.6 7.9 

 
The adaptive meshes corresponding to the last columns of Table 5 and Table 6 are 

presented in Fig. 3 and Fig. 4. As in Example 1, the adaptive mesh structure is different for 
classical and Cosserat elasticity models. For the classical elasticity problem node concentration 
regions are around the corners of clamped edge and around the domain reentrant corner. For 
the Cosserat elasticity problem the node concentration region is more along the clamped edge 
and the domain reentrant corner. 
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(a) 85 nodes (initial mesh) 

  
(b) ux (c) uy 

  
(d) 3409 nodes (reference) (e) 3582 nodes (majorant) 

Fig. 3. Example 2. Classical elasticity: initial mesh (a), components of the solution 
u (b,c) (displacements), the result of adaptation by the reference indicator (d), the result of 

adaptation by majorant-based indicator (e). 
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(a) 85 nodes (initial mesh) (b) ux 

  
(c) uy (d) w 

  
(e) 10036 nodes (reference) (f) 15941 nodes (majorant) 

Fig. 4. Example 2. Cosserat elasticity: initial mesh (a), components of the solution u and 
w (b-d) (displacements and rotation), the result of adaptation by the reference indicator (e), 

the result of adaptation by majorant-based indicator (f). 
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4. Conclusions 
The functional approach is always reliable due to the fact that estimates are guaranteed upper 
bounds of errors. This property is known from the corresponding mathematical theory and it is 
numerically approved in the process of implementation of adaptive algorithms. As local error 
indicators, respective majorants provide useful information about distributions of 
computational errors that leads to efficient mesh adaptations and significantly saves 
computational resources for getting accurate approximate solutions (tens of times). For the 
considered classes of problems, H(div) conforming approximations as Raviart-Thomas or 
Arnold-Boffi-Falk yield suitable results from the viewpoint of a stability of the efficiency index 
and a moderate overestimation of the true error. 
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