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Abstract. Interfaces are explicitly accounted for, within gradient plasticity, by assigning a finite
thickness to the interface or grain boundary and by differentiating between the constitutive prop-
erties of the “grain boundary” phase and the adjacent “bulk” phase. The present ]odel is applied
to consider the deformation of micro- and nano- crystalline materials under constant load or
constant displacement rate conditions. The corresponding stress-strain curves exhibit serra-
tions as observed experi]entally during nanoindentation or ]icrotensile tests: “plateaus” or
“strain bursts” in the case of a constant load rate and “serrations” or “stress drops” in the case of
a constant displacement rate. Such a genuine and routinely observed phenomenon when the
deformation process is experimentally monitored by sufficiently sensitive devices in a variety of
material classes is the main feature of the present contribution; a feature that has not been
captured theoretically before with a simple analytical gradient plasticity model.

1. INTRODUCTION

In order to capture the effective response of materi-
als that contain multiple interfaces, such as com-
posites and nanomaterials, homogenization tech-
niques [1-6] and molecular dynamics simulations
[7-9] are commonly used. Another approach that
has been successfully used is to consider the “co]-
posite” or the “nanopolycrystal” as a “]ixture” of
distinct superimposed and interconnected phases
with different constitutive properties and balance
laws assigned to each phase [10,11].

It is necessary, however, to develop a more rig-
orous formulation that can account explicitly for in-
terfaces, as it has been well documented that the
unique opto-electro-magnetic properties of
nanomaterials are attributed to internal surfaces,
such as grain boundaries and interfaces.

A theoretical formulation that can explicitly con-
sider interfacial effects was presented in [5], the A-
W model, according to which a separate interface
energy was assigned to interfaces, within a gradi-
ent plasticity framework [5,6]. This approach has
been successfully used to interpret the inverse Hall-
Petch (H-P) behavior in nc-polycrystals [12]. The A-
W model, however, treats grain boundaries as sur-
faces with zero thickness, which is not the case for
grain boundaries in nanocrystalline materials. This
assumption is removed here by allowing the grain
boundary to possess a finite thickness and assign-
ing to it different constitutive properties than those
of the adjacent grains. Then, the stress-strain fields
that continuously vary across the grain boundary
are determined through the solution of a boundary
value problem within a gradient plasticity framework
to account for the dominating effect of plastic het-
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Fig. 1. Geometric configuration of the unit cell model.

erogeneity and the associated development of high
strain gradients.

The gradient plasticity theory adopted in our
analysis is that essentially advanced by Aifantis
[13,14], but within a variational formulation analo-
gous to that used in the A-W model without allow-
ing, however, for jumps across internal surfaces and
corresponding interfacial energy penalty terms.
Within such a framework, the solution of a standard
mechanics boundary-value-problem for the assumed
unit cell configuration is obtained analytically for both
stress-controlled and strain-controlled loading con-
ditions. Several new and interesting results are ob-
tained in a straight forward manner. By confining
attention to simple linear elastic-plastic behavior, it
is possible to deduce explicit stress-strain relations
which can exhibit discontinuities in the for] of “pla-
teaus” or “strain bursts” for stress (load) controlled
tests (d = 0) and “serrations” or “stress drops” for
strain (displacement) controlled tests (d = 0). Such
stress-strain discontinuities are routinely recorded
at the nanoscale when indenting near grain bound-
aries in nc-materials [15]. They have also been ob-
served more frequently in micropillar compression
[16]. Prior to this experimental evidence, such ser-
rations were observed at macroscopic scales (by
using appropriate “strain gage” devices) for various
classes of ]aterials: Al-Mg in the Portevin – Le
Chatelier (PLC) regime, metallic glasses undergo-
ing massive multiple shear band deformation, ma-
terials deforming by twinning. They were inter-
preted as the result of local deformation instabili-
ties, which manifest themselves at the macroscopic
level [13]. It is, thus, hoped that the present formu-
lation may also be used for the aforementioned prob-
le]s by replacing, for exa]ple, the “grain bound-
ary” phase with the “shear band” phase.

The plan of the article is as follows: Section 2
provides the general variational formulation of the
adopted unit cell model (the interface is identified as
a grain boundary and it will be assumed as such
throughout the paper). Section 3 derives the solu-

tion of the corresponding boundary value problem in
the case that the grain boundary acts as a “hard”
phase. This is the case of usual strain hardening
behavior of conventional polycrystals where the grain
boundaries act as obstacles to the intragrain dislo-
cations. Stress–strain curves are obtained exhibit-
ing “strain bursts” or “stress drops”, as well as, size
effects in accordance with the trends of normal Hall-
Petch (H-P) behavior, i.e. smaller grain size associ-
ated with stiffer behavior. Section 4 contains analo-
gous results, but for the case where the grain bound-
ary acts as a “soft” phase. This is the case of nano-
polycrystals (nc’s) where the “interconnected grain
boundary phase” is the carrier of plastic defor]a-
tion, while the elastically deformed nanograins re-
sist dislocation motion or nucleation within them.
Stress–strain curves with “plateaus” or “serrations”
are again obtained but, this time, size effects re-
sembling the abnormal H-P relation are observed for
nc’s; i.e. below a critical grain size, smaller grain
size is associated with a softening response. Finally,
conclusions and prospects are listed in Section 5.

2. GRADIENT PLASTICITY
CONSIDERING GRAIN BOUNDARY
THICKNESS

As previously indicated, the unit cell model to be
used is that of a 1-dimensional / two-phase configu-
ration; i.e. a grain boundary phase of thickness Lgb

is situated between two identical grains of size Lg.
Both phases are deformed according to the gradi-
ent plasticity theory as first proposed by Aifantis
[14] and later followed by others, including the afore-
mentioned work of Fleck and Willis [4] and Aifantis
and Willis [5] who provided a variational formulation
of the theory and introduced interfacial energy ef-
fects (A–W ]odel), which were shown to be in agree-
ment with experimental data [17]. The configuration
departs fro] the A–W ]odel in the fact that the
grain boundary is not just a surface of discontinuity
but a region with finite width, which allows for a
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smooth transition between the two adjacent grains
that it connects. While such finite thickness con-
siderations may not be necessary for describing
macroscopic and microscopic behavior, it is of para-
mount importance for the description of sub-micro-
scopic and nano configurations where internal length
scales associated with the deformation of grain
boundaries play a decisive role in determining the
overall material behavior and the occurrence of size
effects.

The energy functional for a gradient dependent
continuum, in the deformation theory version of plas-
ticity is assumed to be of the form

t m

p p p

p
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d d .
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U( , p, p) is the elastoplastic potential, which
accounts for a linear elastic term, and also the plastic
potential V, which in the case of gradient plasticity
depends on the plastic gradient as well
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The kinematic quantities (u, , P, P) denote the
displacement, total strain, plastic strain and plastic
strain gradient, respectively; E is the elastic modu-
lus; t0 is the “]acroscopic” surface traction vector
conjugate to u, and m0 is the “]icroscopic” surface
traction tensor conjugate to P.  denotes the sum
of the three different domains making up the unit
cell ( = g1 + g2 + gb), while t and m de-
note the parts of the external boundaries (in this
case at x = ±[Lgb + Lg]) where the traction t0 (or the
displacement u) and the hypertraction m0 (or the
plastic strain P) are prescribed. (The subscript gb
denotes the properties of the grain boundary, g1 the
properties of grain 1 and g2 the properties of grain
2. Since grain 1 and grain 2 have the same material
properties g1 = g2 = g.) The primary independent
kinematic quantities in this model are the displace-
ment u and the plastic strain P; both are assumed
to be continuous throughout the unit cell domain,
along with their conjugate variables; this being the
]ain departure fro] the A–W ]odel where the higher
order stress suffers a jump across the grain bound-
ary and a corresponding surface energy penalty term
appears in Eq. (1). The elastic strain is defined as
usual by e= - p, while the total strain  and the
plastic strain gradient p are related to the inde-
pendent kinematic quantities u and p through the
definitions
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The respective conjugate variables to ( , p, p)
are the total (Cauchy) stress , the internal (back)
stress s, and the higher–order stress (hyperstress)
. They are defined by the relations
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It should be noted that the first two conjugate
variable relations are also present in the classical
case, but use of the plastic gradient p resulted in
the definition of the higher–order stress. The require-
ment that the energy functional is minimized at equi-
librium implies that the first variation of Eq. (1) has
to be zero for all allowed variations of the kinematic
quantities; hence, the “principle of virtual work” is
defined as
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Using the relationship between the kinematic vari-
ables Eq. (3), allows Eq. (5) to be re-written as
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which, upon integration by parts and use of the di-
vergence theorem, gives
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where n denotes the unit outer normal to the unit
cell external boundaries  and the internal sur-
faces . The corresponding jumps n  and n
are defined by

A A B B

A B A B A B

A A B B

A B A B A B

n n n

n n

n n n

n n

,

.



  (8)



77Accounting for grain boundary thickness in the sub-micron and nano scales

According to the present formulation these
jumps n , n  are identically equal to zero. The
indices A and B are used to denote the two
subdomains which border the internal boundary ,
with nA = -nB. It follows that in order for Eq. (7) to be
identically satisfied for all allowed variations u and
p, the following field equations, outer boundary
conditions, and internal boundary conditions hold:
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It is noted in particular that Eq. (10) suggests
that the higher–order stress, , is continuous across
internal boundaries when the two adjacent
subdomains are in the plastic state.

To proceed further, constitutive equations must
be defined for the plastic potential V( p, p) for both
the grain and the grain boundary phases. Motivated
by [5], the following quadratic expression is adapted
for V
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where ys

i
 is the yield stress of the grain, i de-

notes the hardening modulus, and li is an internal
length, accounting for the effect of strain gradients.
The index i = (gb,g) is used to denote the material
properties in either the grain boundary phase or the
grain interior. In particular, this form of V arises from
a modification of the linear hardening rule for classi-
cal plasticity: the term 1/2 i(

p

i
)2 accounts for the

effect of “statistically stored dislocations (SSD)”
while the 1/2 i

p

i
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)2 term accounts for the effect

of “geo]etrical necessary dislocations (GND)”. It is
therefore seen that, unlike the plastic strain, the
plastic strain gradient is not continuous across sub-
domains as g g

2l gb gb
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With this definition for the plastic potential, Eq.
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Upon substitution of Eq. (13) into Eq. (9), we obtain
the following differential equations
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for the kinematic quantities u and p. These are the
governing equations for the assumed unit cell, which
should be solved with the aid of appropriate bound-
ary and continuity conditions in order to determine
the defor]ation behavior and deduce stress–strain
curves.

3. DEFORMATION BEHAVIOR FOR
“STIFF” GRAIN BOUNDARIES

In this Section, the deformation behavior of the unit
cell is considered when the grain boundary acts as
an obstacle to intra-grain dislocation motion. This
is the case for macroscopic and microscopic scales
when the average grain size of the deforming poly-
crystal is of the order of microns and the yield stress
of the grain boundary phase, ys

gb
, is higher than the

grain interior yield stress, ys

g
. It is convenient then

to consider the deformation of the unit cell by dis-
tinguishing among three different stages as shown
in Table 1.

As these different stages are characterized by
different boundary conditions, we solve the corre-
sponding boundary value problem for each stage
separately. Before doing so, however, it is useful to
define the dimensionless variables below

g gb
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g gb g gb
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f f f f

L L L L

* *

* *
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l l
l l

l l  (15)

where L = Lg + Lgb.

3.1. The three-stage stress-strain
curve

(i) Stage One: In the beginning of deformation for
small applied stresses ( ), both the grain bound-

Stage 1 Stage 2 Stage 3

  Grain Elastic Plastic Plastic
interior

  Grain Elastic Elastic Plastic
boundary

Table 1. Stages of deformation within submicron-
scale domain.
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ary and grain interior are in the elastic state. As
there is no plastic strain ( p

i
= 0) the displacement

field is given by the expression

i i

i

u x C
E

,  (16)

where i = (g1,g2,gb) for both the grain interior phases
(g1,g2) and grain boundary phase (gb).

The constants (Cg1,Cg2,Cgb), are calculated by
allowing the displacement to be fixed at zero at the
surface of grain 2, while it remains continuous in
going from one phase to the other; therefore the
following boundary conditions are used
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Finally, the stress-strain response is obtained by
prescribing the displacement at the outer right hand
side of the unit cell (x = Lgb + Lg) as

g gb g gb g
u L L L L

1
2 ,   (18)

where  denotes the overall macroscopic strain,
associated with the applied stress . Solving Eq. (18)
for the stress gives the overall stress–strain relation
as
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suggesting that the overall effective elastic modu-
lus is identical to the Reuss modulus in composite
materials theory, i.e.
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where (fg,fgb) may be identical with the volume frac-
tions of the grain interior and the grain boundary
phases, respectively.
(ii) Stage Two:

Upon continuous deformation (e.g. by increas-
ing the applied stress ) the grain interior will be-
gin deforming plastically, while the grain boundary
will remain elastic. Thus, the plastic strain at the
grain boundary vanishes ( p

gb
 = 0) and the displace-

ment is given by Eq. (16). The plastic strain in the
grain interior is determined by solving the second
differential equation in Eq. (14)
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which upon insertion into the first equation of Eq.
(14) and subsequent integration yields the displace-
ment expression
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where i = (g1,g2).
The constants (Ag1,Bg1,Ag2,Bg2) are determined

by letting the plastic strain be zero on the grain
boundary, since it is in the elastic regime, and by
letting the higher order stress be zero on the exter-
nal surface, according to Eq. (11), i.e.
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while the values of (Cg1,Cg2,Cgb) are determined again
through Eq. (17). Then Eq. (18) can be used to de-
rive the corresponding stress-strain relationship
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ys

g
 denotes the critical strain at which the grain

yields, and is given by the relation
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The strain hardening rate (SHR) after the grain inte-
rior yields can be calculated through Eq. (24) as

g
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d 1
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where EReuss is the effective elastic modulus given
by Eq. (20) and g is the difference of the higher–
order stress between the grain interior and the grain
boundary, i.e.
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In the limiting case of zero grain boundary thick-
ness Lgb, Eq. (26) reduces to

g

g

g

g g g

l
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*

1
,

1 1 1
tanh

l
 (28)

which is exactly the expression obtained in [18]
within the framework of the A–W ]odel, which
treated interfaces as surfaces discontinuity, with-
out a thickness assigned to them.
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If Lg = lg, Eq. (28) degenerates further to the classical case

g

g g
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1
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(iii) Stage Three: Upon continuous deformation (by increasing, for example, the applied stress ) intra-grain
dislocations can penetrate the grain boundary. As a result a strain burst or a stress drop occurs initially at
a critical stress and strain ( ys

gb
, ys

gb
), and then the whole system (both the grain and boundary) work

hardens. Hence, both the grain interior and the grain boundary deform plastically according to Eq. (21),
while the displacement expression is given by Eq. (22), with i = (g1,g2,gb) in both equations.

The constants of integration (Ag1,Bg1,Ag2,Bg2,Agb,Bgb) are now deter]ined by letting the higher–order
stress and plastic strain to be continuous throughout the whole system, and again the higher order stress
is set equal to zero at the outer surface,
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Similarly as before the (Cg1,Cg2,Cgb) are determined by Eq. (17), and then the stress-strain relationship is
calculated through Eq. (18) as
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Where ( ys

gb

* , ys

gb

* ) represent the initiation of work hardening of this deformation stage. For the strain burst case,
ys

gb

*  is the grain boundary stress ( ys

gb
) and ys
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*  = ys
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which is the strain at which the strain bursts ends.
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For the stress drop case, ys
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*  is the strain at which the grain boundry yields ( ys
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) and ys
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*  is the stress
after the stress drop ys
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,
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The strain hardening rate (SHR), after the grain boundary yields, is denoted by gb and can be calculated
through Eq. (31) as

gb
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where EReuss is the effective elastic modulus defined as before
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Fig. 2. Stress-strain relationship for different loading conditions: (a) Strain burst after grain boundary yield-
ing under stress control. (b) Stress drop after grain boundary yielding under strain control.

Reuss denotes an analogous effective hardening modulus defined in a similar way by
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g denotes the difference of the higher order stress in the grain interior, i.e.
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and gb denotes the difference of the higher order stress in the grain boundary, i.e.
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It turns out that Eq. (34) degenerates to Eq. (24) of reference [18] when the thickness of the grain boundary
is vanishingly small (Lgb = 0) and it further degenerates to the classical case when Lg = lg; i.e. when the
effect of the strain gradient and higher order stress is ignored.

3.2. Discontinuities in the stress-strain curves

A new feature that can be deduced from the above analysis is the possibility of interpreting theoretically
various “discontinuities” in the stress-strain curves that have been observed experi]entally in the for] of
“strain bursts” or “stress drops” for stress/load controlled or strain/displace]ent controlled tests. Such
discontinuities may occur during the transition from stage 2 to stage 3. Both the strain bursts and stress
drops occur when the stress attains the critical value ys

gb
 or when the strain attains the critical value ys

gb
.

When the test is stress-controlled, a strain burst will occur at ys

gb
, and the burst will have a length ( ys

gb
 -

ys

gb
), while when the test is strain controlled a stress drop will occur at ys

gb
 and the observed stress

difference will be ( ys

gb
 - ys

gb
). Therefore, Vgb in Eq. (12) is defined separately for these two cases
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for stress-controlled tests, and by
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p p ys p p p
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for strain-controlled tests.
The corresponding full stress-strain curves for the two types of loading are depicted qualitatively in Fig.

2 and analytically presented below as follows:
(i) For stress-controlled tests: The overall stress ( ) – strain ( ) graph is given by the expressions
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(ii) For strain-controlled tests: The overall stress ( ) – strain ( ) graph is given by the expressions



82 X. Zhang and K.E. Aifantis
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where
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with (EReuss, g, g/gb) given as before.
It should be noted that in Eq. (41) the stain is given in terms of the stress as the experiment was stress

controlled. In plotting, however, these expressions they were re-written in terms of the strain. Having, thus,
derived the full stress-strain graphs for both stress-controlled and strain controlled tests we can compute
the “strain burst” and “stress drop” ]agnitudes by an elaborate, but straightforward calculation. The details
of this calculation will be included in a forthcoming article [19] as they are not necessary for the subsequent
physical discussion. Nevertheless, we list the central relationships for these quantities for the complete-
ness of the presentation. In fact, it can be shown without difficulty that the “strain burst”  (for the
condition d  = 0) is given by

g g g g gb gbys ys ys ys

gb gb gb g gb g

g gb g g gb g g g gb gb gb
L L

* * *
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It also turns out that an alternative expression for the ]agnitude of the “strain burst”  can be derived in
terms of the discontinuity of the hyperstress 

g
 or 

gb
 as follows

 
g gb

g g gb gb g g gb gb

g g g gb gb gb

f f f f* * * * * * * *

* *
tanh tanh tanh tanh .

tanh tanh
 l l l l

l l l l
 (47)

In a si]ilar way we can co]pute the ]agnitude of the “stress drop”  (for the condition d ) is given
by

ys ys ys ys

gb gb g g gb gb g/
 (48)

and, thus, the following interesting relation is obtained

ys ys

g g gb gb g

g gb

ys ys

gb g
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/

/

/

.
1 1

  (49)
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Summarizing the above results, we have shown
that in going from stage 2 to stage 3, of Table 1,
discontinuities in the stress-strain plot can take
place through either a “strain burst” or “stress drop”,
as the grain boundary phase yields.

In particular, the following two cases, depending
on the loading conditions can occur:
(i) If the experiment is stress controlled, once the

grain boundary yields, dislocations will be trans-
mitted across and therefore an avalanche of strain
bursts will be present in the stress-strain plot.
For this case Eq. (41)1 is plotted until the grain
yield stress is reached ( ys

g
); then Eq. (41)2 takes

over and is plotted until the grain boundary yields
( ys

gb
), at which point the strain burst occurs and

the constant stress is given by Eq. (41)3. Once
the dislocation transmittance across the bound-
ary is completed the material continues to work
harden according to Eq. (41)4. This is shown in
Fig. 2a.

(ii) If the experiment is strain controlled, upon grain
boundary yielding, the stress required for con-
tinuous plastic flow will drop, as the hardening
that was induced by the impenetrable grain
boundary does not exist anymore. This suggests
that Eq. (44)1 is plotted until the grain yield strain
is reached ( ys

g
); after which work hardening

takes place in the grain and the response is
defined by Eq. (44)2. At a critical strain the grain
boundary yields ( ys

gb
), and therefore, does not

act as a barrier to plastic flow; hence, the stress
required for continuous deformation drops and a
stress drop takes place as indicated by Eq. (44)3.
With continuing deformation the whole material
deforms in a hardening manner according to Eq.
(44)4, as shown in Fig. 2b.
Both of the above-mentioned stress-strain re-

sponses are possible based on the loading condi-
tions and their physical interpretation is as follows:

In Fig. 2a, initially the response is purely elastic
and the “traditional knee” is obtained when the grains
yield. Then the grains deform in a hardening man-
ner and the grain boundary acts as a barrier to dis-
location motion, leading to multiple dislocation pile-
ups. Once, however, a critical stress is reached the
grain boundary begins deforming plastically, allow-
ing for dislocation transference to occur from both
grains, leading to a perfectly plastic response and
a corresponding strain burst in the stress-strain plot.
Such experimental evidence has been observed in
the compression of micropillars [16] and a more
precise comparison with the existing experimental
data is currently being undertaken.

In Fig. 2b, however, it is seen that it is also pos-
sible to have a stress drop take place, instead of a
strain burst, once the grain boundary yields. The
underlying physical mechanism for this is that ini-
tially, as long as the grain boundary is stiff, it acts
as an obstacle to dislocation motion and contrib-
utes to a hardening response of the material. Once,
however, the grain boundary yields the overall stress
required to continue plastic deformation drops. This
is similar to the hardness drop observed in
nanoindentation data once the grain and grain bound-
ary yields [18]; in fact Isozaki [20] attributed the
effect of stress drops to grain boundary sliding, which
may be viewed as a type of grain boundary yielding.
Furthermore, discrete dynamic dislocations have
captured the occurrence of stress drops in hetero-
geneous plastic flow, which is confined to a few de-
formation bands [21]. In particular, they predicted
that when dislocations are distributed heteroge-
neously, they interact with each other to form tangles
and junctions and pinning points; at a critical state
of stress, they can bow out of these entangled struc-
tures leading to dislocation bursts and stress drops.
In the present three-phase model this pinning takes
place as the dislocations pile up at the grain bound-
ary (as long as it remains elastic) and once it yields
the dislocations can penetrate it, bow through it,
leading to a stress drop. Stress drops have also
been noted extensively in the literature for cases
where dislocations were pinned on impurity or sol-
ute atoms [22] but in the present case the only pin-
ning agent was the grain boundary.

3.3. Stress-strain curves and size
effects

In order to obtain a comparative understanding of
how the stress-strain response depends on the grain
size, four different grain sizes are considered. The
aforementioned formulation allows for the grains to
yield initially and then the grain boundary. Such a
mechanism is true for the submicron-scale and,
therefore, the grain sizes are taken as Lg= 0.05,
0.1, 0.15, and 0.2 m. The internal length of the
grain (lg) has to be smaller or equal to the grain size
and is therefore set equal to the smallest Lg consid-
ered, i.e. lg = 0.05 m. The grain boundary thick-
ness is kept constant at 2 nm (Lgb = 1 nm), and,
therefore, its internal length is set equal to the grain
boundary half thickness (lg = 1 nm).

Copper is of the most studied metals, and there-
fore its material properties will be used. Therefore,
The mechanical constants in the Cu grains are Eg=
120 GPa, ys

g
= 70 MPa, and g = 1.695 GPa (cal-
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Fig. 3. Stress-strain response for Cu submicron-bicrystal under stress control loading.

Fig. 4. Stress-strain response for Cu submicron-bicrystal under strain control loading.

culated from [23]). The parameters in the Cu grain
boundary are defined according to [7] as Egb = 75.9
GPa, ys

gb
= 130 MPa, gb = 3 GPa. Inserting, there-

fore, these parameters and grain sizes in Eqs. (1)
and (4), respectively, gives the resulting stress-strain
response for this system for both types of loading
as shown in Figs. 3 and 4.

In both Figs. 3 and 4 it is seeing that as the
grain size decreases, the flow stress required for
continuous plastic deformation increases, which is
what is expected for microstructured materials, ac-
cording to the Hall-Petch relationship. It is interest-
ing to note that a size effect in the stress-strain
response is present only in the region where grain
boundary yielding takes place. The size effects col-
lapse afterwards, indicating that plastic deformation
is governed by the grains, and since the grain yield
stress is taken to be independent of grain size, the
overall plastic flow appears the same for all grain
sizes considered. According to experimental data,
however, both in single crystals [16] and polycrys-

tals [24] the grain yield stress is dependent on the
grain size. So Figs. 3 and 4 can be re-plotted by
varying the yield stress for each grain size accord-
ing to Table 2.

As expected, significant size effects are now
obtained in Figs. 5 and 6, since the yield stress of
the grain interior which dominates deformation, is
allowed to vary depending on the grain size.

4. DEFORMATION BEHAVIOR FOR
“SOFT” GRAIN BOUNDARIES

Although nanomaterials are promising in new indus-
trial application, their use is compromised by their
lower ductility limiting their practical use [25-27].
Although Hall-Petch predicts that as the grain size
decreases the hardness increases, there exists a
critical grain size below which nanocrystalline ma-
terials beco]e softer. It’s, therefore, i]portant to
understand the underlying mechanisms dominating
deformation at the nanoscale. It is believed that grain
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Fig. 5. Stress-strain response for Cu submicron bicrystal under stress control, when the grain yield stress
is dependent on grain size.

Fig. 6. Stress-strain response for Cu submicron bicrystal under strain control, when the grain yield stress
is dependent on grain size.

  Lg, (mm) 0.2 0.15 0.1 0.05
ys

g , (MPa) 70  80 90 100

Table 2. Yield stress dependence on grain size.

Stage 1 Stage 2 Stage 3

  Grain Elastic Elastic Plastic
interior

  Grain Elastic Plastic Plastic
boundary

Table 3. Stages of deformation within nano-scale
domain.

boundary sliding, grain boundary diffusion, lattice
dislocation slip, twin deformation, Coble creep, and
triple junction diffusion creep are in competition dur-
ing plastic flow in nc-polycrystals [25,28].

GB dislocations and dipoles of wedge
disclinations, which are produced during grain bound-
ary sliding and migration through the triple junctions,
create stress concentrations that initiate nanocracks
and induce early failure of the nanocrystal [29,30].
Such disclication stresses can be released through
grain boundary diffusion, and a theoretical model
developed by Ovid’ko [29] shows that good ductility
can be achieved by optimizing the grain boundary

sliding and diffusion process. When deformation is
accumulated in the grain boundary region [25], in-
stead of the grain interior, the abnormal Hall-Petch
phenomenon on the hardness is observed. Defor-
mation in nc-polycrystals, therefore, occurs mainly
in the grain boundary phase which is interconnected
and evolves plastically with the nanograins acting
as hard inclusions. In nanocrystals, therefore, grain
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boundaries are “softer” than the grains, as they initiate and govern defor]ation. Thus, at the nanoscale, the
grain boundary phase will yield before the grain interior phase; hence, the yield stress of the grain boundary,

ys

gb
is smaller than that of the grain, ys

g
.

In trying to model the deformation of nanocrystals, we may consider three stages of deformation, and
the formulation presented in Section 2 is still valid, but now yielding occurs in a different order as shown in
Table 3.
(i) Stage 1: For initial elastic deformation we have the same situation as in Section 3 and the overall stress-
strain response is given by the relation

g gb g gb

gb g g gb

E E L L
E E

E L E L
Reuss Reuss

; ,


  (50)

where EReuss is the effective elastic modulus of the Reuss composite material.
(ii) Stage 2: With continuous deformation the grain boundary will begin deforming plastically, while the grain
interior will remain elastic. The plastic strain and displacement in the grain boundary is determined as
before through the relationships

gb gb

gb gb
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x xgbp

gb gb gb

gb
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As there is no plastic strain in the grain interior, the displacement in the grain interior phase is again given
by Eq. (16), while the constants (Agb,Bgb) are determined by allowing the plastic strain to be continuous
throughout the whole domain and therefore,

p p

g gb g gb
L L

1 2
0, 0.  (52)

The constants (Cg1,Cg2,Cgb) are also determined by an analogous way as in the previous section and, thus,
the overall stress-strain response for Stage 2 is given by the relation

gb b gb g gbys

gb gb

gb g gb gb g g gb gb gb gb

E E L L

E L E L E E L *
,

tanh




  l l  (53)

where 
gb

 is the critical strain at which the grain boundary yields and is defined by

gb g g gb ys

gb gb

g gb g gb

E L E L

E E L L
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(ii) Stage 3: Upon continuous deformation dislocations may be emitted into the grain, which can then begin
deforming plastically. At the onset of this transition ( ys

gb
, ys

gb
) a strain burst or a stress drop will occur

initially, and then the whole system (both the grain and grain boundary) work hardens. By employing similar
arguments as in the previous section the overall stress-strain response for this final deformation stage is
determined by the relation

g gb g gb gb g g gb g gb gb gys
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 (55)

where ( ys

g

* , ys

g

* ) represent the initiation of work hardening after grain interior yielding. For the strain burst
case, ys

g

*  is the stress ys

g
 and ys

g

*  is the strain after the strain burst and is equal to ys

g
,
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For the stress drop case, ys

g

*  is the strain ys

g
 and ys

g

*  is the stress after the stress drop and is equal to
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Although in ultrafine nanomaterials, it is most likely that the grain interior will never deform, for illustrative
purposes here it will be taken that eventually it can.

In summary, the stress-strain response is given in Eqs. (58) and (61).
(i) For stress-controlled tests: The overall stress ( ) – strain ( ) graph is given by the expressions
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where
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with
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(ii) For strain-controlled tests: The overall stress ( ) – strain ( ) graph is given by the expressions
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where
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with (EReuss, g, g/gb) given as before.
It is noted that Eqs. (58) and (61) are identical to Eqs. (41) and (44) if we interchange the subscripts as

g  gb, since now the order of yielding in the unit cell is reversed.

4.1. Stress-strain curves and size effects

As for the sub-micron scale case, discontinuities occur in the stress-strain plot after the second phase
yields, which in this case is the grain. Therefore, qualitative plots similar to those of Fig. 2 are expected in
this nanoscale case as well. Only now the strain bursts or stress drops occur once the grain yields.

For the present case the material parameters should meet the following requirements: Egb < Eg and

gb < g, while the grain size is taken to have a nanometer length. In particular, Eqs. (58) and (61) are plotted,
in Figs. 7 and 8, for the following parameters:

Fig. 7. Stress-strain response for Cu nanocrystalline under stress control loading.
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It is seen in Figs. 7 and 8 that the size effects are
always significant, despite the fact that the grain
yield stress is kept the same for all sizes consid-
ered. It is interesting to note that for this
nanostructured case an inverse dependence of the
flow stress on the grain size is observed; as the
grain size decreases the plastic flow required for
continuous deformation decreases, as well. This is
opposite than the expected increase of the flow
stress as the grain size decreased, observed in Figs.
3-6 for the sub-micron case. Although experiments
documenting the flow stress as a function of grain
size for nanomaterials are very delicate to design

Fig. 8. Stress-strain response for Cu nanocrystalline under strain control loading.

Fig. 9. Atomistic simulations on copper [31].

and perform, it is indeed anticipated that
nanomaterials below a certain grain size exhibit a
size effect as shown in Figs. 7 and 8. In fact atom-
istic simulations [31] as shown in Fig. 9, on very
fine grained Cu exhibit the same size dependence
as the present formulation suggests.

5. CONCLUSIONS

In the present study gradient plasticity was em-
ployed to explicitly account for grain boundaries,
by treating them as a separate phase with a finite
thickness, and allowing them, therefore, to follow
their own yield behavior. The unit cell model con-
sisted therefore of two phases, the grain phase and
the grain boundary phase. The novel feature of treat-
ing grain boundaries in this manner is that strain
bursts and stress drops are explicitly predicted for
in the stress-strain response, depending on the load-
ing conditions. In particular, for stress controlled
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loading a strain burst was observed once the harder
phase yielded, whereas a stress drop was observed
under strain controlled loading. Depending on the
scale of the microstructure, the softer phase, which
yields first, was taken to be either the grain (for the
submicron case) or the grain boundary (for the nano
case). In particular, it was noted that letting the grain
boundary yield before the grain, which is the case
for nanocrystals, the flow stress decreased as the
grain size decreased. To the authors knowledge such
an “inverse” size effect in the overall stress-strain
response, has not been predicted previously from a
theoretical or experimental point of view. It has, how-
ever, been anticipated by simulation results. A more
detailed comparison between the present gradient
plasticity model and experimental data of
nano]aterials (interpretation of the “ano]alous” Hall-
Petch dependence of the hardness on the grain size)
is currently being undertaken.
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