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Abstract. We provide an overview of theoretical models of plastic deformation processes in
nanocrystalline materials. The special attention is paid to the abnormal Hall-Petch relationship
which manifests itself as the softening of nanocrystalline materials with reducing the mean grain
size. Theoretical models are considered which describe the deformation behavior of
nanocrystalline materials as two-phase composites with grain interiors and boundaries playing
the role as component phases. Also, physical mechanisms (lattice dislocation motion, grain
boundary sliding, diffusion plasticity mechanisms) of plastic flow in nanocrystalline materials
are analysed with emphasis on transitions from one to another deformation mechanism with the
reduction of grain size. The effect of a distribution of grain size on the abnormal Hall-Petch
relationship in nanocrystalline materials is considered.

1. INTRODUCTION

Nanostructured materials represent a new genera-
tion of advanced materials exhibiting unique and
technologically attractive properties due to the size
and interface effects, e.g., [1-12]. The potential for
nanostructured materials to transform so many tech-
nologies is almost without precedent. Of the spe-
cial importance are the outstanding mechanical prop-
erties of nanocrystalline (nano-grained) materials,
which are essentially different from those of
conventional coarse-grained polycrystals. Nano-
crystalline materials exhibit extremely high strength
and good fatigue resistance [11-13] desired for
numerous applications. At the same time, many
nanocrystalline materials are rather ductile. In par-
ticular, nanocrystalline ceramics exhibit superplas-
ticity commonly at lower temperatures and faster
strain rates than their coarse-grained counterparts
[14,15].

One of the specific features of deformation pro-
cesses in nanocrystalline materials manifests itself
in deviations from the known grain size scaling
relations. The classic Hall-Petch relationship [16,17]
describes the relationship between yield stress τ
and grain size d of a polycrystalline material, viz.,

τ τ= + −

0

1 2kd / ,  (1)

where τ
0
 is the friction stress considered needed to

move individual dislocations, and k is a constant
(often referred to as the Hall-Petch slope and is
material dependent). This equation is well behaved
for grains larger that about a micron. Masumura et
al [18] have plotted some of the available data in a
Hall-Petch plot. It is seen that the yield stress-grain
size exponent for relatively large grains appears to
be very close to -0.5 and generally this trend
continues until the very fine grain regime (~ 100 nm)
is reached. With the advent of nanocrystalline ma-
terials whose grain sizes are of nanometer (nm) di-
mensions, the applicability and validity of Eq. (1)
becomes of interest in view of recently compiled
experimental results [19].

A close analysis of experimental Hall-Petch data
in a variety of materials shows three different
regions: (1) a region from single crystal to a grain
size of about a micron (µ) where the classical Hall-
Petch description can be used; (2) a region for grain
sizes ranging from about a µ to about 30 nm where
the Hall-Petch relation roughly holds, but deviates
from the classical -0.5 exponent to a value near zero;
and (3) a region beyond a very small critical grain
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size where the Hall-Petch slope is nearly zero with
no increase in strength on decreasing grain size or
where the strength actually decreases with decreas-
ing grain size. Although some of the measurements
on which the trend discussed above is based on
are not entirely reliable because of a variety of
reasons discussed recently by Sanders et al [20],
the above delineation into three regions is begin-
ning to be accepted.

The specific peculiarities of the grain size de-
pendency of the yield stress in nanocrystalline ma-
terials are definitely caused by their structural pe-
culiarities which are the nano-scale structure and
the extremely high volume fraction of the grain bound-
ary phase. In this context, an adequate theoretical
description of the grain size dependency of the yield
stress in nanocrystalline materials, on the one hand,
will essentially contribute to understanding the fun-
damentals of «structure-properties» relationships in
nano-scale solids and, on the other hand, will serve
as a basis for development of high technologies
exploiting the outstanding mechanical properties of
nanocrystalline materials.

At present, the nature of the deviations from the
conventional Hall-Petch grain size scaling relation
in nanocrystalline materials is the subject of
controversy. In general, theoretical models of the
phenomenon discussed can be divided into the two
basic categories: (i) models describing
nanocrystalline materials as two-phase composites
with grain interiors and boundaries playing the role
as component phases; and (ii) models describing
evolution of defects and grain boundary structures,
with focuses placed on physical mechanisms
(lattice dislocation motion, grain boundary sliding,
diffusion plasticity mechanisms) of plastic flow in
nanocrystalline materials. The models of category
(i) operate with the averaged mechanical
characteristics and volume fractions of the grain-
interior and grain-boundary phases. The models of
the category (ii) deal with the nano-scale effects on
conventional lattice motion and the competition be-
tween various deformation mechanisms and the ef-
fects of a distribution of grain size on this competition
in nanocrystalline materials. The main aim of this
paper is to provide an overview of the theoretical
models of plastic deformation processes in
nanocrystalline materials with the particular atten-
tion being paid to the abnormal Hall-Petch
relationship.

Let us briefly characterize the basic aspects of
the theoretical models describing the grain size
dependency of the yield stress in nanocrystalline
materials. All the models exploit the key structural

peculiarities of nanocrystalline materials – the nano-
scale structure and the high volume fraction of the
grain boundary phase – as input in analysis of the
deformation behavior of such materials. In doing so,
the models of different categories use different theo-
retical methods for a description of plastic deforma-
tion and distinguish different structural peculiarities
as those playing the crucial role in plastic deforma-
tion processes in nanocrystalline materials.

Several models exploit the idea on lattice dislo-
cation motion in grain interiors as the basic defor-
mation mechanism in nanocrystalline materials,
which is modified (compared to that in coarse-
grained polycrystals) due to nano-scale effects. At
the same time, the generic idea of the most models
is that the grain boundary phase provides the effec-
tive action of deformation mechanism(s) in
nanocrystalline materials, which is (are) different
from the lattice dislocation mechanism realized in
conventional coarse-grained polycrystals. In context
of this generic idea, the dominant role of the lattice
dislocation mechanism causes the grain refinement
to strengthen a coarse-grained material (Fig.1a), in
which case a classical Hall-Petch relationship is
valid. At the same time, when the deformation
mechanisms associated with the active role of grain
boundaries effectively come into play (Fig. 1b), the
grain refinement will weaken a specimen; it is the
case of nanocrystalline materials. The theoretical
models under consideration are distinguished by
their identification of the deformation mechanism(s)
inherent to grain boundaries and their description of
the competition between these mechanisms and
the conventional lattice dislocation motion. The fol-
lowing plastic deformation mechanisms commonly
are treated as those associated with the active role
of grain boundaries and the nano-scale structure,
effectively competing with the lattice dislocation
mechanism in nanocrystalline materials: grain
boundary sliding and diffusional mass transfer oc-
curring predominantly via grain boundary diffusion.

The models of nanocrystalline materials as two-
phase composites (models of the category (i)) de-
scribe their yield stress τ and other mechanical
characteristics with the help of the so-called rule of
mixture. In this approach, the yield stress τ of a
nanocrystalline material is some weighted sum
(mixture) of the yield stresses characterizing the
grain-interior and grain-boundary phases, which
strongly depends on the volume fraction of the grain
boundary phase and, therefore, the grain size d.
The yield stress of the grain-boundary phase is as-
sumed to be lower than that of the grain-interior
phase, in which case the rule of mixture describes



�� ����������	
���
����������	��������	��

������������	�
��	
��������������������������

�
��������������������
���������	���	������������	�


��������������	
��
����������������	�	������������

�����	����������������������������	�	�	����������	�

����������

the deviations from the conventional Hall-Petch re-
lationship in accordance with experimental data.
Such models commonly do not take into account
the evolution of defects and transformations of grain
boundary structures, which, generally speaking, are
capable of strongly influencing the deformation be-
havior of a mechanically loaded nanocrystalline
material. The theoretical models based on the “rule-
of-mixture” approach are reviewed in detail in sec-
tion 2.

The theoretical models addressed the physical
mechanisms of plastic flow in nanocrystalline ma-
terials focus on the evolution of defects (lattice dis-
locations, grain boundary dislocations, vacancies)
being carriers of plastic flow and transformations of
grain boundary structures, that accompany defor-
mation processes in nanocrystalline materials. Such
models belonging to the category (ii) often deal with
a direct comparison of the characteristics of these

mechanisms. That is, the plastic deformation
mechanism that requires less yield stress (or en-
ergy) is favoured, in which case the nanocrystalline
material is characterized by yield stress inherent to
the favoured deformation mechanism. A modified
scheme of estimate of the yield stress is suggested
in the approach taking into account a distribution of
grain sizes occurring in most nanocrystalline speci-
mens. This approach exploits the idea on the si-
multaneous action of various deformation mecha-
nisms in various local areas of a mechanically loaded
nanocrystalline material, depending on the grain size
in such areas. In doing so, one operates with aver-
aged (over a distribution of grain size) mechanical
characteristics of nanocrystalline materials. We in-
clude into the category (ii) also the computer mod-
els describing physical mechanisms of plastic de-
formation in nanocrystalline materials and transi-
tions from one to another deformation mechanism,
occurring with reduction of the grain size d. All the
above models are considered in section 3 of the
review. Section 4 contains concluding remarks.

2. “RULE-OF-MIXTURE”’ APPROACH
TO HALL-PETCH RELATION FOR
NANOSTRUCTURED SOLIDS

The “rule-of-mixture” approach has become one of
the widely spread ways to describe the Hall-Petch
relation for nanostructured solids. The main idea of
the simplest rule of mixture is that to estimate some
macroscopic physical quantity which would describe
a complex solid as a whole, they use an overall
value equal to the sum of appropriate quantities for
separate parts of the solid multiplied by volume frac-
tions of the solid parts. More exact (but more
complicated) rules of mixture take into account the
geometry of mutual distribution of components within
the solid as well as some their properties. Such
theories of “effective’’ macroscopic overall proper-
ties are mostly developed in the science of composite
materials (e.g., see [21,22]).

Kocks [23] probably was the first who decided
to use the analogy between usual polycrystalline
solids and composite materials. Indeed, disregard-
ing mutual misorientations of grains, one can
consider a polycrystalline solid as a composite
which consists of single-crystalline matrix and
intercrystalline layers (inclusions). Assuming the
bulk areas of grains (matrix) are characterized by
the yield stress τG while the boundary layers of thick-
ness t by the yield stress τ

B
, Kocks [23] used the

rule of mixture and obtained the following estimate
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τ τ τ τ
y G B G

t

d
= + −

4
( )  (2)

for the yield stress τ
y
 of a polycrystalline solid with

grain size d. Obviously, the Hall-Petch relation is
not attributed to the model [23] because Eq. (2)
gives τ

y 
~ d -1 instead of the usual Hall-Petch law, τ

y

~ d-1/2. It is worth noting, however, that this is true
until the quantities τ

G
 and τ

B
 are treated as constants

which do not depend on the grain size d themselves.
We will consider below some models where this
assumption is not satisfied at all or it is satisfied for
τ

B
 only. As was noted in the review [24], the Kocks’

model [23] may only be correct for polycrystalline
materials with very small grains. Really, Jang and
Koch [25], trying to find the source of the spread in
the results they obtained, discovered that the
microhardness of nanocrystalline iron may follow
the d -1 dependence as well as the d -1/2 dependence.

Kocks’ idea to represent a polycrystalline mate-
rial as a composite of a crystalline matrix with in-
clusions of intercrystalline layers was developed in
the work by Gryaznov et al [26] aimed to obtain a
generalized empirical analogue of Hall-Petch law and
explain the reasons of its breaking for small grain
sizes. Some deviations of the τ

y
(d) dependence from

the usual Hall-Petch law were already observed in
early experiments on microhardness measurement
for nanocrystalline materials. For example,
microhardness-test experiments performed with
nanocrystalline Ni [27, 28], TiO

2
 [29-31], Cu [28,

32-34] and copper alloys [35], Pd [32-34], Co [28],
Fe [25, 36], Ag [37, 38], Ti-N [39] and Ni-Al [40]
alloys, as well as multiphase alloys [41, 42] showed
that only the 2-to-7-fold (for pure metals) and 2-to-4-
fold (for multiphase alloys) increase in the yield
stress τ

y
 is observed for real materials instead of

the hundred-fold increase in the value of τ
y
 that is

expected from the usual Hall-Petch law for materi-
als with d as small as 10 nm. These experiments
demonstrated that the value of τ

0
 describing the

lattice friction in the Hall-Petch relation, can increase
[25], and the value of the Hall-Petch coefficient K
can decrease [25,33] or even change sign [32, 36,
41-47].

Ten years ago, practically, there existed no theo-
retical models of the processes capable to lead up
to the effects observed. Information on structure and
properties of nanocrystalline materials and grain
boundaries was very inconsistent. The question was
actively discussed whether one should treat the state
of material in grain boundaries as a new state of
matter which can not be considered as crystalline
or amorphous [48-54] because the state demon-

strated the total absence of even short translational
order which is characteristic for both the amorphous
and quasicrystalline states. In such a situation, when
authentic data on the structure and mechanisms of
plastic deformation in nanocrystalline materials were
absent, it was decided to develop a generalized
empirical analogue of Hall-Petch law which would
allow for the yield characteristics of the materials of
nanograins and intergranular layers, without dwell-
ing on the particular physical processes that deter-
mine the yield stress in such materials [26].

Following Kocks [23], represent a nanocrystalline
material as a composite of a single crystalline ma-
trix with inclusions of intercrystalline layers. The
experimental value of the ratio of typical sizes of
crystallites and interfaces is large enough to
consider the interfaces in the matrix as thin plates
which are chaotically placed and oriented. As all
the possible orientations of the inclusions are equally
probable, a medium with isotropic effective proper-
ties can be considered. Representing the inclusions
by oblate ellipsoids, the effective shear modulus G
of such a composite can be obtained [21]

G G c
G G G G

G
m

m i i m

i

= +
+ −

+

η

η

� �( )

( )
,

1
 (3)

where G
m
 is the shear modulus of the matrix, G

i
 is

the shear modulus of the inclusion (interface), η =
0.5[1+3/(4-5ν

i
)], ν

i
 is Poisson’s ratio of the inclu-

sion, and c is the volume fraction occupied by inclu-
sions (c << 1).

Equation (3) was obtained under the assump-
tion that the matrix and the inclusions are elastic;
no reservations were made about the ratio of their
moduli [21]. It commonly occurs [55] that the yield
stress of a crystalline material is in direct propor-
tion to its shear modulus. Assume that the yield
stress of the matrix, τ

m
, of the inclusions, τ

i
, and

the effective yield stress of the composite, τ
y
, are

linearly connected with the corresponding shear
moduli

G Q

G Q

G Q

m m m

i i i

y

=

=

=

τ

τ

τ

,

,

,
 (4)

where Q, Q
m
 and Q

i
 are dimensionless factors. Ad-

ditionally, assume that the values of τ
m
 and τ

i
 are

connected with the typical structure period d
corresponding to the grain size of the nanocrystalline
material by the following Hall-Petch-type relation-
ships:
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τ τ

τ τ

m m m

k

i i i

K d

K d

= +

= +

−

−

* /

* /

,

,

2

2�
 (5)

where superscripts k and � are integers.
It can easily be shown (for example, for the cube-

shaped grains) that the volume fraction of the inclu-
sions may be estimated as c ≈ 3δ/d, if the thick-
ness δ is much less than the distance d between
the interfaces. Then substituting (4) and (5) into (3),
the following empirical dependence of the effective
yield stress of the composite on the typical struc-
ture-size d is obtained [26]
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The next step is to choose the values of k and �.
In this case one must proceed from the specific
physical mechanism that determines the yield stress
in each of the phases in a particular situation. As-
sume that τ

m
 and τ

i
 are governed both by the stress

in the heads of the dislocation pile-ups set against
the matrix-inclusion boundary from the matrix side
(Fig. 1a) and by the stress of the pile-ups in the
“very intergrain” layer (Fig. 1b). The latter pile-ups
provide a mechanism of intergrain sliding. The typi-
cal dimensions of pile-ups of both types are about
d. This means that values of k = � =1 may be chosen
to get the usual Hall-Petch law for both the matrix
and the inclusion.

Now consider how the quantities τ
m

* , τ
i

* , K
m
 and

K
i
 are related to each other. If the main distinction

of the interfaces from the crystallites is the low
atomic density of the former, it seems reasonable
to assume that τ

i

*  ≈ qτ
m

*  and K
i
 ≈ pK

m
, where q and

p are dimensionless constants smaller than 1. Evi-
dently, the lower the atomic density of the inter-
face, the smaller the values of q and p.

Finally, for the sake of simplicity take Q ≈ Q
i
 ≈

Q
m
. Than (6) can be easily reduced to the form [26]

τ τ

η

δ
τ

η η τ

η η

η η η η τ

y m m

m m

m

m

m m

K d

d
q d pK d

q q d

p p K

q p p q K d

= + −

+
+ ×

− − + +

− − + +

− − + − − +

−

−

* /

* /

*

* /

[ ( )]( )

[ ( )]

[ ( ) ( )] .

1 2

1 2 1

2

2

1 2

3

1

1 1

1 1

2 1 1

� �

�

�

 (7)

Consider in greater detail the third term on the
right-hand side of (7) which is accounted for by the
fact that an interface is treated as an interlayer of
finite thickness with its own elastic and plastic
characteristics. Taking Poisson’s ratio to belong to
the interval 0.2-0.4 gives the following estimate for
the value of η: 1 ≤ η ≤ 1.25. For simplicity, take η ≈
1. Hence, the atomic density of boundaries may
amount for up to 70% [56-58]. At such densities
the main mechanical properties of the material (the
Young’s modulus, the yield stress, the fatigue
stress) are known to be 4-5 times worse than the
characteristics of the compact body [59]. Therefore,
one can estimate q ≈ p ≈ 0.2.

For these values of parameters η, q and p the
third term in (7) turns out to be positive and is sub-
tracted from the value of τ

m
. As expected, the low-

density interlayers lower the yield stress of the
composite. Using the above estimates for η, Eq. (7)
can be expressed in its simplest form

τ τ
δ

y m m
K d

q

q d
= + −

−− �
�	
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2

1
1 3

2
� �  (8)

Evidently, when such a dependence is plotted in
τ

y
-d -1/2 co-ordinates, the straight line in the usual

Hall-Petch law will remain straight only at large d or
else as q → 1. At q <1 its slope will gradually de-
crease with decreasing grain dimension down to
some critical size d

c1 
 where the effective Hall-Petch

factor will change sign. The critical size d
c1

 can easily
be found from the condition ∂τ

y
/∂(d -1/2) = 0. This

equality can be reduced to the following equation

( )

( )

( )
.

/

*

*

d
K

q

q

q

q K

c

m

m

m

m

1

1 2

2

2 2

2

3

1

3

2

1
1

1

2

− = − +

−
+

−

τ

δ

τ δ  (9)

Substituting the usual values for parameters τ
m

* /
K

m
 ≈ 1 ÷ 100 mm-1/2 and δ ≈ 1 nm, the following
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estimate for the critical grain size d
c1

 is obtained
[26]:

d
q

q K

q

q
c

m

m

1

2 2
1

9
1

2
1 2

1

2
≈

−
−

−�

�	



��

−

δ
τ δ* ( )

. (10)

Fig. 2 presents the family of curves d
c1

 (q)
calculated according to (10) at δ =1 nm for Ti [60],
Cu [32], Fe [61], Ni [24] and Ag [62]. The
corresponding values of the ratio τ

m

* /K
m
 are 55.46,

26.26, 8.14, 4.35 and 3.91 mm-1/2, respectively. The
dashed line is calculated according to the approxi-
mate formula d

c1 
≈ 9δ (1-q2)/(2q) which may be used

for estimating d
c1

 in practically any material. At q
=0.2, this expression yields the grain size d

c1
 ≈ 22δ

= 22 nm which corresponds to the volume fraction
of boundaries c ≈ 0.12.

Experimental values of d
c1

 are very spread for
different materials produced by different technolo-
gies. In papers [41,63-66], the values 8 [63], 11 [64-
66], 25 [65, 66] and 45 nm [41] were reported. It is
worth to note that the first value was observed in the
electrodeposited nanocrystalline Ni-1.2% P alloys
with very low porosity, while the others were attrib-
uted to multiphase materials produced by annealing
of amorphous alloys. The authors of [41, 63] directly
connected the microhardness decrease for small d
with nanopores which were mainly distributed along
grain boundaries and their triple junctions.

Equation (8) can be used to determine the other
critical grain size, d

c1
, at which the yield stress of a

composite becomes equal to the friction stress in
the matrix, i. e., τ

y
 = τ

m

* . This critical size turns to
be equal to [26]

d
q

q

d
c

c

2

2

13

2

1

3
≈

−
≈δ .  (11)

For example, δ = 1 nm and q ≈ 0.2 give d
c1 

≈ 7 nm.
Calculating the volume fraction of interface phase
on the more precise, than the former, formula c ≈
3dδ/(d+δ)2 results in c ≈ 0.33 for such grain size.

Equation (8) turns out to agree pretty well with
the different and apparently contradictory experimen-
tal data. For example, compare the results of the
above calculations with the data from Chokshi et al
[32] and Jang and Koch [25]. Rewriting (8) in terms
of the microhardness H and substituting the values
of Hm and Km corresponding to coarse-grained Cu
[32] and Fe [61] the families of curves, H(d-1/2), are
obtained (see Fig. 3) for different values of q. The
results given in [32] are seen to be in good agree-
ment with the descending portion of the curve

H(d -1/2), the difference from the calculated values
amounting up to 25-45% at q=0.2 (Fig. 3a). A quali-
tatively different increasing curve H(d -1/2) [25] fits well
between the calculated curves for q=0.8 and q=0.9
(Fig. 3b). The difference in dependences of H on
d -1/2 obtained in [32] and [25] seems to be caused
by the fact that the measurements were carried out
with samples in different states of grain boundaries
[26]. The measurements in [32] were performed for
a nanopowder-based, as-compacted, copper
sample. The boundaries of the nanocrystallite grains
in the sample thus produced correspond to the sur-
face of the as-synthesized copper particles in the
pre-compaction sample. Evidently, such a proce-
dure of producing a nanocrystalline material prede-
termines the low atomic density of boundaries (which
increase as the internal stresses in the sample re-
lax). The authors of [25] measured the
microhardness of separate polycrystalline particles
(with sizes ≤ 1 µm) consisting of nanocrystallites.
In this case interfaces are formed from the walls of
dislocation cells generated during the ball-milling
process. It is clear that such a procedure produces
nanocrystalline iron in which the atomic density of
boundaries is significantly higher than in the former
case (according to Fig. 3b it should differ from the
normal value by about 5-7%).
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Therefore, the authors of [26] showed that de-
pendences of τ

y
 and H on d -1/2, for sufficiently small

grains, can differ from the Hall-Petch relation but
still be consistent with experimental data. The
contradictions arising on comparison of experimen-
tal results obtained by different authors can be
resolved in the framework of the above approach. It
was concluded [26] that the type of deviation from
the Hall-Petch law is determined by the atomic den-
sity of the interfaces and the range of nanocrystallite
sizes under study (d < d

c1
 or d > d

c1
).

Similar calculations based on using the rule of
mixture, were carried out in works [67-71]. The main
differences were that for describing the yield stress
or microhardness of the intergranular phase, they
chose the data for amorphous materials of close
chemical composition [67-70] and accounted for the
possibility that wedge disclinations may exist in
nanocrystallites [67, 68] or at the triple junctions of
grain boundaries [71]. Such models were supported
by the following two reasons. First, the studies of
grain boundary structures in nanocrystalline materi-
als showed by the end of eighties [48-54] that the
atoms in grain boundaries are in a totally disordered
state. Therefore, they assumed that the character-
istics of the intergranular phase would be close
enough, as a first approximation, to the properties
of the corresponding amorphous material. Second,

by the same time, first metallic glass-nanosrystal
composites with Fe-Cr-B and TiNi alloy composi-
tions [72-74] were synthesized at special regimes
of high-pressure treatment [72,73] and rapid cool-
ing [74]. These composites consist of
nanocrystallites divided by amorphous interface, in
which case the volume fractions of the nanocrystallite
and amorpous phase are close. Concerning the
disclination-like defects, many authors have dis-
cussed their role and behavior in structure of
amorphous and nanocrystalline materials (e.g., see
[75-78]) as well as in highly deformed polycrystal-
line metals [79]. Let us consider a model [67,68]
where the simplest rule of mixture was used to es-
timate the yield stress of a metallic glass-
nanocrystal composite with account for the influence
of wedge disclinations.

Let the model composite structure be
nanocrystallites which are uniformly distributed in
amorphous matrix. Assume some part of the
nanocrystallites contains wedge disclinations. Un-
der the conditions of uniaxial tension, the simplest
rule of mixture for the yield stress of such a
composite then reads [67,68]:

τ τ τ τ
y am cr d

f g h= + + ,  (12)
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where τ
am

 is the yield stress of amorphous
interlayers, τ

cr
 is the yield stress of a nanocrystallite

without disclinations, τ
d
 is the yield stress of a

nanocrystallite with one or more disclinations, and
f, g and h are the volume fractions of the above
mentioned components (f+g+h=1).

Assume that τ
am

 is constant and does not de-
pend on the mean size of nanocrystallites while τ

cr

satisfies the Hall-Petch relationship: τ
cr
=τ

cr

0 + Kd-1/2,
where τ

cr

0  is the lattice friction and K is the Hall-
Petch coefficient. The term τ

d
 is determined by the

following equations

τ
τ τ τ

τ τ τd

cr cr

cr

=
>

<



�
�

, if ,

, if .
 (13)

Here a new parameter τ is introduced which is the
shear stress necessary for the motion of an edge
dislocation intersecting an immobile wedge
disclination. It is thus believed that the yield stress
of a nanocrystallite with disclinations is either de-
termined by its small size through the Hall-Petch
law for τ

cr
 or by the threshold stress τ [80], depend-

ing on which one of them, τ
cr
 or τ, is higher. The

latter may easily be estimated from a balance of
forces acting on the dislocation after the act of its
intersection with the wedge disclination. This results
in τ =|F|/(bd), where b is the Burgers vector of the
dislocation, and the force F is given by [80]

F x D b L
b

b

L b b b

b

b

b b b

( )
( )

ln
( )

( )

ln
( )

.

= − +
+

+
− −

−
+

−
+ +

+
+

+ +

+ + − −
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Here x denotes the distance passed by the disloca-
tion after it has intersected the disclination, D =
G/[2π(1-ν)], ω is the disclination power, 2L the
disclination length (in the given case this length is
approximately equal to the nanocrystallite diameter;
2L ≈ d), �

1
= x-ω b and �

2
 =x + b.

The force F(x) reaches its maximum when x=2b.
In this event, �

1
=(2-ω)b and �

2
=3b. Then, in examin-

ing a dislocation-disclination intersection in a
nanocrystallite with diameter d >> b, one can find L
=d/2 >>�

1
, �

2
. In this situation the only term in r.h.s.

of (14), which is proportional to L, provides the ba-
sic contribution to the maximum force F(x=2b). With
only this contribution taken into account, the result
for τ is as follows [67,68]:

τ
ω ω ω

ω ω
≈

− −

− −

D 2 2

6

9

2 3( )( )
.  (15)

Let us estimate the value of the yield stress σ
y
 =

2τ
y
 for the metallic glass-nanocrystal Fe-Cr-B

composite studied in [74]. Being in ignorance of
appropriate numerical values for the given alloy, we
used in [67,68] the data taken for a pure iron. So,
the shear modulus G ≈ 90 GPa [81] allows to esti-
mate σ

am
= 2τ

am
 ≈ G/25 ≈ 3.5 GPa. The Hall-Petch

parameters σ
cr

0 =2 τ
cr

0 ≈ 66 MPa [61] and K’=2K≈
26447 MPa.nm1/2 [61] lead for d ≈ 10 nm to σ

cr 
= 2τ

cr

≈ 8.3 GPa. Substituting G ≈ 90 GPa, ν ≈ 0.3 and ω
≈ π/6 - π/4 to (15) results in 2τ ≈ G/21-G/8 ≈ 4.3-
11.3 GPa. Then it follows from (13) that σ

d
=2τ

d 
≈

8.3-11.3 GPa. Assuming that the nanocrystallites
are packed very closely, as was in [74], one can
take the volume fractions as f =0.4, g=0.5 and h=0.1.
With all the above mentioned values, Eq. (12) gives:
σ

y
 =2τ

y
 ≈ 6.7 GPa. We represent here the upper es-

timate of σ
y 
 because the data for the real Fe-Cr-B

alloy must be rather higher than those taken for a
pure iron. Experiments [74] showed that metallic
glass-nanocrystal composites are specified by the
low plasticity, in which case their yield stress σ

y
 is

close to the strength σ
b
 ≈ 6-6.5 GPa. Thus, the value

obtained within the framework of the model [67,68]
is close to that revealed experimentally in [74].

One can conclude that the model of metallic
glass-nanocrystal composites [67,68] which allows
for the presence of disclinations in a part of
nanocrystallites, permits to explain unusually high
mechanical properties (the microhardness, yield
stress and strength) of such materials. The main
reasons for significant increase of the properties with
respect to those of usual homogeneous metallic
glasses are high properties of nanocrystallites them-
selves due to their small dimensions and the role of
disclinations as obstacles for dislocation motion in
nanocrystallites, and very high concentration of
nanocrystallites in amorphous matrix.

A very similar model which did not, however, take
into account the role of disclinations, was proposed
later by Carsley et al [69] to describe the
microhardness of nanocrystalline materials. They
wrote the rule of mixture (12) at h = 0 in terms of
microhardness as follows [69]:

H
d

d
H d

d d

d
cr

=
−

+ +

− +

−

�
�


�

( )
( )

,

/δ
β

δ δ δ µ

3

3 0

1 2

2 2 3

3

3 3

12

 (16)
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where H is the microhardness of the nanocrystalline
material as a whole, H

0
 and β are the appropriate

Hall-Petch constants of a nanocrystallite, and µ
cr
 is

its shear modulus. To obtain Eq. (16), the relations
H

0
 = 3σ

f0
(ε = 8%) and β=3β’(ε =8 %) were taken

from [82] and used which connect the constants H
0

and β with the corresponding parameters for the yield
stress. As the properties of the intergranular phase
were treated as those of the appropriate metallic
glass, its microhardness H

gb
 was supposed to be

constant and approximately equal to 1/6 the shear
modulus µ

gl
 of the metallic glass [83-85] while the

latter was approximated as half that of the crystalline
metal, µ

cr
/2.

Equation (16) was analysed in [69] with experi-
mental values for parameters attributed to nickel
[27,86], iron [87] and copper [88]. The thickness of
grain boundaries was chosen as 1 nm. The H(d -1/2)
plots demonstrate linear portions in the field d > 25
nm with following deviations from the linearity for d
< 25 nm. Near the point d ≈ 5 nm, the curves achieve
maximum values and decrease further at d < 5 nm
approaching the constant level of the microhardness
calculated for the metallic glass. Comparison with
the experimental data for nickel [27,86], iron [87]
and copper [88] showed that the model by Carsley
et al [69] correctly predicts the general shape of the
H(d -1/2) curves for all three metals, and well corre-
lates the measurements with nickel and iron. In
these cases, the experimental points are close to
the rising branches of the curves. For copper, how-
ever, the curve goes above the experimental points
and achieves the magnitude of about 4 GPa that is
1.5-2 times higher than the maximal measured val-
ues. Moreover, the position of the maximum at the
theoretical curve (d ≈ 5 nm) as well as the position
of its dropping branch (d < 5 nm) turn out to be
severely shifted to the field of small grain sizes, in
contrast to the experimental points [32,89] (the ob-
servations [41, 63-66] carried out later, have also
testified to this misfit). It is the authors’ opinion [69]
that the possible reason for such a discrepancy is
that they did not take into account the residual po-
rosity of nanocrystalline copper. Let us remind that
this point was treated as the key factor in the model
by Gryaznov et al [26] in considering the differences
between the τ

y
(d -1/2) curves for iron [25] and copper

[32].
One more similar model was proposed by Kim

[70]. Like in works [67-69], the properties of the in-
tergranular phase were described as those of the
metallic glass. However, in discussing the proper-
ties of nanocrystallites, Kim [70] used the conclusion
by Wang et al [90] about the existence of a critical

nanocrystallite size d
c
 at which usual dislocation

mechanisms of plasticity and strengthening stop to
work. Accordingly, they believe that the Hall-Petch
relation is true for only the case of d ≥ d

c
, while in

smaller grains (d ≤ d
c
), there is no strengthening

effect and the regime of ideal plasticity is realized
when the microhardness is constant and does not
depend on the grain size. The numerical estimates
of the critical size d

c
 made by Wang et al [90] and

represented in [70], are rather spread as 1.2 nm <
d

c,Al
 < 59.3 nm, 1.7 nm < d

c,Cu
 <  39.4 nm, 1.3 nm <

d
c,Ni 

< 25.6 nm and 1.8 nm < d
c,Pd

 < 75.3 nm.
In agreement with the above assumptions, the

rule of mixture for the microhardness of a
nanocrystalline material was chosen as follows [70]:

H
H d f H f d d

H d f H f d d

cr ic cr c

C cr ic cr c

=
+ + − ≥

+ + − ≤

−

−
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β

β
 (17)

where H
ic
 is the microhardness of the intergranular

phase and f
cr

 is the volume fraction of
nanocrystallites. The calculations were carried out
with the same three metals (Ni, Fe and Cu) as in
work [69], with the same values of parameters. The
critical grain sizes were taken for nickel and copper
as is shown above, and the estimate 3.4 nm was
chosen for iron [91]. It is rather natural that using
the low limits of the ranges for d

c
, Kim [70] obtained

practically the same H(d -1/2) curves as the authors
of [69] did, which have the characteristic maximums
at d =d

peak
≈ 3 –4 nm. The maximum condition gives

[70]

d H H

H H

peak ic

ic

= − +

− +

�
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�
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3

3
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0

0

2

δ

β

δ

β
δ

( )

( ) ,
 (18)

and the numerical estimates are d
peak

 ≈ 2.9 nm (Cu),
3.9 nm (Ni) and 4.3 nm (Fe). Until d

c
 < d

peak
, the

shape of the H(d -1/2) curve having both the maxi-
mum point and dropping branch (for d < d

peak
) is

conserved. However, if one takes d
c
 > d

peak
, the curve

shape drastically changes in the field d ≤ d
c
 where

the curve has a break (the slope decreases with a
jump) at the point d = d

c
 and then rises monotonously

with decreasing grain size. The model [70] thus pre-
dicts the two qualitatively different shapes of the
H(d -1/2) curve depending on the value of the critical
grain size. Both of them, however, demonstrate sig-
nificant deviations from the usual Hall-Petch law in
the field of nanoscopic grain sizes.
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The theoretical H(d -1/2) curves of [70] are in good
accordance with the experimental data for Ni [27,86]
and Fe [25] as is the case with the work [69]. For
copper [32,92-94], however, the experimental points
of [94] are only close to the curve. All other experi-
mental points lie much lower of the curve calculated.
As the authors of [69], Kim [70] explained the
reasons of the discrepancy by the necessity to ac-
count for the residual porosity of nanocrystalline
materials.

Basing on the results reported in papers [67-
70], one can conclude that the description of the
properties of the intergranular phase through the
properties of an appropriate metallic glass seems
to be correct in those only cases when they consider
either really metallic glass-nanocrystal composites
[67,68] or the nanocrystalline materials with rather
large (larger than ≈ 20 nm) grain sizes [69,70]. Use
of this approach in models of the nanocrystalline
materials with small (near or smaller than ≈ 20 nm)
grain sizes results in over-estimating of the yield
stress or microhardness and in shifting of their maxi-
mal values to the field of very small (near or smaller
than ≈ 5 nm) grain sizes [69,70]. The authors of
further works [71,95] either withdrew the idea to use
the properties of metallic glass in modeling those of
the intergranular phase [71] at all, or took for this
not a constant value of the yield stress of metallic
glass as in [67-70] but a variable quantity [95] (more
precisely, it was taken constant in the region of large
grain size but then sharply decreasing in proportion
with decreasing grain size). Let us consider these
latest results.

Konstantinidis and Aifantis [71] took the rule of
mixture which is completely similar to Eq. (16) or to
the first line of Eqs. (17). The only difference was
the assumption that the microhardness of the inter-
granular phase also satisfies the Hall-Petch relation
with its effective parameters H

0GB
 and β

GB
 (this is, in

fact, the limiting case of the model by Gryaznov et
al [26]). For simplicity, the authors [71] assumed
that H

0GB
=H

0
, i. e., the friction stress was supposed

to be equal for both the intergranular and crystallite
phases. In its turn, β

GB
 was estimated as the Hall-

Petch β coefficient multiplied by a factor which would
allow for the presence of obstacles for dislocation
glide within grain boundaries. As the obstacles, the
triple junctions of grain boundaries were considered,
including those of them which contain triple line
disclinations. Within the approximation of line ten-
sion for dislocations, the following estimate was
obtained [71]:

β β
ϑ ϑ

GB

c
d

r

d

r
= ln / ln ,

'

0 0

 (19)

where ϑ is a numerical factor less than one (the
ratio of the radius of curvature of a slightly curved
dislocation line to the grain size), r

0
 is the radius of

the dislocation core, d
c
’ is the critical grain size,

such as for d<d
c
’, the dislocation glide is no longer

prohibited by the line tension and dislocations by-
pass obstacles by Orowan’s mechanism. The final
expression for the microhardness of a
nanocrystalline material then reads [71]:

H H
d

d

d d

d

d

r

d

r
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The authors [71] carried out a detailed
comparison of their H(d -1/2) curves corresponding to
(20) with the data of many experimental
measurements which were available to that time.
The curves were drawn for a number of
nanocrystalline materials (Cu, Fe, Pd, Ti, Ni) and
intermetallics (NiP, NiZr, TiAl, Nb3Sn, FeMoSiB,
FeCoSiB, FeSiB, PdCuSi). The fitting parameter ϑ
which varied from 0.0065 (for FeMoSiB) to 0.4 (for
Fe), was used to fit the theoretical curves for the
experimental points. In all cases, the accordance
is good enough. As a result, the calculated values
of the microhardness achieve their maximum at the
critical grain size d’

c
 which vary with different mate-

rials, from 6 nm (for Fe) to 50 nm (for FeMoSiB). It
was shown that the microhardness of several met-
als (Cu, Pd) and of all the intermetallics under
investigation starts to drop with further decreasing
of grain size.

Thus, significant deviations of the microhardness
from the Hall-Petch law and its decrease in the region
of small grain sizes is explained in [71] by pecu-
liarities of the interaction of dislocations gliding along
the grain boundaries, with the obstacles which are
there. The critical grain size in the model [71] is
that one at which the interaction mechanism
changes from the dislocation pinning to Orowan
bypassing. The maximal microhardness of a
nanocrystalline material is then achieved at the
critical grain size.

The rule of mixture approach has been used also
in models [90, 96] of the abnormal Hall-Petch
relationship in nanocrystalline materials. Wang et
al [90] have elaborated a model describing a
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nanocrystalline material as a composite with the
crystallites, grain boundaries, their triple junctions
and quadruple nodes playing the role of constitute
phases. The model [90] led to a third order polyno-
mial for the grain size dependence of the yield stress,
which accounts for experimental data. Ovid’ko [96]
has demonstrated that grain boundaries of nano-
scale length are more often quasiperiodic than peri-
odic (see also paper [97]), in which case they ex-
hibit enhanced plastic properties. Following the
model [96], quasiperiodic tilt boundaries are capable
of effectively contributing to the experimentally ob-
served abnormal Hall-Petch relationship in
nanocrystalline materials.

A further and very substantial development of the
rule of mixture approach was given by Kim et al
[95]. In describing the properties of nanocrystallites,
they introduced the evolution of dislocation density
and the diffusion creep, while the model of diffusion
flow was considered as the mechanism of grain
boundary plasticity. The rule of mixture was written
in the simplest form

σ σ σ= + −
cr cr ic crf f( ),1  (21)

where σ
cr
, σ

ic
, and σ denote, respectively, the stress

in nanocrystallites, in grain boundaries, and the over-
all stress in the nanocrystalline material. The
calculation of σ

cr
 and σ

ic
 was evaluated using the

assumption that the strains in both phases are the
same and are equal to the macroscopic applied
strain.

In a crystallite, three mechanisms of plastic de-
formation were considered [95] to contribute to the
total deformation behavior which are: (i) the disloca-
tion glide mechanism; (ii) the lattice diffusion mecha-
nism in which the vacancies diffuse through the bulk
of the crystallite; and (iii) the boundary diffusion
mechanism in which the vacancies diffuse along the
crystallite boundaries. These mechanisms were
postulated to contribute to the total crystallite de-
formation simultaneously. For monotonic uniaxial
loading, the total strain rate was assumed to be
separable into elastic and plastic components. The
total plastic strain rate εp was written as a superpo-
sition of the contributions from the individual mecha-
nisms (i)-(iii) [95]:

� � � � ,
, , ,

ε ε ε εp

c u

p

c b

p

c

p= + +
�

 (22)

where the subscript c refers to the crystallite phase
and u, b and � stand for the deformation mecha-
nism, i.e., the dislocation glide described within a
dislocation density-related unified constitutive model

[98], boundary diffusion mechanism and lattice dif-
fusion mechanism, respectively.

The first term in (22) is determined through the
following system of three equations [95,98]:

� � ( / ) ,
, *

/ε ε σ σ
c u

p m mZ= −
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2  (23)
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Equation (23) gives a relation between the equiva-
lent (von Mises) plastic strain rate �

,
ε

c u

p  associated
with the unified constitutive model of a crystallite,
and the equivalent stress σ. Here Z is the disloca-
tion density normalized by its initial value. The quan-
tity σ

0
 is related to the initial dislocation density.

The exponent m is stress independent for a face-
centred cubic (f.c.c.) metal. The parameter �

*
ε  is a

constant normalization factor with units of strain rate.
Equations (24) and (25) describe the evolution of
the dislocation density with the equivalent (von Mises)
plastic strain rate �

,
ε

c u

p . The parameters C, C
1
, C

20
,

σ
0
, �

*
ε  and �ε

0
 were considered constant for f.c.c.

metals at low temperatures. The exponents m and
n are inversely proportional to the absolute tempera-
ture T and were also considered constant for a given
temperature T.

The plastic strain rate of a crystallite associated
with the lattice diffusion mechanism (Nabarro-Herring
creep) is given by

� exp ,
,

,ε
c

p d

sd

d

kT

D

d

Q

kT
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� �= −��


�14 0
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Ωσ
 (26)

and that associated with the grain-boundary diffu-
sion mechanism (Coble creep) by

� exp .
,

,ε π
δ

c

p bd
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D

d

Q

kT

bd
sd

�
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 (27)

Here k is the Boltzmann constant, Ω is the atomic
volume, Q

�d
 is the activation energy for lattice self-

diffusion, and Qbd is the activation energy for bound-
ary self-diffusion. The pre-exponential factors D

�d,0

and D
bd,0

 refer to the lattice diffusion and grain-bound-
ary diffusion, respectively.

It is worth noting that in [95] (as before in [70]), a
critical grain size d

c
 (≈ 8.2 nm for Cu [90]) was intro-

duced such as the dislocation glide mechanism of
plastic deformation works in large enough nano-

.

sd

sd
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crystallites with d>d
c
. In smaller nanocrystallites,

only the diffusion mechanisms were considered to
be active.

In describing the deformation behavior of the in-
tergranular phase, the authors [95] believed that the
plastic deformation is associated with diffusional
mass transport along the boundaries at small grain
sizes, while at large grain sizes, the grain-bound-
ary interlayers behave like a metallic glass under
the homogeneous deformation. Accordingly, the
strength of the intergranular phase was assumed to
increase up to an upper limit and then to stay at
that level as the grain size increases. This upper
limit was set to be the strength of the material in
the amorphous state. The minimal grain size which
corresponds to this upper limit as well as the val-
ues of the yield stress are determined by the strain
rate of the intergranular phase [95],

�
( )

,ε
σ δ

bd

b bd

sd

kT

d D

d
=

−Ω 2
3

 (28)

where Ω
b
 is the atomic volume in the grain bound-

ary, σ is the component of the local stress normal
to the boundary, and D

bd
 is the coefficient of self-

diffusion within the grain boundary.
It was specially noted [95] that in the model un-

der consideration, the same grain boundaries were
regarded as “channels” for material flow of two phase:
the boundary phase itself and the crystallite. In other
words, two separate flows co-exist in one such
“channel”. One of the flows provides the boundary
diffusion in crystallites and the Coble creep mecha-
nism while the other flow is responsible for the plas-
tic deformation of the grain boundaries.

The model of [95] was analysed with the data for
nanocrystalline copper. The yield stress was deter-
mined for the crystallite phase by substituting (22)
with (23)-(27) to the usual governing equation of the
theory of plasticity, and for the intergranular phase
from the expression (28). The overall yield stress of
the nanocrystalline material was calculated with the
rule of mixture (21). The stress-strain curves and
the 0.2 % offset stress σ

0.2
 for the crystallite phase

were studied in wide ranges of grain sizes (from 10
nm to 1000 nm) and of strain rates (from 10-5 s-1 to
10-3 s-1). As the grain size diminished, the stress
σ

0.2
 firstly increased, achieved its maximal value and

then decreased. The deviations of the σ
0.2

(d -1/2) curve
from the usual linear Hall-Petch law began as earlier
as the strain rate was smaller. Accordingly, the
maximal value of the stress σ

0.2
 was smaller and

achieved earlier (from ≈ 300 MPa at d ≈ 100 nm and
�ε  =10-5 s-1 to ≈ 600 MPa at d ≈20 nm and �ε=10-3 s-1).

The investigation of the relative contributions of dif-
ferent mechanisms (the dislocation glide, the bound-
ary and lattice diffusion) to the strain rate of
nanocrystallites showed that the contribution of the
lattice diffusion may be neglected in any practical
case. At small grain sizes, the boundary diffusion
is a dominant deformation mechanism, while in
coarse grains, the strain rate for the dislocation glide
mechanism dominates completely. The relative
contributions of the dislocation glide and the bound-
ary diffusion mechanisms become equal at approxi-
mately 16 nm (for �ε  =10-3 s-1) and 55 nm (for �ε =10-5

s-1). In accordance to this analysis, the σ(ε) curves
demonstrated usual deformation strengthening of
crystallites with sizes of 100 nm and 1000 nm,
where the contribution of the dislocation glide
mechanism still dominates, and the complete ab-
sence of the strengthening in nanocrystallites with
sizes of 10 nm, where the Coble creep by the bound-
ary diffusion prevails.

A comparison of the overall σ(ε) and σ
0.2

(d -1/2)
curves [95] with the results of experiments [20, 34,
94, 99, 100] carried out with samples of poly- and
nanocrystalline copper having low porosity showed,
in general, a good agreement, although the model
[95] gives sometimes quite overestimated or under-
estimated values. A great achievement is that the
maximums at the σ0.2(d

-1/2) curves have shifted to
the range of coarser grains (now from ≈16 nm at
�ε  =10-3 s-1 to ≈ 70 nm at �ε  =10-5 s-1) in contrast to
the previous models [69,70] (they had given the val-
ues near or smaller than 5 nm) that is a natural
corollary of the refusal to consider the intergranular
phase as an amorphous material, in the range of
small grain sizes. The remaining discrepancies be-
tween the predictions of the model and the experi-
mental data were referred by the authors [95] to the
experimental uncertainties as well as to the
necessity to take into account the influence of the
residual porosity of nanocrystalline materials. Note
that the last reason was already mentioned in earlier
works [69,70].

The authors [95] thus made an essential step
ahead in modeling the plastic deformation of
nanocrystalline materials within the rule-of-mixture
approach. Allowing different possible mechanisms
of crystallite plasticity and withdrawing the repre-
sentation of grain boundaries through the interlayers
of an amorphous material with a constantly high
value of strength, they obtained quite realistic curves
σ(ε) and σ

0.2
(d -1/2) in a wide range of strain rates. It is

natural that such a refined model had to be restricted
in some other respects (only uniaxial loading, only
f.c.c. metals, only low porosity). However, the au-

sd
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thors [95] claimed that a new quantitative model was
in progress which would incorporate the effects of
porosity and of grain size distribution.

Concluding the discussion of the afore mentioned
models which were aimed to obtain, within the rule-
of-mixture approach, the Hall-Petch-type depen-
dences for nanocrystalline materials and to study
the reasons and peculiarities of the deviations from
the classical linear law, σ

y
(d -1/2) ~ d -1/2, one can state

the following inferences.
·   The rule-of-mixture approach is a simple and ef-

fective way to obtain and study the Hall-Petch-
type relation for nanocrystalline materials.

·   The rule of mixture may be used in a general
empirical form without dwelling on the particular
physical mechanisms of plastic deformation of
crystallites and grain boundaries, as well as it
may account for different mechanisms of motion
and interaction of defects in both (crystallite and
intergranular) the phases.

·     The models of the intergranular phase which are
based on a similarity with the interlayers of an
amorphous material having a constantly high value
of strength, seem to be applicable to only the
real metallic glass-nanocrystal composites and
to be inapplicable to usual nanocrystalline ma-
terials where these models lead to essential dis-
agreements with experimental data in the range
of small grain sizes.

·    One of the key problems in describing the Hall-
Petch-type relation for real nanocrystalline ma-
terials is the account for the residual porosity of
samples.

3. PHYSICAL MECHANISMS OF
PLASTIC DEFORMATION IN
NANOCRYSTALLINE MATERIALS

In this section we will consider theoretical models
focusing on physical mechanisms of plastic flow in
nanocrystalline materials. In doing so, first, we will
discuss models based on the idea on the
conventional lattice dislocation motion in nanograin
interiors as the dominant deformation mechanism
in nanocrystalline materials (see subsection 3.1).
Then, the deformation mechanisms associated with
the active role of grain boundaries in nanocrystalline
materials will be considered (see subsection 3.2).
Finally, we will analyse the combined effects of the
competition between various deformation mecha-
nisms (depending on the grain size) and a distribu-
tion of grain size on the deformation behavior of
nanocrystalline materials (see subsection 3.3).

3.1. Lattice dislocation motion in
   nanocrystalline materials

There are models that treat motion of lattice dislo-
cations in grain interiors to be the dominant defor-
mation mechanism in nanocrystalline materials, as
with coarse-grained polycrystals. In the framework
of this approach, the experimentally documented
deviations from the conventional Hall-Petch
relationship in nanocrystalline materials are ex-
plained as those related to the influence of the grain
size reduction and high-density ensembles of grain
boundaries on the formation of lattice dislocation
pile-ups in grain interiors and the penetration of
lattice dislocations through grain boundaries in such
materials.

Let us start analysis of this approach with a brief
discussion of models describing the classical Hall-
Petch relationship (1) in coarse-grained polycrys-
tals. Most of these models can be rationalized in
terms of a dislocation pile-up model. These are
reviewed in detail by Li and Chou [101]. In deriving
Hall-Petch relation, the role of grain boundaries as
a barrier to dislocation motion is considered in vari-
ous models. In one type of models [102-104], grain
boundary acts as a barrier to pile-up of dislocations,
causing stresses to concentrate and activating dis-
location sources in the neighboring grains, thus ini-
tiating slip from grain to grain. In the other type of
models [19, 105, 106], the grain boundaries are
regarded as dislocations barriers limiting the mean
free path of the dislocations, thereby increasing
strain hardening, resulting in a Hall-Petch type
relation. A review of the various competing theories
of strengthening by grain refinement has been dis-
cussed by several workers. (For a more recent sur-
vey, see Lasalmonie and Strudel [24].) It is clear
that a variety of processes, both dislocation and
non-dislocation based, could be postulated. It is
possible that several of these processes could
compete or reinforce the deformation process.

Now let us turn to a discussion of models focus-
ing on lattice dislocation mechanism of plastic flow
in nanocrystalline materials. First, let us consider
dislocation model of Pande and Masumura [107].
The assumption made in this model is that the clas-
sical Hall-Petch dislocation pile-up model is still
dominant with the sole exception that the analysis
must take into account of the fact that in the
nanometer size grains, the number of dislocations
within a grain cannot be very large. Further at still
smaller grain sizes, this mechanism should cease
when there are only two dislocations in the pile-up.
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Pande and Masumura [107] by considering the
conventional Hall-Petch model showed that a dislo-
cation theory for the Hall-Petch effect gives a linear
dependence of τ on d -1/2 only when there are large
number of dislocations in a pile-up and plasticity is
not source limited. In this regime, the yield stress
increases as d decreases because the pile-ups
contain fewer dislocations, the stress concentration
at the head falls and a larger applied stress is
required to compensate. When the number of dislo-
cations falls to one, no further increase in the yield
stress is possible and it saturates. If, however,
sources must operate in each grain, an additional
component of the yield stress exists of at least Gb/d
and the yield stress should rise as d -1. Thus from
these arguments, at a small grain size, either the
yield stress should rises faster than d -1/2 or it should
saturate, but it should not decrease. If the number
of dislocations n in a pile-up is not too large the
length of the pile-up L is not linear in n but an addi-
tional term is necessary. Chou [108] gives the
relation

L
A

n m i
n

≅ + − − �
�


�

�
�	
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where i
1
/61/3 = 1.85575. Pande and Masumura [107]

give an improved expression viz.,
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where ε is a small correction term (ε << 1) and can
be neglected. They find that for small grain sizes
there are additional terms to Hall-Petch relation viz.,

s c c= + +− − −λ λ λ1 2

1

1 2 5 3

2

1 2 7 3/ / / / /

,� � � �  (31)

where s = τ/[mτ*], c
1
 = -0.6881, c

2
 = 0.21339 and �

= Lmτ*/2A. This model recovers classical Hall-Petch
at large grain sizes but for smaller grain sizes the τ
levels off. This model therefore cannot explain a drop
in τ.

Other Dislocation Mechanisms. Valiev et al [109]
mention a creep mechanism in which dislocations
require a specific amount of time to be absorbed
into the grain boundary. Such times involve a
characteristic length of 30 nm that is approximately
the distance at which the image of the dislocation
“disappears.” But detailed mechanism relating τ with
d in this region is not available.

In a recent publication, Malygin [110] seems to
have provided just such a theory based on a dislo-
cation mechanism. The dislocation density ρ(d) at

any grain size, d, is related in the usual fashion to
the square of yield stress and an expression is ob-
tained that connects ρ to the grain size. The ex-
pression is based on the assumption that grain
boundaries act predominately as sinks for disloca-
tions (just the opposite to that used by Li [111], who
postulated that grain boundaries could be sources
for dislocation generation). In Malygin’s model, as
the grains become finer and finer, more and more
dislocations are absorbed by the grain boundaries
leading ultimately to a drop in dislocation density
and hence in the flow stress since the two are di-
rectly related as mentioned above. The model is
attractive, and should be considered further. At
present, we merely point out two problems with the
model. First, it is doubtful if the dislocations play
the same role whether the grains are large or small.
It is more likely that dislocations in ultrafine grains
if present at all, are confined to grain boundaries
[112]. Second, in Malygin’s model [110], the stress
calculated is a work-hardened flow stress rather than
a yield stress.

Lu and Sui [113] assume that both the energy
and free volume of grain boundaries decrease with
reduction of the grain size d. This gives rise to
enhancement of lattice dislocation penetration
through grain boundaries and the corresponding
softening of nanocrystalline materials. Following
Seattergood and Koch [114], the yield stress of fine-
grained materials is controlled by intersection of
mobile lattice dislocations with dislocation networks
at grain boundaries. In this context, with the dislo-
cation line tension assumed to be size dependent,
there is some critical grain size that corresponds to
a transition from cutting to Orowan bypassing of
the dislocation network. This critical grain size
characterizes the experimentally detected transi-
tion from the conventional to inverse Hall-Petch
relationship with reducing the grain size d. Nazarov
et al [115], Nazarov [116] and Lian et al [117] have
developed models similar to that of Pande and
Masumura [107], focusing on the influence of the
grain size d on the parameters of lattice dislocation
pile-ups in grain interiors.

Zaichenko and Glezer [118] have described the
role of grain boundary disclinations - rotational de-
fects formed at triple junctions – as sinks and
sources of lattice dislocations moving in grain inte-
riors and causing plastic flow in nanocrystalline
materials. Following the model of Zaichenko and
Glezer [118], lattice dislocations are emitted and
absorbed at opposite triple junctions of grain bound-
aries, containing disclinations (formed during fabri-
cation of nanocrystalline materials). In doing so, the



1� ����������	
���
����������	��������	��

yield stress is caused by interaction between grain
boundary disclinations and lattice dislocations
moving in grain interiors. The disclinations move in
vicinities of their initial positions (corresponding to
non-deformed state of a material) at grain boundary
junctions when they emit and absorb lattice dislo-
cations.

Despite of the good correspondences between
theoretically predicted τ(d) dependences and ex-
perimental data, all the above models based on the
representations on the lattice dislocation mecha-
nism of plastic flow in nanocrystalline materials meet
the question if lattice dislocations exist and play
the same role in nanograin interiors as with
conventional coarse grains. As pointed out in pa-
pers [119-121], the existence of dislocations in ei-
ther free nanoparticles or nanograins composing a
nanocrystalline aggregate is energetically
unfavourable, if their characteristic size, nanoparticle
diameter or grain size, is lower than some critical
size which depends on such material characteristics
as the shear modulus and the resistance to dislo-
cation motion. The dislocation instability in
nanovolumes is related to the effect of the so-called
image forces occurring due to the elastic interac-
tion between dislocations and either free surface of
nanoparticle or grain boundaries adjacent to a
nanograin [119-121]. The paucity of mobile disloca-
tions in nanograins has been well documented in
electron microscopy experiments [11, 122].

3.2. Evolution of defects and grain
boundary structures in plastically
deformed nanocrystalline
materials

Let us discuss theoretical models describing plas-
tic flow in nanocrystalline materials as that occur-
ring mostly via deformation mechanisms associated
with the active role of grain boundaries. Such defor-
mation mechanisms are, in particular, grain bound-
ary sliding and diffusion plasticity mechanisms
related to grain boundary diffusion.

Hahn et al [123] treat the grain boundary sliding
as the deformation mechanism effectively compet-
ing with the conventional lattice dislocation motion
in nanocrystalline materials. In doing so, the grain
boundary sliding occurs via motion of mobile grain
boundary dislocations with Burgers vectors parallel
with boundary planes. Triple junctions of grain bound-
aries, where boundary planes with various
orientations join together, serve as obstacles for
grain boundary dislocation motion. In order to over-
come the obstacles, grain boundary structures un-

dergo the grain-boundary-sliding accommodation
transformations; the same comes into play in su-
perplastic deformation characterized by the domi-
nant grain boundary sliding. The model of Hahn et
al [123] describes local migration of grain bound-
aries as the accommodation mechanism for the
grain boundary sliding. More precisely, local migra-
tion of grain boundaries is considered to provide the
formation of tentatively planar ensemble of grain
boundaries along which intensive plastic shear via
correlated grain boundary sliding processes occurs.
These macroscopic planar grain boundary structures
are associated with shear bands where high
(super)plastic deformation is localized, resulting in
a large macroscopic deformation of a nanocrystalline
sample.

The local migration of grain boundaries occurs
more effectively than other diffusion accommoda-
tion mechanisms, because characteristic spatial
scale of diffusion associated with the local migra-
tion of grain boundaries is very small; it is in the
order of the grain boundary thickness. In these cir-
cumstances, the strain-rate controlling process is
the grain boundary sliding. Though there is experi-
mental evidence for local migration of grain bound-
aries in superplastically deformed polycrystals [124],
at present, there are no direct experimental data
confirming the model of Hahn et al [123] in the case
of nanocrystalline materials. Also, this model does
not quantitatively describe the yield dependence on
the grain size.

Results of computer simulations have been
reported [125,126] on plastic deformation in model
f.c.c. metals. Thus, the competition between lattice
dislocation motion and grain boundary sliding has
been revealed. For small grain size (tentatively < 10
nm) all deformation is accommodated in grain bound-
aries. At higher grain sizes, the intergrain deforma-
tion is observed which occurs via motion of partial
dislocations in grain interiors, in which case these
dislocations are emitted and absorbed in opposite
grain boundaries. Thus, results of computer model-
ing [125,126] indicate in favor of the competition be-
tween conventional intergrain sliding via lattice dis-
location motion and grain boundary sliding in
nanocrystalline materials. The role of grain bound-
ary sliding increases with reducing the grain size.

Song et al [13] have distinguished the two
branches of the grain size dependence of the yield
stress. One branch is realized at large grain sizes
(d > d

cr
), which is described by the classical Hall-

Petch relationship (1). At small grain sizes (d < dcr),
following the model of Song et al [13], a
nanocrystalline material behaves as a coherent-pre-
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cipitate strengthened two-phase alloy in which the
grain boundary phase plays the role of matrix, and
each of the grains embeds into the matrix coherently.
In this region, the yield stress is given as:

τ τ
γ

= +~
~ ,0

b
f
cr  (32)

where τ denotes the yield stress of the matrix (grain
boundary phase) without obstacles (grains), γ

0
 the

interphase boundary energy, b the Burgers vector
magnitude that characterizes grain boundary dislo-
cations as carriers of plastic flow in the matrix, and
f
cr
 the volume fraction of crystalline grains (playing

the role of obstacles for grain boundary dislocations),
which can be approximately written as follows:

f
d

d
cr

=
−�

�


�

∆ 3

.  (33)

Here ∆ is the effective grain boundary thickness,
and d is the mean grain size. Formulae (32) and
(33) account for experimental data on the abnormal
Hall-Petch relationship at some values of model
parameters. However, use of formula (32) which
initially describes strengthening of coherent-precipi-
tate two-phase alloys is questionable in the case of
nanocrystalline materials, because it is based on
the assumptions that carriers of plastic flow in the
matrix (grain boundaries) and coherently embedded
second-phase particles (grains) are the same. This
assumption is very discussive. Crystalline nano-
grains and grain boundary structures are essentially
different, contain dislocations with essentially dif-
ferent characteristics and can not be matched
coherently.

The model of Ovid’ko [127] describes the grain
boundary sliding as the dominant deformation
mechanism of plastic flow in nanocrystalline mate-
rials at elementary, nano-scale and meso-scale
levels (Fig. 4). Carriers of plastic deformation at the
elementary length scale are treated to be
conventional defects of crystal and grain-boundary
structures, that is, crystal-lattice dislocations and
grain-boundary dislocations with Burgers vectors
and defect core sizes being in the order of the crystal
lattice parameter (Fig. 4a). In order to describe plas-
tic deformation at the nano-scale level, the paper
[127] introduces the notion of nano-dislocations with
variable Burgers vectors. Each nano-dislocation is
defined as a superposition of sliding grain boundary
dislocations belonging to one grain boundary (Fig.
4b). In other words, a nano-dislocation is a kind of a
superdislocation which consists of all mobile grain

boundary dislocations at one nano-scale grain
boundary. Mobile grain boundary dislocations be-
longing to one boundary exhibit a correlated behav-
ior in  response to applied shear stress due to the
strong elastic interaction between them and their
low-barrier motion between grain boundary junctions.
This allows one to effectively describe their correlated
motion under the shear stress action as the motion
of a nano-dislocation. The motion of a nano-dislo-
cation is accompanied by various structural
tranformations including various grain-boundary slid-
ing accommodation processes, in which case
elementary dislocations composing the nano-dislo-
cation move and undergo transformations accom-
panied by changes of their sum density and spatial
arrangement. Such changes are effectively de-
scribed as evolution of Burgers vector of the moving
nano-dislocation during its motion (Fig. 5). Thus,
as with dislocation having variable Burgers vectors
in amorphous solids [128-130], nano-dislocations
with variable Burgers vectors serve as carriers of
plastic flow at the nano-scale level in nanocrystalline
materials [127].

In general, plastic deformation in nanocrystalline
materials can be spatially homogeneous or
inhomogeneous being localized in narrow shear
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bands; see, e.g., experimental data [131,132]. In
the latter case, development of a shear band can
be effectively decribed as propagation of a group of
nano-dislocations through the section of the de-
formed nanocrystalline film (Fig. 4c) [127].

Let us consider the model of Chokshi et al [32].
Clearly, at sufficiently small grain sizes, the Hall-
Petch model based upon lattice dislocations may
not be operative. In this region, Chokshi et al [32]
have proposed room temperature Coble creep as
the mechanism to explain their results. Certainly,
there is an order of magnitude agreement and the
trend is correct, however, the functional dependence
of τ on d is incorrect as pointed out by Neih and
Wadsworth [91]. Conventional Coble creep demands
that τ ~ d 3 ∝  [d -1/2]-6, i.e., the τ vs. d -1/2 curve falls
very steeply as d -1/2 increases. This is not found
experimentally [32]. When we fit the data of Chokshi
et al to a Coble type equation, viz.,

τ γ α= + d 3 ,  (34)

we find that the fit requires a large value of γ = 360
MPa which suggests that the threshold stress for
Coble creep is of the form Gb/d [133] since this
would have the correct magnitude for a 10 nm grain
size. The origin of this threshold is related to vacan-

cies that are created and destroyed on dislocations
climbing along grain boundaries. The dislocations
are pinned at grain boundaries nodes and require a
stress of Gb/d to climb. Chokshi et al [32] showed
that their data, however, fit better the relation

τ β= − −K d' ,/1 2  (35)

with β = 937 MPa and K’ = 0.027 MPa m1/2 instead
of Eq. (34). Eq. (35) cannot be related simply to
any known mechanism.

Even if the Coble creep argument were valid for
grain sizes d < 30 nm, we still have to explain the
behavior in the 20 to 200 nm range. This is evidently
the transition regime between the Hall-Petch and
Coble creep-like behavior. The transition regime is
effectively described with a distribution of grain size
taken into account. It is the subject of next section.

3.3. Competition between deformation
mechanisms and effect of a
distribution of grain size in
plastically deformed
nanocrystalline materials

From the previous discussion, it is quite obvious
that a unified model of grain size strengthening ap-
plicable to a wide range of grain size was lacking.
Masumura et al [18] provided such a model and
developed an analytical expression for τ as a func-
tion of the inverse square root of d in a simple and
approximate manner that could be compared with
experimental data over a wide range of grain sizes.
This model is summarized below. The assumptions
in this model are:
1.  It is assumed that polycrystals with a relatively

large average grain size obey the classical Hall-
Petch relation (The departure from the linear Hall-
Petch relation in pile-up model has been dis-
cussed and is ignored in the first approximation
but can be incorporated easily (see subsection
Dislocation Model of Pande and Masumura in
section 3.1)).

2.  At the other extreme for very small grain sizes, it
is assumed that Coble creep is active and that
the τ vs d relationship is given by

τ
c

A d Bd= +/ ,3  (36)

     where B is both temperature and strain-rate de-
pendent. The additional term A/d (the threshold
term) can be large if d is in the nanometer range.
For intermediate grain sizes, both mechanisms
might be active if the specimen has range of grain
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size distribution. A threshold of the A/d has been
proposed by others (Sastry [134]).

3.  The statistical nature of the grain sizes in a poly-
crystal is taken into consideration by using an
analysis similar to Kurzydlowski [135]. The vol-
ume of the grains are assumed to be log-normally
distributed

f v
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v m
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v
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where m
lnv

 and s
lnv

 are the mean value and stan-
dard deviation of lnv, respectively, and where the
m

v
 is the mean volume of all the grains,
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and can also be written as m
v
 = κd 3 where d is

mean grain size and with κ being a geometrical
shape factor considered for this analysis to be
equal to 1.

4.  Finally, it is assumed that a grain size d * exists
at which value the classical Hall-Petch mecha-
nism switches to the Coble creep mechanism,
τ

hp 
= τ

c
 at d = d *. Using Eqs. (1) and (36), we

have

k d A d B d( ) / ( )* / * *− = +1 2 3  (39)

from which d * can be determined.

Then the yield stress after averaging is given as
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where erf{ } is the error function. Further defining
additional normalized variables,
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* 3  (48)

we have a normalized form of the yield stress, τ
n
,

as a function of the scaled grain size ξ, grain size
parameter σ and p,
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The parameter p is the ratio of Coble threshold stress
to conventional stress evaluated at d * where the
transition from Coble creep to Hall-Petch strength-
ening occurs. For each p and σ universal curve is
obtained with the form and shape of the curve simi-
lar to experimental data. Eq. (49) is the key result
of their analysis. In Fig. 6 the yield stress of NiP
data of McMahon and Erb [136], after normaliza-
tion, is compared with this equation. The threshold
stress as compared to the Coble creep stress is
small in this material. The value for d * = 5.5 nm as
determined from this analysis is in agreement with
the original hardness data where the hardness (or
stress) begins to decrease with decreasing grain
size at a grain size of 5-6 nm.

Thus this model uses conventional Hall-Petch
strengthening for larger grains and Coble creep with
a threshold stress for smaller grains. In a material
with a distribution of grain sizes, a fraction of grains
deforms by a dislocation glide process and the rest
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by vacancy transport. As the average grain size
decreases, the fraction deforming by glide decreases
and the overall response changes from strengthen-
ing to softening. The exact form of the yield stress
against grain size curve depends on the relative val-
ues of Hall-Petch slope k, the conventional Coble
constant B, the threshold constant A and the width
of the grain size distribution β.

Refinement to the model of Masumura,
Hazzledine and Pande. It should be noted that
the model of Masumura et al [18] only takes into
account the first term of Eq. (31) in their
calculations. Additional terms however can easily
be taken into consideration and the final result will
include two more terms involving error functions.
Preliminary estimate indicates that this will not sub-
stantially change their result but will make the tran-
sition from rising τ to decreasing τ more gradual.

Thus, following model of Masumura et al [18],
both dislocations and Coble creep play a signifi-
cant role leading to a fuller understanding of Hall-
Petch type relation over the whole range of grain
sizes. Further it is unrealistic to expect that
unlimited strength is available simply by reducing
the grain size, though in some materials, consider-
able strengthening can be achieved by
nanocrytalline processing. Further strengthening in
principle is possible, if some how Coble creep could
be reduced.

4. CONCLUDING REMARKS

Thus in this paper we have reviewed theoretical
models of plastic flow in nanocrystalline materials
with the special attention paid to the abnormal Hall-
Petch effect, that is, the softening of a
nanocrystalline material with reducing the mean
grain size d. In general, there are the two key theo-
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retical approaches to a description of the abnormal
Hall-Petch effect which is inherent to nanocrystalline
materials in contrast to conventional coarse-grained
polycrystals where the yield stress, according to
the classical Hall-Petch relationship (1), grows with
reduction of the grain size d. The first approach
treats nanocrystalline materials as composites with
grain boundaries and grain interiors playing the role
of constituent phases. In the framework of this ap-
proach, the yield stress is given by the so-called
rule of mixture (conventionally used in the theory of
composites) as some weighted sum of the yield
stresses that characterize the grain boundary phase
and grain interiors. The second approach focuses
on microscopic (physical) mechanisms of plastic
deformation in nanocrystalline materials. This ap-
proach attributes the abnormal Hall-Petch effect to
either essential modification of conventional lattice
dislocation motion or transition to another deforma-
tion mechanism (associated with the active role of
grain boundaries) in plastically deformed
nanocrystalline materials due to nano-scale effects
and the existence of high-density ensembles of grain
boundaries.

Different theoretical models give different expla-
nations of the abnormal Hall-Petch relationship, in
which case most of them well account for the
corresponding experimental data. However, it is
extremely difficult to experimentally identify the de-
formation mechanism(s) in nanocrystalline materi-
als due to their very complicated nano-scale struc-
ture and its transformations occurring at various
length scales during plastic deformation. In addi-
tion, the deformation mechanisms may be different
in different nanocrystalline materials or even in the
same material at different conditions of loading (say,
temperature, strain rate). In these circumstances,
further theoretical and experimental investigations
in this area are highly desired for understanding the
fundamentals of the outstanding deformation behav-
ior of nanocrystalline materials and development of
high technologies exploiting their unique mechani-
cal properties.

In conclusion of this review, let us outline the key
points which are interesting for the future theoretical
studies of plastic deformation processes and associ-
ated phenomena in nanocrystalline materials:
1) A theoretical description of new deformation

mechanisms (in particular, rotation of nanograins)
in nanocrystalline materials.

2)  A theoretical description of the role of triple junc-
tions and quadruple nodes of grain boundaries
(which are treated as thermodynamically distinct
phases, separate from grain boundaries and
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grain interiors [137]) in deformation processes
in nanocrystalline materials.

(3) Development of the generalized model which will
describe the combined action of different defor-
mation mechanisms (such as lattice dislocation
motion in grain interiors, grain boundary sliding,
diffusion plasticity mechanisms associated with
grain boundary diffusion and triple junction diffu-
sion) whose contribution to plastic flow in
nanocrystalline materials is dependent on the
material characteristics, grain size distribution
and conditions of loading.

(4) A theoretical analysis of the specific features of
plastic flow in nanocrystalline films and coatings
where the residual stresses are capable of es-
sentially influencing grain boundary structures
(see, e.g., [7, 138, 139]) and deformation pro-
cesses.

(5) A theoretical analysis of the specific features of
plastic flow in nanocomposite materials where
the composite structure and interphase bound-
aries are capable of strongly affecting deforma-
tion processes.

(6) A theoretical analysis of the influence of plastic
deformation on the structural stability (against
grain growth) in nanocrystalline materials.
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