
21Mathematical modeling diffusion of decaying particles in regular structures

© 2009 Advanced Study Center Co. Ltd.

Rev.Adv.Mater.Sci. 23(2010) 21-31

Corresponding author: Y. Chaplya, e-mail: czapla@ukw.edu.pl and O. Chernukha, e-mail: cher@cmm.lviv.ua

MATHEMATICAL  MODELING  DIFFUSION  OF  DECAYING
PARTICLES  IN  REGULAR  STRUCTURES

����������	
���
�������
�������������

����������	
�����	
���������	��	����������������������	����	���	� !�"#	����������	$�����
%������	�&	'�����������	'�������	�&	���	
��������	(�������	)������	�&	*��������	+,�����	*����	� �	-.�� 	/����


������

Received: December 10, 2009

Abstract. In the paper an exact solution of the contact initial-boundary value problem is found for
diffusion of decaying admixture particles in a body of a two-phase periodical stratified structure.
Regularities of concentration distributions are studied to depend upon different values of a
coefficient of the migrating substance’s decay intensity. Conditions are established for the exist-
ence of a passage to the limit from contact initial-boundary value problems of the decaying
substance diffusion to continual models of heterodiffusion by two ways allowing for the decay
process. An exact solution for the partial Fisher problem for a layer is found. Mass flows are
defined for the decaying admixture whose particles migrate in a horizontally regular structure.

1. INTRODUCTION

One of the current problems of today is describing
and analyzing mass transfer processes in piece-
wise homogeneous spatially regular systems. Poly-
crystalline materials or fine-dispersed composite
structures are often modeled by such structures.
Diffusing particles in distinct domains of the sys-
tem are characterized by essentially different diffu-
sion coefficients and there is a mass exchange
between domains [1-3].

Exact solutions of initial-boundary value prob-
lems of diffusion in bodies with regular structures
have been formulated for a nondecaying substance
in paper [4,5]. In this work, the same problem is
considered for a decaying admixture. An exact so-
lution of the corresponding contact initial-boundary
value problem of diffusion is found. Mass flows in
contacting domains are defined. An exact solution
of the Fisher problem is also achieved by limiting
the process and a set of equations of decaying par-
ticle diffusion is obtained by two ways in the con-
tinuum approximation.

2. SUBJECT OF INQUIRY AND
PROBLEM FORMULATION

A body occupying a layer of thickness x
0 
and com-

posing periodically disposed domains of two types
is considered. The surfaces bounding these do-
mains are perpendicular to the layer boundaries (see
Fig. 1a). Axis Ox is perpendicular to the body bound-
aries, axis Oy is perpendicular to the surfaces of
the composing domains. Such a structure is de-
nominated as horizontally regular or horizontally
periodical. It is assumed that the domains with dif-
fusion coefficient D

1
 are 2L in width and the domains

with coefficient D
2
 are 2l in width. Such a structure

has a family of symmetry planes (y = ±n(L + l),
n = 0,1,2…) which bisect neighbor contacting do-
mains. Therefore, a body element can be separated
on vertical boundaries of which mass fluxes equal
zero in the direction parallel to the layer surfaces
(in the Oy-axis direction, see Fig. 1b).

The c
1
(x,y,t) concentration of the decaying ad-

mixture in domain Ω
1 
= [0;x

0
]×[0;L] is determined

from the equation:
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The concentration of admixture particles c
2
(x,y,t) in

domain Ω
2 
= ]0;x

0
[×]L;L + l] satisfies the following

equation
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where λ is the coefficient of intensity of the admix-
ture particle decay process.

We assume zero initial conditions:

( ) ( )
t t

c x y t c x y t
1 20 0

, , , , 0.
= =

= =  (3)

For t > 0, constant values of concentrations are sup-
ported on the layer boundary x = 0 and they equal
zero on surface x = x

0
:
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x x x x
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c x y t c x y t
0 0
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1 0 2 00 0

1 2
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= =

= =
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and the admixture fluxes equal zero on the lateral
surfaces of the separated element y=0, y=L+l,
namely:
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∂ ∂
= =
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The conditions of equalities of both the chemi-
cal potentials and the mass fluxes are imposed on
the contact surface y = L:

( ) ( )
( ) ( )

y L y L

y L y L

x y t x y t

x y t x y t
d d

y y

1 2
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, , , , ,
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= =
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µ = µ

∂µ ∂µ
ρ = ρ

∂ ∂
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where µ
i
(x,y,t) is the chemical potential in domain

Ω
I
, ρ

j 
is the density of domain Ω

j
, d

j
 is a kinetic

coefficient, i = 1,2.
Let us admit the chemical potential’s linear de-

pendence on the concentration [6]:

( ) ( )( )
( ) ( )( )
x y t A c x y t

x y t A c x y t

0

1 1 1

0

2 2 2

, , 1 , , ,

, , 1 , , ,

µ = µ − − γ

µ = µ − − γ

where µ0 is the chemical potential value for a clean
substance in the state specified by the values of
absolute temperature T and pressure P; A=RT/M is
a coefficient when R is an absolute gas constant

0�1

021

Fig. 1. A horizontally periodical body structure (a)
and a separated element of the body (b).

and M is the atomic weight, γ
i 
is an activity factor.

Then, the nonideal contact conditions for the con-
centrations are obtained in the form:

( ) ( )
( ) ( )

y L y L

y L y L

k c x y t k c x y t

c x y t c x y t
D D

y y

1 1 2 2

1 2

1 1 2 2

, , , , ,

, , , ,
,

= =

= =

=

∂ ∂
ρ = ρ

∂ ∂
 (7)

where k
1
 and k

2
 are coefficients of the concentrat-

ing dependence of the chemical potentials in do-
mains Ω

1
 and Ω

2,
 respectively.

3. FORMULATION OF AN ANALYTICAL
SOLUTION

A solution of the contact initial-boundary value prob-
lem of diffusion (1)-(5) and (7) will be found by inte-
gral transformations over space variables. We ap-
ply the finite Fourier sine transform with respect to
the variable x (x → α

n
=nπ/x

0
, n = 1,2…; c

i
(x,y,t) →

i
c (n,y,t), i = 1,2) [7]
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to the problem (1)-(5) and (7). Then, it takes the
form:
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y L y L

y L y L

c c
k c k c D D

y y
1 2

1 1 2 2 1 1 2 2
, .

= =
= =

∂ ∂
= ρ = ρ
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An integral transformation is performed with re-
spect to the variable y separately in domains 

1
Ω

and 
2
.Ω  It is necessary to know the values of the

corresponding functions on boundaries of a trans-
formation region [7] to apply the Fourier transforma-
tion. At y = 0 and y = L + l the condition (10) defines
the functions ∂ c

1
/∂y on the boundary of the domain

1
Ω  and ∂ c

2 /∂y on the boundary of 
2
.Ω  The values

∂ i
c /∂y are unknown on other surfaces of domains

1
Ω  and 

2
Ω  (contact surface). They will be defined

taking into account the second contact condition
(11). It means that the mass fluxes on the contact
boundary y = L are equal and they equal the time
function g(t), that is:

( ) ( )
y L y L

c c
D D g n L t g t

y y
1 2
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, , .

= =

∂ ∂
ρ = ρ = ≡
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Then, the finite Fourier cosine transformation of the
problem (8), (10), and (12) in the domain 

1
Ω  (y →

β
k
; c

1
(n,y,t) → c

1
% (n,k,t) can be carried out:

( ) ( ) ( )
L

k
c n k t c n y t y y

1 1

0

, , , , cos d ,= β∫%  (13)

where β
k 
= kπ/L, k = 0,1,2,.... It should be noted

that the Fourier sine transformation [7] is used in
the contacting regions and the functions of concen-
tration on interface considering the first contact con-
dition are defined in the case of boundary condi-
tions established for the sought functions.

Let us find the integral transformation from
∂2 c

1
/∂y2 first.

( ) ( )

( ) ( )

LL

k k

L
L

k k k k

c c
y y y

y y

c y c y y

2

1 1

2

0 0

2

1 10

0

cos d cos

sin cos d .
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β = β +

∂ ∂

β β − β β

∫

∫

is obtained by integrating by parts twice.
Allowing for the conditions on the boundaries of

domain 
1

Ω  (10) and (12) we have:

( ) ( ) ( )
kL

k k

c
y y g t c

y D

2

21

12

0 1 1

1
cos d .

−∂
β = − β

∂ ρ∫ %  (14)

Please note that the cosine Fourier inversion in this
case is [7]:

( ) ( )

( ) ( )
k

k
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1

1
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2
, , cos .

∞

=

= +

β∑

%

%
 (15)

The finite Fourier cosine transformation with the
account formula (14) having been applied, the ini-
tial-boundary value problem (8), (10), and (12) in the
transforms is reduced to an ordinary differential equa-
tion:

( )

( ) ( ) ( )

n k

k

k n

c
D c

t

D a c g t
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1
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1

d
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 (16)

under the initial condition:

~ ,c t
t

� �
=

=
0

0  (17)

where 
k

L k
a

k

, 0
.

0, 1, 2, ...

=
=

=





.

A complete integral of Eq. (16) is found to read
as follows [8]:
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where K
1 
is an unknown constant. As long as
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Satisfying the initial condition (17) K
1
=0 is obtained,

and the solution of the problem (16) and (17) is:
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Let us consider the initial-boundary value prob-
lem (9), (10), and (12) in domain 

2
.Ω  The finite Fou-

rier cosine transformation taken over the variable y
is introduced in the following way:

( ) ( ) ( )( )
L

m

L

c n m t n y t y L y
2

, , , , cos d ,
+

= β −∫
l

2
c%  (19)

where β
m
 = mπ/l. Let us search out a formula for an

inverse transformation to (19). In order to do it the
variable under the integral: r = y - L is changed.
Then, we obtain
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c n m t n r L t r r

2
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2
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A formula of the inverse transition is known for such
an integral transformation [7]:
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Reverting to the variable y an expression for the in-
verse transformation to (19) is obtained:
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m
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Now the integral transformation (19) from
∂2 c

2
/∂y2 can be performed by analogy (14):
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Allowing for the value ∂ c
2 /∂y on the boundary of the

1
Ω  and 

2
Ω  domain contact y = L and on the lateral

surface of the separated element y = L + l we ob-
tain:
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Then, the initial-boundary value problem (9), (10),
and (12) takes the form:
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of the ordinary differential Eq. (22) is
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here K2 is an unknown constant. Integrating the ex-
ponents we have

( ) ( )

( ) ( ) ( ) ( )

n m

n m

D t

mt
D t

m n

c t e

D a c g t e t K

2 2

2

2 2

2

d

2

d2

2 0 2

0 2

1
d .

− α +β +λ

′α +β +λ

= ×

−
′ ′α − +

ρ

   
  

   
∫

%



25Mathematical modeling diffusion of decaying particles in regular structures

The initial condition (23) implies that K
2
 = 0. Then, a

solution of the problem (22) and (23) is obtained in
the form:
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The function g(t) is unknown in the expressions
(18) and (24). It is obtained from the first contact
condition of the concentration equality on the inter-
face (11). In order to do it, an inverse integral cosine
transformation of the concentration is performed in
both the 

1
Ω  and 

2
Ω  domains by the formulae (15)

and (20), respectively.
Then, taking into account the value of coefficient
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Using the inverse transformation formulae (15)
we obtain:
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Taking into account the value of coefficient a
m

the following expressions for the function c
2

% (n,m,t)
are obtained in domain 
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Then, the original cosine transformation with a
shift of the function c

2
% (n,m,t) is obtained in the form:
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The value y = L is substituted in expressions
(25) and (26) and equated by multiplying the func-
tions i

c  by the corresponding coefficients of the
concentrating dependence of chemical potential k

i
.

As a result, the following equation is obtained:
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If a definite integral of a nonperiodical function is to
equal zero, it is sufficient that an integral function
equals zero. Then, the equation for determining the
unknown function g(t’) is obtained:
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It should be noted that the integral Eq. (27) has
a non-unique solution because there exist such func-

tions F(t’) ≠ 0 that ( )
t

F t t
0

d 0.′ ′ =∫  At the same

time, the original problem solution is unique inde-
pendently of the chosen manner of solving the inte-
gral equation, since the function g(t’) in the solu-
tions c

1 
and c

2 
appears only under the integral of

variable t’.
The only thing remaining to obtain a final solu-

tion of the contact initial-boundary value problem
(1)-(5) and (7) is to make the inverse Fourier sine
transformation of the expressions (25) and (26).
Then, we find:
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 (30)

where function g(t’) is specified by formula (28).

4. PASSAGE TO THE CONTINUUM
LIMIT. DIMENSIONLESS FORM

Let us average the functions of admixture concen-
tration c

1
(x,y,t) and c

2
(x,y,t) over the whole width of

the separated body element [0, L + l]:

( ) ( )
L

ic x t x y t y i
L

)

0

1
, , , d , 1, 2.

+

= =
+ ∫

l

i
c

l
 (31)

Then, such averaged functions have to satisfy the
following equations:
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If the mass fluxes on the contact boundary may
be represented by such chemical potentials as:
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θ
1
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2
 (θ

1
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2
), here are coefficients of a correlation

between fluxes and chemical potentials and ∆µ
i 
=

µ
i 
- µ0, the averaged functions (31) satisfy the equa-

tions:
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As long as ∆µ
i
|
y=L 

=
 
k

i
c

i
|
y=L

, the set of equations (32)
can be written in the form:
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If the condition 1/(L + l)c
i
(x,L,t) ≈ ic

)

(x,t) takes
place, we obtain a coupled set of partial differential
equations of admixture heterodiffusion in two ways
[9-11]:

c c
D c k c k c
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,
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∂ ∂
ρ = ρ − λ + −

∂ ∂

 (33)
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where k
1
= θ

i
k

i
 (i = 1,2) are coefficients of intensity

of the particle transition process between different
diffusion ways.

Thus, subject to the equality of the admixture
fluxes and linear combinations of the chemical po-
tentials on a contact boundary by means of averag-
ing concentrations over body width, we obtain im-
mediately a set of equations for heterodiffusion by
two ways taking into account particle transitions
from one migration way into another.

Now, a natural dimensionless form can be intro-
duced for such problem [11]:

( )k t k D x
1/ 2

2 2 1
, / .τ = ξ =  (34)

We take into consideration the dimensionless
space variable η

 
=

 
( k

2
/D

1
)1/2y. The contact initial-

boundary value problem (1)-(5) and (7) can be pre-
sented in the dimensionless form:
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021

Fig. 2. Diffusion in a polycrystal along a grain bound-
ary.
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Here d = D
2 
/D

1
; λ%  = λ/ k

2
, ξ

0
 = ( k

2
/D

1
)1/2x

0
, Λ = ( k

2
/

D
1
)1/2L, λ  = ( k

2
/D

1
)1/2l.

Thus, the proposed passage to the limit from a
contact initial-boundary value problem of decaying
admixture diffusion in horizontally periodical struc-
tures to continuum models of heterodiffusion by two
ways gives an opportunity of not only finding solu-
tions of heterodiffusion problems but also of using
the natural dimensionless form (34) for problems of
diffusion in bodies with regular structures. It should
be noted that such dimensionless form does not
involve any sizes of a body or its constituent

 
regions.

5. THE FISHER PROBLEM AS A
PARTICULAR CASE OF A
DIFFUSION PROBLEM IN A
HORIZONTALLY PERIODICAL
STRUCTURE

If the domain Ω
2 
width tends to infinity, l → ∞ (L

 
≠ 0),

in the relationships (1)-(5) and (7), we obtain the
Fisher problem [3,12] for a layer modeling diffusion
of decaying particles in a polycrystal along a grain
boundary. This is decaying admixture diffusion in a
semi-infinite solid in which a thin plate has been put
so that its plane should be perpendicular to the body
surface (see Fig. 2). We assume that the diffuser
concentration preserves its constant values on a
free sample surface and the diffusion coefficient D

1

in a plate (which conforms to a grain boundary) is
much greater then D

2
 characterizing the mass trans-

fer in the remaining body [3].
In the formulae (29) and (30) we pass to the limit

at l → ∞  and obtain the exact analytical solution of
the Fisher problem for a layer:
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Fig. 3. Distributions of nondecaying admixture concentration along depth in different time moments at
λ%  = 0, (a) – in the middle of domain Ω

1
, (b) – in the middle of domain Ω

2
.
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It should be noted that the expression (40) for
decaying admixture concentration in the domain Ω

2

is identical to the solution of a one-dimensional prob-
lem of decaying particle diffusion for a layer with the

diffusion coefficient D
2 
and the initial and boundary

conditions (3) and (4) that structurally correspond
to the results mentioned in [3].

6. A NUMERICAL ANALYSIS OF THE
DECAYING ADMIXTURE
CONCENTRATION BEHAVIOR IN A
LAYER WITH A HORIZONTALLY
REGULAR STRUCTURE

An illustration of decaying admixture concentration
distributions in a layer with a horizontally periodical
structure computed by the formulae (29) and (30) is
presented in Figs. 3-6. Numerical calculations have
been conducted in the dimensionless variables τ, ξ,
η introduced by (34). The problem coefficients have
been taken as ξ

0 
= 10; Λ = 1, λ  = 0.1, d = D

2
/D

1 
=

0.01, ρ
2
/ρ

1 
= 1.5, ( ) ( )c c1 2

0 0
/  = 0.1. In Figs. 3 and 4

distributions of the concentration of nondecaying
( λ%  = 0) and decaying ( λ%  = 10) admixtures along
the Oξ-axis in different time moments τ = 1; 5; 10;
20; 100 (curves 1-5, respectively) are shown in the
middle of domain Ω

1,
 i.e. at η = 0.5 (Fig. 3a) and at

ξ = 1.05 (the middle of domain Ω
2
, Fig. 3b) for k

1
/

k
2
 = 10.
Fig. 5 illustrates the behavior of the decaying

particle concentration function in dimensionless time
moment τ = 10 for different values of the dimension-
less coefficient of intensity of migrating substance
decay λ%  = 2, 5, 10, 20 (curves 1-4). Fig. 6 shows
the decaying admixture concentration ( λ%  = 10) dis-
tributions along the Oη-axis, i.e. on the width of a
separated body element. Fig. 6a illustrates the de-
pendence of function c(ξ,η,τ)/ ( )c 2

0
 on different time
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Fig. 4. Distributions of decaying admixture concentration along depth in different time moments at λ%  = 10,
(a) – in the middle of domain Ω

1
, (b) – in the middle of domain Ω

2
.

Fig. 5. Distributions of decaying admixture concentration along the body depth for different values of param-
eter λ%  at τ = 10, (a) – – in the middle of domain Ω

1
, (b) – in the middle of domain Ω

2
.

moments τ = 1, 5, 10 (curves 1-3) at depth ξ = 1.
Fig. 6b demonstrates the behavior of the concen-
tration function depending on the diffusion coeffi-
cients ratio d = 0.1; 0.5 (curves 1 and 2). The full
lines in the figure mark function c(ξ,η,τ)/ ( )c 2

0
 in mo-

ment τ  = 1 and the dashed lines identify it at τ = 10.
Let us note that the admixture concentration func-

tion behavior along the layer depth is substantially
different in domains Ω

1 
and Ω

2 
(see Figs. 3a-5a and

Figs. 3b-5b) for both the decaying and nondecaying
diffusing substance. Characteristic distributions of
the concentration along the layer depth in case of
migration of nondecaying particles in horizontally
periodical structures are similar to those with a quick
diffusion coefficient (see Fig. 3a) in a homogeneous
layer in region Ω

1 
and with a slow diffusion coeffi-

cient (see Fig. 3b) in multicomponent bodies in do-
main Ω

2
. At the same time, if substance decay pro-

cesses are taken into account, this may lead to

qualitative changes in the concentration function
behavior in all structural elements of the body. In
particular, in case of a more active mass source on
the surface, lower diffusion coefficient in domain Ω

2

and a more intensive transition of particles from Ω
2

into Ω1, a time-decrease of the subsurface maxi-
mum of the concentration is observed in domain Ω

2

(see Fig. 4b) down to reaching the stationary re-
gime for a homogeneous medium. Under such con-
ditions in domain Ω

1
 the subsurface local minimum

being characteristic for distributions of the decay-
ing admixture concentration (see Fig. 5a) decreases
in time, the value of the concentration c

1
 increases

and this function reaches also the stationary regime
for a homogeneous body (see Fig. 4a). A corre-
sponding decrease in the admixture concentration
values is observed for other proportions of the prob-
lem coefficients on all intervals depending on the
value of the admixture particle decay coefficient.
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7. MASS FLUXES OF DECAYING
PARTICLES IN A LAYER WITH A
HORIZONTALLY PERIODICAL
STRUCTURE

The obtained analytical expressions for the decay-
ing admixture concentrations give an opportunity to
find such important characteristics of mass trans-
fer as mass fluxes of admixture particles through
any surface x = x*. They are deduced by the for-
mula:
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 (41)

Substituting the corresponding expressions for the
admixture concentrations (29) and (30) into (41) we
obtain the following formulae for mass fluxes through
surface x = x* in domain Ω

1
:
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In particular, mass fluxes through the layer sur-
face x=x

0
 (x*=x

0
) take the form:

in domain Ω
1
:
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Fig. 6. Distributions of decaying admixture concentration along the body element width, (a) is shown for
different time moments, (b) is shown for different values of parameter d.
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In the same way mass fluxes of decaying par-
ticles through any vertical surface y=y*can be found.

8. CONCLUSION

In this work we have considered formulating an ana-
lytical solution of the contact initial-boundary value
problem of decaying admixture diffusion in horizon-
tally periodical structures. The method is based on
application of integral transformations over space
variables separately in contacting domains. Find-
ing such analytical expressions for the decaying
admixture concentration gives an opportunity to
define total mass fluxes through any body surface.
Obtaining the exact solution of such problem makes
it also possible to find exact solutions for particular
practically important initial-boundary value problems
(e.g. the Fisher problem).

The conditions have been determined, under
which a relation between a problem of decaying
particle diffusion in a body with a horizontally peri-
odical structure and a problem of one-dimensional
heterodiffusion by two ways, have been established.
It gives a possibility to introduce a natural dimen-
sionless form for a problem of mass transfer in hori-
zontally regular structures, too.

It should be noted that no conditions on the sizes
of contacting domains are used in the proposed
method for formulating an exact solution of the con-
tact initial-boundary value problems. Hence, it can
be suitable both for bodies with comparable sizes

of contacting regions and in cases when one do-
main width is much greater (or smaller) than the
other.

And finally, it should be noted that when consid-
ering the form of Eqs. (1) and (2) the solutions of
problems of mass transfer in horizontally regular
structures can be applied for studying heat transfer
processes in such bodies by treating the ideal con-
tact conditions as a partial case of the one pre-
sented in this work.
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