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Abstract. A simplified two-dimensional model of a quantum particle which interacts with another
one through a one-dimensional Morse potential is studied. it is examined to what degree a small
deformation of this one-dimensional interaction channel influences the ground state energy. The
problem is important for the discussion on the deformation of various kinds of nanosurfaces
such as carbon nanotubes. A deformation passing from the straight line geometry to ring geom-
etry is considered. An upper bound for the number of oscillatory states is estimated and it is

related to the deformation.

1. INTRODUCTION

The paper belongs to the line of research often called
singular perturbations [1-3] used to study the low-
dimensional quantum confinement effects. The cor-
responding quantum models are usually motivated
by various kinds of nanostructured systems, like
carbon nanotubes which exemplify 1D systems,
quantum wires or 2D crystals. The electronic prop-
erties of such systems strongly depend on their
geometric structure. In particular, the carbon
nanotubes, depending on the diameter and helicity
(described by (n,m) indices) of the tubes can be
either metallic or semiconductor with energy gaps
of different sizes [4]. For example, the (n,m) carbon
nanotubes where n - m = 3j and j is a non-zero
integer would represent metals but due to the
nanotube curvature, a small band gap appears and
they become semiconductors [4]. If the tube radius
R increases, then this gap decreases as 1/R*. An
example of geometric confinement in other quan-
tum systems can be the ground state properties of
a toroidally trapped Bose-Einstein condensate
where the curvature lowers the ground state energy
[6] or the curvature-dependent conductance reso-
nance in guantum cavities [6].

Let us suppose that we have a quantum particle
confined in a narrow tube formed by some semi-
conductor material. Since the tube is very thin we
can modelitbyalineTin R” where n=2, 3. Some
additional properties of I" will be specified in further
discussion. Furthermore, let us assume that the
particle living in such a tube is interacting with an-
other particle through the Morse-like potential

U(s)=y(1-e* )2 - a,

where v, o and a are positive constants and argu-
ment s € R determines the localization on T or,
other words, it parameterizes I'. The formulain Eq.
(1.1) is a slight modification of the typical one-di-
mensional Morse potential which reads as U(s): =
y(1 - %)% On the other hand, the function (1.1) quali-
tatively corresponds to the three dimensional po-
tential V(r) =v(1 - e*)? considered by Morse in 1929
[71. Another reason for such a modification is the
fact that in this paper we are interested mainly in
the bound states which are induced by the negative
component of the interaction potential. Therefore,
we believe that the results derived here do not
change too much for the potential in Eq. (1.1), but
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the mathematical analysis is more involved. The
interaction potential in Eq. (1.1) describes a situa-
tion when the reference system origin is associ-
ated with another particle such that a kind of a di-
atomic molecule is formed if the bound states ex-
ist. However, due to the possibility of tunneling, the
whole space R" is admitable for the quantum par-
ticle; consequently the Hamiltonian of such a sys-
tem can be symbolically written as:

-A” 4 Us(x-T), (1.2)

where I, as before, describes the nanotube geom-
etry, 5(¢) denotes the Dirac function and -A" stands
for the n"dimensional Laplacian; in the following we
restrict ourselves to n = 2 and y = a. The kind of
potentials which are localized on lower dimensional
manifolds are often called singular. The main point
of this paper is to show how the geometry of the
nanotube relates to the spectrum of the system.
The corresponding problem was already studied by
P. Exner and others, (see [1,8,9] and references
therein), however, in the models which have been
considered so far the corresponding singular poten-
tials are defined by coupling constants only; the
interaction we consider here varies on I". On the
other hand, the spectral analysis derived in [2] is
given for a much more general case than singular
perturbation given by a coupling constant (it is the
so called by dynamics perturbation), however, the
perturbation support is determined by a piece of a
straight line and does not admit any deformation.
Let us also mention that there are extensive litera-
ture sources where nanostructures are mathemati-
cally “realized” by graphs, cf. [10-12]. However these
kinds of models, in contrast to our approach, do not
take into account the possibility of tunnelling. The
main result of this paper can be summarized as
follows:

* The deformation of a nanotube described by I'
'pushes down’ the ground state energy. To be pre-
cise, if I" is not related to a straight line (but as-
ymptotically straight), then the ground state en-
ergy is lower than in the case of a straight line,
see Theorem 2.3.

* We show how an upper bound for the number of
bound states relates to the nanotube deforma-
tion, Theorem 2.3.

Convention of the paper. The paper is mainly
addressed to the physicists who are interested in
nanostructure problems and, in our opinion, the re-
sults we obtain are important for nanostructure de-
vice engineering. However, these results are also
strict from the mathematical point of view. To make

the reading easier, the involved technical details
which require advanced mathematical tools are
omitted or moved to the appendix. For readers who
are interested in rigorous mathematical proofs we
recommend [3,8,9].

2. HAMILTONIAN WITH SINGULAR
PERTURBATION DEFINED BY THE
MORSE POTENTIAL

We are interested in Hamiltonians with the interac-
tion potential localized on a manifold of the lower
dimension and described by the Morse-like func-
tion, see Eq. (1.1). We start with the simplest mani-
fold, namely, let us consider the straight line in R*
being a graph of the function s — Z(s):= (s,0) e R?,
s e R.We denote the line by X as well without any
danger of confusion. The Hamiltonian we are going
to discuss can be formally written as the following
symbol;

H,= AP 4 (y(1 —e™" )2 - a) X

2.3
5(x-3), a>0, 2:9)

where y, a are positive constants and A® stands for
the two dimensional Laplace operator; finally 8(--Z)
denotes the Dirac function which is, in fact, a sin-
gular measure with support on Z, i.e. f(Z(s)) =
_L, 8(x-2Z(s))f(x)dx. Once H,, is only a sym-
bol, our first aim is to find a well defined self-adjoint
operator in the Hilbert space L= L2( R?)which we
will later denote by H,, , and which preserves the
intuitive properties of the above expression. In this
paper we make use of a technical simplification
putting o =y and consequently denoting

V(s)= v, (s) = y(1 —eM )2 —-v.

We postpone the discussion of the general case to
a forthcoming paper. We will follow the notions (e, ee),
||#}| which denote the scalar product and the norm
in L2, We employ the so called form sum method in
order to give a physical sense to the symbol Hy.a.
Let us consider the energy quadratic form given by

(2.4)

e, (f.9) = L VFVgdx + LVflx g, ds,

where f, g are C' functions from L* with Vf, Vgel?
and the symbol f|; stands for the restriction of fto

3, precisely f |(s) = fi=(s)) = [ 8(x-2(s))x
f (x)d x. Relying on the results of [3] the operator
H,is associatedto e, , i.e. H (f, g) = ¢, (f,9) is self-
adjoint and can be understood as a mathematical

(2.5)
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Fig. 1. Schematic draft of a diatomic molecule in the case of the straight line confinement for the constitu-
ent atoms and in the case of its deformation into a ring (left panels). A lowering of the ground state can be

observed due to the curvature (right panels).

realization of (2.3). For more information about qua-
dratic forms perturbed by singular measures we rec-
ommend [13]".

2.1. Spectrum of H,

The aim of this section is to state some important
facts about the spectrum of H, . In particular, we will
be interested in the discrete spectrum o (H, ) which
determines the energies of the bound states of the
quantum system governed by H,. The completion
o.(H,) = o( H )\ o (H,) is usually called in phe-
nomenological literature a continuous spectrum,
however keeping in mind the convention of the pa-
per we introduce here the mathematical notion of
the essential spectrumforo_(H,).

Our first task is to recover the essential spec-
trum of H,,. Itis well known that if the potential van-
ishes sufficiently fast at infinity, then it is not able to
change the essential spectrum. In fact, this is our
case; the Morse potential localized on X vanishes
exponentially. The stability of the essential spec-
trum of H , with respect to Hamiltonian without inter-
action, i.e. -A?, is stated in the following lemma
with the proof moved to Appendix.

Lemma 2.1. The essential spectrum of H  is the
same as -A?, j.e.

o, (H,)=[0,%).

ess

The stability of the essential spectrum is a natural
consequence of the fact that the singular potential
in our model vanishes at infinity. On the other hand,
the potential in question is negative and it can in-
duce some bound states with energies below 0. It
is known that in a two-dimensional system a nega-
tive singular potential localized on compact line al-
ways has a discrete spectrum. In our problem we
do not have a compact manifold. However, we can
easily extend the mentioned result to our case since
the potential Vis negative and the essential spec-
trum threshold is 0. Therefore, we come to the fol-
lowing conclusion:

Lemma 2.2. Hamiltonian H, has at least one bound
state with the corresponding energy below 0.
Since the ground state energy of H,, will play an
important role in the following discussion, it will be
given symbol €, ; the ground state energy is noth-
ing else but the infimum of the whole spectrum

&, =infc(H,). (2.6)

'In fact, the operator associated to ¢, is called essentially self adjoint. This means that we need to take its

closure to obtain self adjointness.
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2.2. Deformation of X

Now, we turn to the main issue of this paper: what
happens with the spectrum after a deformation of =
or, physically speaking, whether a deformation of
nanotubes changes the bound state energy spec-
trum of the quantum system. We define a deformed
curve I'in R?, i.e. I' does not coincides to £ and
assume that I' is parameterised by the length
of arc (the corresponding parameter will be
denoted by s). To be precise, I is a graph of the C?
functon R s —» I(s) e R*, and moreover it is
assumed that I' is asymptotically straight. This
means that

(a1) there exists a compact set M € R* such
thatr' W c S.
Consequently, the curvature k; s » x(s) of T is a
function with compact support. The size of this sup-
port is denoted by D, i.e. D is the length of

D:=suppk ={s:k(s)=0}", (2.7)

if © consists of a finite number of disjoint connected
sets, then D is a sum of lengths of the correspond-
ing sets. Furthermore, we can measure the distance
between two points living on I taking a usual Carte-
sian distance in R?, i.e.

p(s.s"):=[r(s)-T(s") =

2 12
(Sr@)-rEy) aser @9
i=1
or moving along the curve
o(s,s')=|s-s, (2.9)

then o(s,s’) states the Euclidean distance. Of
course, due to the parameterization by the length
of arcwe have

p(s.;s")<o(s,s). (2.10)

To exclude self-intersections the second assump-
tion is imposed which is a kind of an inverse in-
equality, namely

(a2) there exists a constant C > 0 such that
Cp(s,s") 2 o(s,s").

After these preliminaries we are ready to con-
struct a Hamiltonian with a singular potential local-
ized on T" and determined by the Morse-like func-
tion.

Analogously as in (2.5) we consider:

e, (f.9)= [ vivgdx+ [ V] g ds (2.11)

and again we borrow the argument from [3] to con-
clude that the operator H, . associated with ¢, . is
self-adjoint. The Hamiltonian H, . gives a mathemati-
cal meaning to the formal expression:

-A? 1 v§(x-T). (2.12)

Repeating the argument from Lemma 2.1 we
state the stability of the essential spectrum:

00 (H, ) = [0,).

Now the question is whether the deformation in-
fluences the bound state energies. A partial answer
is contained in the following theorem:

Theorem 2.3. Hamiltonian H, . has at least one
point of a discrete spectrum; moreover its ground
state energy e, ,, satisfies

(2.13)

ovr

€ < e

ovr oV

Comment on proof. The idea of the proof is bor-
rowed from [8] (see also [9]) and based on the so
called Birman-Schwinger principle. In [8] an attrac-
tive singular potential localized on I' and defined by
a negative coupling constant has been considered.
The Hamiltonian H_ of such a system can be for-
mally written:

-A? —a3(x-T), o> 0. (2.14)

In particular, it has been shown in [8] that inf
o(H, ) <info(H, ), i.e. the deformation pushes down
the lowest energy?. This model is slightly different
from ours, however, the proofs of Lemmas 5.3, 5.4,
5.5 of [8] can be repeated with the obvious changes
and adopted to our problem; we omit here the in-
volved mathematical analysis and postponeitto a
forthcoming paper. Theorem 2.3 shows that the de-
formation leads to pushing down the ground state
energyof H,.

3. UPPER BOUND FOR THE NUMBER
OF BOUND STATES AS A
FUNCTION OF CURVATURE

'The aim of this section is to find an upper bound for

the number of bound states of H,, ; we use here the
standard notation #c (H,, ) for the number of bound
states (together with their multiplicity). We are es-
pecially interested in the question how the corre-
sponding upper bound changes with the parameters
corresponding to the deformation of I'. Using the
result of [14] we conclude that the following formu-

lae:

?In fact, in [8] the authors have shown that the deformation induces bound states. In a system with a
straight line interaction defined by a coupling constant there is only an essential spectrum, however, if we
deform a Z, then at least one point of the discrete spectrum appears below inf o(H_ ,).
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N, =1+ L ‘V,a (S)HVYa (s')t x

|C,In|s - s'|+C,|* dsds’ (3.19)
and
N, =1+ [V (). ()

(3.16)

|C,In|0(s)-T(s')|+C,[ dsds’

state the upper bounds for the number of bound
states of H,and H, . respectively. The constants C,
and C, are given explicitly and they take the follow-
ing form:

1 1
C,=-—, C,=—In2-7y,,

1 3.17
2n 2n ( )

where v, is the Euler constant. Being consistent
with the notation introduced in the previous discus-
sion, we will use abbreviations o(s,s") = |s - s'| and
p(s,s) = [I(s) - T(s')].

Remark 3.1. Let us make some comments con-
ceming the formulae (3.15) and (3.16). If fact, it has
been shown in {14] that the number of bound states
of Hamiltonian -A+W in L? satisfies:

#o,(-A+W) <1+ LZ!R,|W(X)||W(y)|x

3.18
CInx—y+Czdxdy ( )
1 2

for all the W(e) potentials for which the above inte-
gral is finite. In this paper, we work with singular
potentials which, of course, do not have this prop-
erty. However, the result can be generalized for the
singular potential case and (3.15) and (3.16) is ob-
tained substituting the regular potential W(e)in (3.18)
by a singular measure V()d(x - I['(e)).

We need the following lemma with a proof based
on an elementary analysis to show how an upper
bound for #o (H, .) depends on the curvature of I":
Lemma 3.2. We have

0<Ino(s,s')-Inp(s,s’) <(x D)

3.19
for s2s', 5,8 eR, (3.19)

where x_ = sup,_, x(s) and D has been already
defined as the size of support of the curvature func-
tion s — k(8).

Proof. Using the analytical properties of the loga-
rithmic function, in particular the fact that -Inx is
convex and its derivative is given by (In x)’ =-1/x, x
> 0 and combining this with (2.10) we get:

0<Inc -Inp <(c - p)lp,

S. Kondej and M.R. Dudek

where we abbreviate o = ¢(s,5") and analogously for
p. Furthermore, relying on the result of [8] we have:

o(s,s")-p(s,s) 1 ’
20 (55) J.[jx(sz)dszl ds,.

p(s.s")

Itis easy to see that the r.h.s. of the above expres-
sion can be bounded from above by 1/2 (x, D)% this
finally states the claim of lemma.

Using the above lemma we can show by a
straightforward calculation the main theorem which
shows how the upper bound for #o (H, ) changes
with parameters associated with the curvature «
and D.

Theorem 3.3. The following estimate:

s"\s'

N, <N, +A(x,D) +B(x,D)", (3.20)
holds, for
A= [V (V. ()]
) (3.21)
|C.In|s - s'|+C,| dsds’
and
B %Cf(Lzl\/y‘a(s)|ds)2. (3.22)

Proof. Using the explicit form for N, . given by (3.15)
together with the triangle inequality we estimate

N, =N, +2[C] [V, (V.. ()]

p(s.s)

In——=

o(ss')

CfLl\/ﬁa(s)ll\/ﬂ(s’)mlng%j dsds'.

ICo(s,s")+C,| dsds’+

Using the above inequality and the result of Lemma
3.2 we show by a straight-forward calculation that
the expression

N, + A(x D) +B(x D)' (3.23)
states an upper bound for N, .. This completes the
proof.

To estimate the constants contributing to (3.20)
we use the following upper bound

lln |< x""* for 0<x<1,
x| <
x+1 for x=1.
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Combining the above estimate with the triangle in-
equality we get

Aslc| [ V.. (s)V,,(s)Inls - s]dsds +
CI([v.()as) <2c] [ [v,.(s)V.. ()

(s-s')""dsds +2|C| L J.V” (s)v,,(s")x

s'41

(s—s'+1)dsds'+|Cz|(_L\/m(s)ds)2 X

([v. ()¢5 < () ({2 22" +(30)"
4a'3)+|C2]a'2).

The last inequality has been obtained by integra-
tion by parts; we also take advantage of the fact
that V, (s) < 3ye*. Furthermore, we have

2a

The above theorem gives the upper bound for
the number of bound states of H,, . in the terms of
parameter £ = x D which characterizes the devia-
tion of I' from the straight line. The upper bound
obtained is, in fact, a polynomial function of €. It is
important to note from Eq. (3.20) that the difference
of the corresponding upper bounds induced by the
curvature AN, = N, .- N, generated by the dominat-
ing curvature k, in the region of a given size D can
be qualitatively different for a small radius R of this
curvature and a large one

BD"
AN, =

; if R-—0,

AD’? (3.24)
AN S?; if R— oo,

v

It should be noted that the circle geometry case,
when D is proportional to R, can be addressed to
the geometric representation of the carbon nanotube
as a model of a rolled up graphene sheet. It is not
the case of ultra-small diameter carbon nanotubes
(R ~ 0.2 nm) which can have the property of super-
conductivity [4]. In our opinion it would be very inter-
esting to check whether an analogous polynomial
behavior as in Eq. (3.24) is valid for the number of
bound states, as well.

4. CONCLUSIONS

We have shown that it is possible to lower the ground
state energy of a quantum particle by some defor-

mation of the “interaction channel” of the particle
with other particles. The theoretical problem intro-
duced in the above has a practical meaning for de-
signing nanosurfaces of different shapes.

5. APPENDIX

Proof of Lemma 2.1. To present the claim we will
use a standard method called Neumann bracket-
ing, see [15]. Let BR be an open ballin R* and its
boundary be denoted as 0B,.. Let us consider the
operator H;** in LZ(BR) with a singular potential on
Z N B, given by the Morse function and the Neumann
boundary condition on 4B,. Analogously, we
define H"* butin the space L(R*\B,). Then, us-

ing the results of [15] we have:

H'" ®H " <H,

intR

forany R > 0. Since H;" V is the Laplacian with
the Neumann boundary conditions on 0B, it can
produce a discrete spectrum only. Therefore, the
H, essential spectrum threshold is not less than
the H."" essential spectrum threshold. On the other
hand, since the Morse potential vanishes exponen-
tially at infinity, we can easily see that the
whole H;* spectrum threshold (i.e. the lowest en-
ergy) goes to 0 for R — 0. This means that
info_ (H,)<0. On the basis of the energy form (2.5)

ess

we can easily state that c___(H,) 2[0,%0) and conse-

ess

quently this states the claim.
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