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Abstract. A special micromechanism of deformation twinning in nano- and polycrystalline mate-
rials is suggested and theoretically described. The micromechanism represents the formation
of nanoscale deformation twins through consequent events of nanoscale ideal shear. It is theo-
retically demonstrated that the special micromechanism of deformation twinning can occur in
the non-barrier way in nano- and polycrystalline materials deformed at ultra high stresses.

1. INTRODUCTION

Deformation behavior of materials is strongly influ-
enced by their structural features, specimen sizes
and the conditions of mechanical loading. For in-
stance, materials with the nanocrystalline or
ultrafine-grained structure are characterized by the
flow stress and strength values which are 2—10 times
larger than those of coarse-grained polycrystalline
materials with the same chemical composition; see,
e.g., [1-9]. Single crystalline metallic nanopillars
ranging in diameter between 100 nm and several
micrometers are deformed in uniaxial compression
at stresses exceeding 10-50 times those for their
bulk counterparts [10-17]. Also, very high values of
the flow stress are typical for conventional bulk poly-
crystals under dynamic deformation (see, e.g., [18-
20]), in contrast to quasistatic deformation regimes
characterized by comparatively low stresses.

High applied stresses often initiate operation of
specific modes of plastic deformation in mechani-
cally loaded materials. For instance, plastic flow
modes conducted by grain boundaries effectively
come into play in nanocrystalline and ultrafine-

grained materials [1-6,21-25], in contrast to coarse-
grained polycrystals where lattice dislocation slip
dominates. Also, deformation twinning significantly
contributes to plastic flow in nanocrystalline mate-
rials (like Al) with high stacking fault energies [1-
3,26-28], in contrast to their coarse-grained coun-
terparts. In recent years, particular attention has
been paid to the nanodisturbance deformation mode
occurring through nanoscale ideal shear eventsin
various solids at high stresses [29-35]. It was theo-
retically demonstrated that the nanodisturbance
deformation mode can effectively contribute to plas-
tic flow in Gum metals (special Ti-based alloys) [29],
nanocrystalline materials [31,32], nanocomposites
[30] and nanowires [33,35]. These theoretical rep-
resentations were confirmed by “in situ” observa-
tion (by high resolution electron microscopy) of
nanodisturbances — carriers of nanoscale ideal shear
— in Gum metals during their plastic deformation
[34]. Also, nanoscale stacking faults resulting from
nanoscale ideal shear events were experimentally
observed in deformed Au nanowires with lateral sizes
~ 1-2 nm [36].
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Fig. 1. Nanoscale deformation twin grows through a nanoscale ideal shear (a schematic two-dimensional
illustration). (a) Deformation twinning in a nanoscale grain of a mechanically loaded nanocrystalline speci-
men (general view). (b) Magnified inset of the initial state of a nanoscale twin consisting of n-1 layers. (c)
Nanoscale ideal shear occurs in plane AD adjacent to the nanoscale twin boundary. The shear is specified
by a tiny shear magnitude s and results in formation of a dipole of non-crystallographic dislocations (located
at points A and D) with the Burgers vector magnitude s. A generalized stacking fault (wavy line) is formed
between the non-crystallographic dislocations. (d) The magnitude s of nanoscale ideal shear (also playing
the role of the Burgers vector magnitude of the non-crystallographic dislocations Aand D) increases. (e) The
dislocations A and D transform into Shockley partials, in which case the new twin boundary AD is formed,

and the twin thickness increases by one layer.

In paper [35], it was theoretically shown that
deformation-induced formation of nanoscale twin
nuclei (two-layer twins of nanoscopic length) in
nanowires can occur through consequent ideal shear
events. It was found that this deformation twinning
is energetically favorable in Au and Cu nanowires
with lateral sizes ranging from 1 to 100 nm, when
they are deformed at ultra high stresses. That is,
deformation twinning and nanodisturbance deforma-
tion mode can occur cooperatively in mechanically
loaded nanowires. Following [35], the cooperative
action of these deformation modes is strongly af-
fected by the free surfaces and nanoscopic sizes of
nanowires, which determine the ultra high level of
the flow stress. In the context discussed, it is very
interesting to find out if deformation twinning and
the nanodisturbance deformation mode can occur
cooperatively in solids with structures and sizes
different from those of nanowires. The main aim of

this paper is to suggest and theoretically describe
a new micromechanism for deformation twinning —
formation of nanoscale deformation twins through
the consequent events of nanoscale ideal shear (that
is, the nanodisturbance deformation mode) —in nano-
and polycrystalline materials.

2. GEOMETRY OF DEFORMATION
TWINNING THROUGH
CONSEQUENT IDEAL SHEAR
EVENTS IN NANOCRYSTALLINE
MATERIALS

Let us consider the generation of deformation twins
in a nanocrystalline solid. Following [37-40], we
assume that twin lamellas are composed of over-
lapping stacking faults that join opposite twinning
partial dislocations whose dipoles form in adjacent
slip planes (Figs. 1a and 1b). In the case of fcc
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crystals, the dipoles of Shockley partials form in
adjacent slip planes {111} (Figs. 1a and 1b). Growth
of a nanoscale deformation twin is supposed to oc-
cur through consequent nanoscale ideal shears in
the neighboring crystallographic planes under the
action of a shear stress 1 (Figs. 1b-e). More pre-
cisely, within our model, growth of a nanoscale de-
formation twin can be divided into several stages,
each occurring through a nanoscale ideal shear. In
general, the nth stage of nanotwin growth is real-
ized as follows. In the initial state (resulted from the
(n-1)-th growth stage), the nanotwin consists of (n-
1) nanoscale stacking faults bounded by (n-1) di-
poles of Shockley partials (Fig. 1b). Then, a
nanoscale ideal shear occurs in the crystallographic
plane AD adjacent to one of the nanoscale twin
boundaries (Fig. 1c). The shear is specified by a
tiny shear magnitude s (s << b, where b is the
Burgers vector magnitude of a Shockley partial dis-
location). The nanoscale ideal shear results in for-
mation of a dipole of non-crystallographic disloca-
tions Aand D (that is, dislocations located at points
Aand D) with the Burgers vectors s. Ageneralized
stacking fault (GSF) is formed between the non-
crystallographic dislocations (Fig. 1c). Then, the
magnitude s of the nanoscale ideal shear increases
(Fig. 1d), and so does the Burgers vector magni-
tude s of the non-crystallographic dislocations Aand
D (Fig. 1d). Finally, the magnitude s reaches the
value of b, and the dislocations A and D transform
into twinning partials (Fig. 1e). As a result, the new
twin boundary AD is formed, and the nanotwin thick-
ness increases by one layer (Fig. 1e).

The situation with n = 1 corresponds to the for-
mation of one stable nanoscale stacking fault
bounded by two Shockley partials that form a di-
pole configuration. In terms of Refs. [29-32], the for-
mation of one stable nanoscale stacking fault oc-
curs through the nanodisturbance deformation
mode. The formation of the first stable stacking fault
and associated dipole of Shockley partial disloca-
tions is possible when the external shear stress t
reaches a critical value of t_,. The formation of sub-
sequent Shockley dislocation dipoles occurs at
stresses whose values, in general, are different from
1_,. If the external shear stress 1 is large enough,
many Shockley partials and thereby a rather thick
twin lamella can form in the nanograin.

Let us consider the situation where a periodic
array of n - 1 dipoles of Shockley partials has al-
ready been formed in a solid with the fcc crystal
lattice structure (Figs. 1a and 1b). We denote the
distance between the dislocations composing a di-
pole configuration (Fig. 1a) as d, and the distance

between the neighboring dislocations in the walls
AB and CD as p. In doing so, the distance p be-
tween identical Shockley dislocations producing the
deformation twin lamella equals to the distance be-
tween the {111} crystallographic planes and is re-
lated to the crystal lattice parameteraasp=a \/g .
The Burgers vectors b of the Shockley partials are
of the kind (a/6)<112>. For the typical case where
the lines of Shockley partials are directed along one
of the <110> planes, these dislocations are of 60°
character. In this case, their edge and screw com-
ponents, +b, and b, follow from b, =b \/5/2 and
b,=b/2, where b = a/+/6 is the magnitude of the
Shockley dislocation Burgers vector.

3. ENERGY AND STRESS
CHARACTERISTICS OF
DEFORMATION TWINNING
THROUGH CONSEQUENT IDEAL
SHEAR EVENTS

Let us examine the energy and stress characteris-
tics of deformation twinning through consequent
ideal shear events in nano- and polycrystalline ma-
terials. In doing so, we consider the situation where
the nth dipole of Shockley partials nucleates through
ananoscale ideal shear at a crystallographic plane
neighboring to a twin consisting of n-1 stable stack-
ing faults, as shown in Figs. 1b-1e. That is, we con-
sider the nth stage of deformation twin growth through
consequentideal shear events. Within our approach,
the nucleation occurs through a gradual increase of
the dislocation Burgers vector magnitudes from zero
to b (Figs. 1b-e). We examine the defect configura-
tion at the time moment at which the Burgers vec-
tors of the nucleating nth dislocation dipole are %s.
At this moment, the edge and screw components,
ts, and ts,, of the Burgers vectors follow from
S, = s\/§/2 and s,=s/2.

Let us calculate the change AW in the total en-
ergy of the system due to the formation of the di-
pole of dislocations with the Burgers vectors %s in
the stress field created by n - 1 dipoles of Shockley
partials and the external shear stress t. The energy
change AW (per unit dislocation length) is given as
follows:

n-1
AW =W, + > W' +W - A (1)
k=1
where Wy, is the self-energy of the nth dipole of
dislocations with the Burgers vectors s, W™ is
the energy of the elastic interaction between the
nth and kth dipoles of Shockley partials (k =
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Fig. 2. Dependences of the energy change AW
(characterizing the nucleation of the nth Shockley
dislocation dipole through a nanoscale ideal shear)
on the normalized dislocation Burgers vector mag-
nitude s/b, for d =20 nm, n = 10 and various values
of the applied shear stress t. The energy AW is
given in units of Gb#[2xn(1 - v)].

1,2,...,n-1), w, is the energy of the GSF that joins
the dislocations of the nth dipole, and A is the work
done to generate the nth dislocation dipole under
the stress t. The standard calculations for the case
of an elastically isotropic solid yield the following
final expression for the energy change AW:

2. d o[ d
AW =D<s?| In—+1 [+(1-v)s?| In—+1 | p+
Sl SZ

D”z{@lbﬁ(l—v)szbz)m%—
Pk (2)

2sb d ( )d

s,b, I +y,(s)-18,)d,
where D = G/[2n(1 - v)], G denotes the shear modu-
lus, v the Poisson’s ratio, and y, (s) the specific en-
ergy of the GSF that joins the dislocations of the
nth dipole.

The energy v, (s) can be calculated as the differ-
ence between the total specific stacking fault en-
ergy in the state with the GSF and the correspond-
ing specific energy before its formation. The energy
v,(8) can be written [35,41] using the following rela-
tions:

v,(s)=(y, -2y, )sin’(rs/b),n >3, (3)

v, sin’(ns/b),0<s/b<1/2,

v,(8) =<7, +(y, —v,)sin’(ns/b),
1/2<s/b <1,
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Fig. 3. Critical stress t_for the consequent forma-
tion of the dipoles of twinning dislocations through
nanoscale ideal shear events in nanocrystalline Ni
vs (a) twin lamella thickness h and (b) twin lamella
width d.

(yut _ylsf )S|n2 (TCS/b)’

0<s/b<1/2,
1,(8) = o
(v, -2y, )sin’ (ns/b), (5)

1/2<s/b <],

wherey , v v, and v, are material parameters. In
the case of Ni, one has [41]: y, = 0.324 J/m?,
Y = 0.055 J/m?, y = 0.273 J/m?, and vy = 0.110
J/m2. In formulae (3)—(5), the case of n = 1 corre-
sponds to the formation of an isolated GSF, the case
of n =2 corresponds to the formation of a GSF ad-
jacent to a pre-existent stable stacking fault, and
the case of n > 3 corresponds to the formation of a
GSF adjacent to a pre-existent nanotwin consist-
ing of n - 1 layers.

Fig. 2 presents the dependences AW(s/b), for
Ni (characterized by the following parameter values:
G=73GPa,v=0.34,a=0.352 nm) atd =20 nm,
n = 10 and various values of t. As it follows from
Fig. 2, for t = 7 and 9 GPa, the generation of the nth
dislocation dipole requires overcoming energy bar-
riers (see the two upper curve in Fig. 2). For higher
values of 1, the energy AW always decreases with
increasing s/b, in which case the formation of the
nth dipole of Shockley partials occurs in the non-
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barrier way (see the lowest curve in Fig. 2). As itis
seen, the applied stresses are very high which are
needed for the non-barrier formation of the nth dislo-
cation dipole and associated growth of the twin
lamella.

Let us calculate the critical stress t_defined as
the minimum stress at which the formation of the
nth dipole of Shockley partials occurs in the non-
barrier way. The critical stress 1_ is calculated nu-
merically using formulae (2)—(5). Let us denote the
thickness of the deformation twin lamella as h. The
quantity h can be related to the number n of dislo-
cation dipoles using the relation h = (n - 1)p. The
dependences of t_on h and d are depicted in Figs.
3a and 3b, respectively, for the case of
nanocrystalline Ni with the parameter values used
in plotting the curves in Fig. 2. As it follows from
Fig. 3a, with increasing the twin lamella thickness
h, 7_first decreases and then increases. Also, Fig.
3a shows that, for d = 20 nm, the critical stress t_
increases from 6.9 to 11.5 GPa, when the twin
lamella thickness increases from 0 nm to 1.8 nm.
For h = 1.8 nm, with increasing the twin lamella
width d from 10 to 40 nm, t_decreases from 14.3
down to 9.3 GPa (Fig. 3b). Therefore, wide and thin
twin lamellas are the easiest to form. The values of
T, are ultra high. However, they can be reached in
the course of shock loading in some deformation
regimes.

4. CONCLUDING REMARKS

Thus, in this paper a special micromechanism of
deformation twinning — formation of nanoscale de-
formation twins through the consequent events of
nanoscale ideal shear (Fig. 1) —in nano- and poly-
crystalline materials has been suggested. Accord-
ing to our analysis of its energy and stress charac-
teristics, the special micromechanism can effec-
tively occur in the non-barrier way in nano- and poly-
crystalline materials deformed at ultra high stresses.
Such conditions are realized, for instance, in solids
under high-strain-rate deformation. At the same time,
operation of the special micromechanism of defor-
mation twinning (Fig. 1) is hardly possible in solids
at conventional applied stresses typical for
quasistatic deformation regimes.
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