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Abstract. A special mechanism/mode of plastic deformation occurring through stress-driven
rotations of low-angle grain boundaries (GBs) near crack tips in nanocrystalline and ultrafine-
grained (UFG) materials is theoretically described. It is demonstrated that such rotations of GBs
represent energetically favorable processes in wide ranges of parameters characterizing pre-
cracked specimens with nanocrystalline and UFG structures. Also, these rotations of GBs in part
release high stresses concentrated near crack tips and thus hamper crack growth.

Nanoscale deformation processes occurring in
nanowires, micropillars, nanocrystalline and UFG
materials represents the subject of intensive re-
search efforts in materials science and physics of
nanostructures; see, e.g., [1—17]. In nanocrystalline
and UFG bulk solids, specific (inherent to
nanostructures) mechanisms/modes of plastic flow
effectively operate due to the combined nanoscale
and grain-boundary effects [2,3,7,8,11,12,14—16].
In nanowires and micropillars having either single
crystalline or amorphous structures, the combined
nanoscale and free-surface effects strongly influ-
ence plastic deformation processes and thereby
strength and ductility [1,4-7,9,13]. Recently, a par-
ticular attention has been devoted to nanowires and
micropillars with nanocrystalline and UFG structures
as solids where the three effects — the nanoscale,
grain-boundary and free-surface effects — coopera-
tively operate, which can cause the actions of un-
usual modes of plastic deformation [8,10,17,18]. For
instance, the experiment [8] revealed GB transfor-
mations of a new type — GB rotations — in
nanocrystalline Ni nanopillars under a mechanical

load. In Letter [18], GB rotations were theoretically
described as stress-driven processes representing
a new deformation mechanism in solids. As it has
been demonstrated in Letter [18], stress-driven ro-
tations of GBs effectively carry plastic flow and trans-
form GB defect configurations in nanocrystalline
nanowires, nanopillars and thin films as well as
within subsurface areas of bulk nanocrystalline sol-
ids due to the combined actions of the nanoscale,
grain-boundary and free-surface effects. Plastic de-
formation carried by rotations of GBs is accompa-
nied by crystal lattice rotations in the areas swept
by rotating GBs [18] and thereby can be treated as
a partial case of rotational deformation (defined as
plastic deformation accompanied by crystal lattice
rotations [19]). Following the experimental data [20—
24], crystal lattice rotations intensively occur in vi-
cinities of cracks growing in nanostructured
(nanocrystalline or UFG) materials. In the context
discussed, it is highly interesting to understand, if
stress-driven GB rotations can occur and thereby
contribute to the experimentally observed [20-24]
crystal lattice rotations in vicinities of cracks grow-
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ing in nanostructured materials. The answer to this
guestion is not a trivial extension of the results pre-
sented in Letter [18], because there are several
peculiarities differentiating the behavior of defects
near cracks from that in subsurface areas of
nanostructured solids (far from cracks). They are
briefly as follows: (i) local stresses are typically
much higher near crack tips due to stress concen-
tration, as compared to the subsurface area; (ii)
stress distribution is highly inhomogeneous near
crack tips due to the effect of the crack, as com-
pared to the subsurface area,; (iii) free surfaces as-
sociated with a growing crack grow and thus change
local stresses in vicinities of cracks, in contrast to
conventional (unchanged) free surfaces of solids.
The main aim of this paper is to examine and theo-
retically describe the special mechanism of plastic
deformation carried by stress—driven GB rotations
near cracks in nanostructured materials. In particu-
lar, we will reveal basic characteristics of such rota-
tions and compare them with those of the previously
examined [18] GB rotations in subsurface areas of
nanostructured materials.

Let us consider the geometric features of plas-
tic deformation mode occurring through stress-driven
rotations of low-angle tilt boundaries near cracks in
nanostructured solids. Fig. 1a schematically shows
a two-dimensional section of a nanostructured solid
consisting of nanoscale or ultrafine grains divided
by GBs and containing a flat crack. The solid is
under atensile load 6, whose direction is normal to
the crack plane. The area of the solid near the crack
contains a low-angle tilt boundary AB which is pre-
sented in the magnified inset in Fig. 1b. The plane
of the GB AB makes the angle o with the specimen
free surface and has the common point B with the
free surface (Fig. 1b). Also, the solid contains static
symmetric GBs CA and DA that form the triple junc-
tion A with the GB AB (Fig. 1b). We consider the
GB AB rotation under the action of the applied load
concentrated near the crack tip B, in which case
the GB rotates around the triple junction Afrom the
initial position AB to a new position AB’ (Fig. 1c).
Following the theory of low-angle tilt boundaries [25],
the GB AB is represented as a wall of periodically
(with a period p) arranged edge perfect dislocations
characterized by the same Burgers vector b (Fig.
1b). We denote the GB rotation angle made by the
lines AB and AB’ as ¢, the length of the GB AB as
d, and the crack length as L. We characterize the
stress near the crack tip by the stress intensity
factor K related to the applied load o, and crack

length L as K = o vnL/2. We also assume that
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the crack length L is much larger than the distance
d, so that in our further calculations the crack can
be approximated as a semi-infinite one.

Following [18], the rotation of the GB AB occurs
through the cooperative slip of edge dislocations
composing this GB in the direction normal to the
GB plane AB over various distances in such a way
that the rotating GB is flat and thus moves to its
new position AB’ (Fig. 1¢). The GBsAB and AD are
unchanged during the rotation of the GB AB. In this
situation, their combined role as a stress source is
effectively described by a wedge disclination located
at the triple junction Aand characterized by strength
o [18]. The tilt misorientation angles of the GBs
AB, CA, and DA at the triple junction A in the initial
state of the system (before the GB rotation; see
Fig. 1b) are balanced, in which case the triple junc-
tion A does not create stresses. In other words, in
the initial state of the defect configuration (Fig. 1b),
the long-range stresses created by the edge dislo-
cations composing the GB AB are completely com-
pensated for by the wedge disclination at the triple
junction A, that approximates the long-range
stresses created by the static GBs CA and AD. In
doing so, the disclination strength w is equal by
magnitude and opposite in sign to the tilt
misorientation 6 of the GB AB (o = -0).

During the rotation of the GB, it transforms from
symmetric tilt boundary in the initial state (Fig. 1b)
into asymmetric one in the final state after the rota-
tion (Fig. 1c). Itis related to the fact that the Burgers
vectors of GB dislocations change their orientation
relative to the GB plane during its rotation. That is,
after the rotation of the GB, the Burgers vector of
each of its dislocations located at the GB plane AB’
has non-zero components parallel and perpendicu-
lar to the GB plane AB’ (Fig. 1c¢), in contrast to the
initial GB state in which the parallel component is
zero (Fig. 1b).

In addition, the tilt misorientation angle of the
GB decreases (from 0 to 6’) due to the GB rotation,
because the perpendicular component of Burgers
vectors characterizing its dislocations after the GB
rotation (Fig. 1c) decreases, as compared to thatin
the initial GB state (Fig. 1b). The decrease in the
tilt misorientation angle violates the balance o =-0
of the misorientation angles of the GBs at the triple
junction A, and thereby the junction A becomes a
stress source whose elastic energy represents the
main hampering force for the GB rotation process.

Also, in the course of the GB rotation, some
dislocations approach the surface of the semi-infi-
nite crack and disappear, producing steps at the
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Fig. 1. (Color online) Geometry of grain boundary rotation near a crack in a nanocrystalline specimen. (a)
General view of nanocrystalline specimen containing a crack. Figures (b) and (c) show a magnified inset of
the region near the crack where stress-driven rotation of a tilt grain boundary occurs. (b) Initial state. Alow-
angle symmetric tilt boundary AB—a wall of periodically spaced edge dislocations—is located near the free
surface and forms a triple junction A with two static symmetric tilt boundaries AC and AD. (c) Stress-driven
cooperative motion of GB dislocations occurs which results in tilt boundary rotation (by angle ¢) from its
initial position AB to a new position AB’. Also, grain boundary rotation leads to the disappearance of several
grain boundary dislocations at the crack surface and associated formation of steps at this surface. (d) The
defect configuration consisting of both periodically arranged dislocations with the Burgers vectors b in the
rotated dislocation wall and the disclination characterized by the strength  at the triple junction A is
presented as the defect configuration consisting of a pile-up of dislocations with the Burgers vectors Ql,
parallel to the plane of the rotated GB and the disclination with the strength w, = wsinp at the same triple
junction (for details, see text). (e) Decomposition of the periodically arranged dislocations with the Burgers
vectors b into a pile-up of dislocations with the Burgers vectors b , parallel to the plane of the rotated GB,
and a wall of dislocations with the Burgers vectors b, normal to the plane of the rotated GB. The wall
of dislocations with the Burgers vectors is approximately equivalent to a wedge disclination with the
strength '.
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crack surface. In general, this affects the critical
stress intensity factor for crack advance. However,
for simplicity, in the following we neglect the effect
of the steps at the crack surface on crack propaga-
tion and consider the crack as a flat one. Also, the
nanocrystalline specimen is conventionally modeled
as an isotropic solid characterized by the shear
modulus G and Poisson’s ratio v.

Let us calculate the energy change AW (per unit
length of dislocations) specifying GB rotation near
the crack tip (Figs. 1b and 1c). To do so, for conve-
nience of the calculations, we present each dislo-
cation having the Burgers vector b as the superpo-
sition of the two dislocations characterized by the
Burgers vectors b and b|| perpendicular and paral-
lel to the rotating GB plane, respectively (Fig. 1e).
The Burgers vectors magnitude b and bII are given
as: b, = bcose and b, = bsing, respectively. Also,
note that the finite regular wall of the dislocations
specified by the Burgers vectors b  and the period
p/cos¢ as a stress source is equivalent to a wedge
disclination located at the triple junction Aand char-
acterized by the strength o’ ~ bcose/(p/cose) =
-(b/p)cos?ep (Fig. 1e). Since o ~ b/p, we find: ©' =
®Ccos?p. The superposition of this disclination and
the initial disclination located at the triple junction A
and characterized by the strength w represents the
disclination having the strength o, = o + o’ = 0sin‘p
(Fig. 1d).

As it has been noted previously in this paper, in
the initial state of the defect configuration (Fig. 1b),
the stresses created by the edge dislocations com-
posing the GB AB are completely compensated for
by the wedge disclination located at the triple junc-
tion A and characterized by the strength . In this
case, the initial defect configuration (Fig. 1b) con-
sisting of the dislocation wall AB and the disclination
at the triple junction A does not possess any elas-
tic energy. Then the energy change AW can be pre-
sented as follows:

N
AW =W + > W'(r ) +

k=1

ZWi:l_A(rk,(p) +z zWin(:_d(rk’rj’(p)_ (]_)

k=1 j=k+1

A (9)+(N, —N)W

step !

where N, is the initial number of dislocations, N is
the number of dislocations after GB rotation, and
r.= kp/cosg is the distance from the kth dislocation
to the triple junction A after GB rotation. Also, in
formula (1), W2 denotes the proper energy of the
disclination A with the strength o , W(r,, ¢) is the
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proper energy of the kth dislocation with the Burgers
vector b”, Win‘i’A(rk,(p) is the energy of the interac-
tion between the kth dislocation with the Burgers
vector b and the disclination of strength o,
W, (r,.r,, @) is the energy of the interaction between
the kth and jth dislocations having the Burgers vec-
tors b”, A_(9) is the total work spent by the stress
field (created by the applied load in the solid con-
taining the crack (Fig. 1a)) on the motion of all the
dislocations with the Burgers vectors b to either their
new positions or the crack surface, and W is the
surface energy of a step created by a dislocation
that enters the crack surface (Figs. 1c and 1d).

The expression for the energy W2 of the
disclination in an isotropic solid with a semi-infinite
crack has been calculated previously [26]. The en-
ergy W, follows as (e.g., [18]) Wstep:Yb’ whereyis
the specific surface energy. The other terms in for-
mula (1) have been calculated in the standard way
[18] using the known expressions [26,27] for the
stresses created by individual dislocations and
disclinations in a solid containing a semi-infinite
crack (see Appendix A).

As a result, we have calculated the energy
change AW in the exemplary case of nickel. In our
calculations, we have used the following typical val-
ues of parameters characterizing Ni [25]: G = 73
GPa, v =0.34, b = 0.25 nm, y,= 2.28 J/m?. The
dependences of the energy change AW on the angle
¢ of GB rotation are presented in Fig. 2, for the fol-
lowing values of parameters: © = 15°, d = 10 nm,
K,= 1 MPa m'?, and various values of the angle a..
The chosen value of K is approximately equal to

the critical stress intensity factor K _ for brittle frac-

ture. (The latteris given [28] by K . = /4YG /(1- V),
which yields: K . =1.004 MPa m*2.)

Fig. 2 demonstrates that the curves AW(op) show
local oscillations that are, apparently, associated
with both the uncertainties in the energies of dislo-
cations located very close (at the distance about
one interatomic distance) to the crack surface as
well as computational errors. However, with these
oscillations neglected, one can see that AW first
decreases and then increases with increasing o.
For some angle ¢ = ¢, the energy change AW is
minimum. The equilibrium value Peq of the angle ¢
depends on the GB orientation with respect to the
GB plane (characterized by the angle o). In particu-
lar, when a grows from 30° to 60°, the angle Peq
increases from approximately 4° to approximately
10°. The value Poq= 10° is large enough and indi-
cates that pronounced GB rotations can occur near
crack tips in mechanically loaded solids.



Grain boundary rotations near crack tips in deformed nanomaterials 101

1 . M

0 2 4 6 8 10 12 14
¢, deg
Fig. 2. (Color online) Dependences of the energy
change AW (characterizing grain boundary rotation
near crack) on the rotation angle o.

AW, nl/m
- o

'
[\S]

We now compare the equilibrium rotation angle
Peq in the case of GB rotation near a crack in
nanocrystalline Ni (Fig. 1) and that in the examined
previously [18] case of GB rotation near a free sur-
face of nanocrystalline Ni. In the second case, we
consider GB rotations near a flat free surface, with
the load 5,=0.1D ~ 1.76 GPa (where D = G/[2nr(1 -
v)]) being applied in the direction parallel to the free
surface. This load creates the shear stress t=0.05D
driving the dislocations to move in the planes that
make the angle of 45° with the free surface. In this
case, for the initial GB length of 10 nm, GB
misorientation angle of 11°, the equilibrium GB ro-
tation angle is in the range from 6° to 8°. In the case
of GB rotation near a crack, we consider the same
values of the applied load, GB misorientation and
GB length (c,=1.76 GPa, d = 10 nm, and o = 11°,
respectively) and various values of the crack length
(50 and 207 nm) as well as various values of the
angle o between the initial GB plane and crack plane
(0.=45° and 60°). The crack lengths of 50 and 207
nm correspond to the stress intensity factors
K,=0.493 MPa m'? and 1 MPa m'?, respectively.

With our calculations, we found the following
results. For o =45° and L = 50 nm, we have: Ppq=
4°-6°. For o =45° and L = 207 and nm, we obtain:
Ppq= 6°-8°. For a.=60° and L =207 nm, we obtain:
Ppy= 9°-11°. For Ppy = 6°-8° and L = 1 um, which
approximately describes a large blunt crack with
the length much larger than the Griffith length of a
sharp crack, we have: (peq=16°-18°. Thus, the equi-
librium angle of GB rotation near a crack tip can be
much larger than that in the case of GB rotation
near a free surface if the crack length is large
enough.

To summarize, stress-driven rotations of GBs
near cracks represent energetically favorable pro-
cesses in wide ranges of parameters characteriz-
ing pre-cracked nanostructured materials. Depend-
ing on the crack length, GB rotations near cracks
in pre-cracked materials can be hampered or en-

hanced, as compared to GB rotations near free sur-
faces of nanostructured materials free from cracks.
In particular, when the crack length L is large enough
(L>1 pum), cracks highly enhance GB rotations.

Note that GB rotations (Fig. 1) in part release
high stresses concentrated near crack tips and thus
hamper crack growth. Our theoretical estimates of
the equilibrium angle Peq of GB rotations (see above)
allow us to conclude that GB rotations (leading to
crystal lattice rotations in nanoscale regions) near
cracks can significantly contribute to the experimen-
tally observed [20—24] crystal lattice rotations near
cracks in nanostructured materials. In parallel with
GB rotations, other modes of the rotational defor-
mation can play role in the crystal lattice rotations
in question. For instance, the crystal lattice rota-
tions near cracks can be effectively carried by the
stress-driven migration of GBs in its conventional
“ideal” geometry with the migration direction being
perpendicular to the GB plane [29]. At the same
time, geometry of the stress-driven GB migration in
real nanostructured materials (see, e.g., pioneering
experimental works [30,31]) deviates from the “ideal”
geometry, and these deviations and associated
changes in grain shapes can be described in terms
of GB rotations.

ACKNOWLEDGEMENTS

This work was supported, in part, (for IAO) by St.
Petersburg State University research grant
6.37.671.2013 and the Russian Foundation of Ba-
sic Research (grant 12-01-00291-a), and (for AGS)
by the Russian Ministry of Education and Science
(Grant 14.B25.31.0017).

APPENDIX A

ENERGY ASSOCIATED WITH GRAIN
BOUNDARY ROTATION NEAR A
CRACK TIP

In this Appendix, we calculate the terms appearing
in expression (1) for energy variation AW due to GB
rotation near a crack tip (see Fig. 1). The expres-
sion for the energy W* (appearing in formula (1)) of
the disclination in an isotropic solid with a semi-
infinite crack has been calculated previously [26]. It
can be presented as W= W*(d,a-r), where

A (DlrD A
w (rO,OO):?IGOO(r,rO,O,GO)|0:0 (r, —r)dr, (A1)
0

o, (r,r,6,0,) =4Re® sin® 0+

Reg, cos20 +Img, sin20, (A2)
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g,=®, +Q, +(z-2)(®,), (A3)

d)A(z):D;)1 In(\/;\/Z)In(\/;+\/2)+\/zjz\/2+2\/;(zj/;i°\/2:) , (A4)

QA(Z):D;D1 In(x/_—\/g)—ln(\/;+\/2)+\/zjz\/7 2\/—(2\/:2_\/—) (A5)

z=re", z, =re", i =+/-1, and D = G/[2n(1-V)].
The energy Wm“l’“(rk,(p) is calculated as [32]

A LA "ot ’
|:I (rk’(\D) = b”J‘r Gx'y'(x 1y = 0) dX y (AG)

where | = dsina/sin(a+o) is the length of the GB after its rotation and csjy, is the component of the disclination
stress in the Cartesian coordinate system (x’,y’) shown in Fig. A1, which is in the following relation with the
disclination stress components in the Cartesian coordinate system (x,y) associated with the crack (see
Fig. Al):

Gi,y,(X,, y')=(1/2) (csjy - Gi)Sil’l[Z(a + )]+ ciy cos[2(a + ¢)]. (A7)
The components ij , csjy , and cjy are expressed in terms of the functions ®, and g, as [33]
o, =Re[4®, —g,], o, =Re[g,], o, =-Im[g,], (A8)

where the functions @, and g, are given by (A4) and (AS5) with z = x + iy and z,= -de™. In turn, the
coordinates (x,y) are related to the coordinate x’ (aty’ = 0) appearing in formula (A7) as x = -h -(I-x")cos(a+¢),
y =-(I-x")sin(a+¢), where h = dsing/ sin(a+¢).
The energy \Nm‘i’d(rk,rj,(p) of the interaction between the kth and jth dislocations with the Burgers
vectors bII is calculated as [32]
|
W' (r.r,9) =b, r o, (x,y" =0)dx, (A9)

where c:,y, (x",y") is the component of the stress of the kth dislocation in the Cartesian coordinate system
(x’,y’) shown in Fig. A1, which is in the following relation with the disclination stress components in the
Cartesian coordinate system (x,y) associated with the crack (see Fig. Al):

o, (X,y)=(1/2)(c] -0, )sin[2(a+¢)] + o, cos[2(a + ¢)]. (A10)
The components c:x , cjy ,and c‘jy are expressed in terms of the complex functions ®, and g, as [33]
o, =Re[4d -g,], o, =Re[g,], o, =-Im[g,], (A11)

where the functions @, and g, are given [27] by

g, =0, +Q, +(z —Z)d)_d‘, (A12)

D (z)=A = Z—k+1+ ! i—1 A(Z ~z.) \/7 — -
e z-z \\Vz z-z \\Vz 2z-7) (A13)
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Fig. Al. Geometry of defects in a rotated grain boundary near a crack tip.

Q(z2)=A ! \/§—1+ ! i+1 A(Z \/7 —+2
A z-z \z 2(z—z) (Al4)

Z=X+iy, zj:xj+iyj, and A= Gb"e‘(“"“’)/[Sni(l-v)]. Here the coordinates (x,y) are related to the coordinate x’ (at
y'=0) appearing in formula (A10) as described above.
The proper energy W(r,,¢) of the kth dislocation with the Burgers vector b|| can be presented as

W (r, @) = (L/2)W,:(r,.r, +b,¢)+Db’ /2. (A15)

Here the first term on the right hand side of formula (A15) denotes the strain energy of the dislocation while
the second term designates the energy of the dislocation core.

The total work A _(¢)of the stress field created by the applied load in the solid with the examined crack
(Fig. 1a) done on the motion of all the dislocations with the Burgers vectors b to their new positions or to the
crack surface follows from

A = —szljcjv(x” =r,y")dy", (A16)

k=1 o

where . .(x",y") is the component of the stress field created by the applied load in the examined solid
with a crack in the Cartesian coordinate system (x”,y”) shown in Fig. A1, and s_is the distance moved by
the kth dislocation in the course of GB rotation. The distance s, follows as

s, =min{r tang, (d —r )tana}. (A17)

The stress component cjﬂy,,(x”, y") is in the following relation with the stress components in the Cartesian
coordinate system (x,y) associated with the crack (see Fig. Al):

c..,.(x"y")=(1/2)(c], - c,,)sin(2a) + o, cos(2a). (A18)
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Using the expressions [28] for the stress field cre-
ated by a tensile load in an infinite solid with a semi-
infinite mode | crack, formula (A18) can be presented
as

2~/ 27r

o, (X",y")= sin@cos(2a —3a/2), (A19)
wherer=[(d-x")?+ (y”)?]*?and 6 = a - = - arctan[y”/
(d-x")].

The number N of dislocations after GB rotation
is calculated as

N - [d sinacosm}
psin(a + o) '

In formula (A20) ... denotes the integer part, in con-
trast to other formulae where this sign designates
square brackets.

The energy WStep follows as (e.g., [18]) W
where vy is the specific surface energy.

Thus, we have calculated all the terms appear-
ing in formula (1) for the energy variation AW asso-
ciation with GB rotation near a crack tip. This en-
ergy is given by formulae (1), (A1)-(A17), (A19) and
(A20).

(A20)

_b,

step =Y
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