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Abstract. The phase-field model is used in the numerical simulation of dendritic crystal growth
in pure Ni in supercooled melt. Effect of anisotropy, undercoolings and thermal noise on the
dendritic crystal growth is investigated in this paper. The simulated results indicate that with
anisotropy increasing, growth rate of dendrite tip is accelerated and characteristic of dendritic
structure is more obvious; As the degree of supercooling increases, stability of dendrite tip will be
damaged, the dendrite tip branching-off will happen. Stirring power can promote side-branching,
but does not affect growth state of dendritic crystal.

1. INTRODUCTION

Recently, numerical simulation of metal solidifica-
tion has made a great progress and at the same
time numerical simulation of microstructure has also
made a progress. Generally, the method of numerical
B8<D;0C8>=�>5�<82A>BCAD2CDA4�P4E4;>?B�A0?8P;H��F7827
includes the definition method, the random method
and the phase-field model. The phase field model
[1-9] is based on statistic physics. According to
Ginzburg-Landau phase theory, differential equation,
ordering potential and thermodynamic driving force
are combined. The answer of the phase-field model
equation can describe the condition, shapes and
movement of the solid-liquid interface. The equation
of the phase-field model is coupled with others
(temperature field, concentration field, velocity field),
so the dendritic crystal growth in solidification can
be simulated accurately.

2. PHASE FIELD MODEL

Diffusion interface model is adopted in simulation of
dendritic growth when the phase-field model is used,
a phase-field variable � is introduced, standing for

physical state(liquid or solid) of the system. Phase
in the phase-field system has a constant value, for
example, �= 1 stands for the solid phase, �= -1
represents the liquid phase, the value of � varies
continuously between 1 and 0 at the S/L interface.
It can be seen clearly from Fig. 1 that there is a
diffusion interface between L and S.

2.1. The equation of phase-field model
in pure material

Equation of phase-field model can be derived from
Free energy F or entropy S according to the
Ginzburg-Landau theory [10], which is called free
energy function model or entropy function model.
Entropy function model is used in this article
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where � is a phase-field parameter related to interface
dynamics, � is a phase-field variable, L
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f
 is a gradient correction coefficient.

2.2. Phase-field model with anisotropy
factor

In the growth of 2-D dendrite, the interface energy
anisotropy and interface kinetics anisotropy are
introduced in the phase-field and disposed as
following:

Anisotropy factor of interfacial energy:

� �� �W W
0 0

( ) 1 cos .�� � ���  (3)

Anisotropy factor of interface kinetics:
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In the equation above, W
0
 is interface thickness, a

s

is anisotropy factor, � is the angle between axis
direction and the perpendicularity direction, � = ��/
|��|,  is anisotropy modulus, a general value is 4
or 6, � is anisotropy coefficient, a general value is
between 0.001~0.07, the larger the value is, the
greater the anisotropy strength is, the commonly
used value is between 0.02~0.05.

Anisotropy factor is introduced, the interface-
analyze model proposed by Karama is used, where
� = 1 stands for solid phase, and � = -1 stands for
liquid phase. The non-dimensional phase-field model
as following:
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where u = (T - T
M
)/(L/c
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�� � �  is dimensionless

interface kinetic coefficient, W is the parameters
related interface thickness.

2.3. Phase-field with fluctuation

In order to simulate random fluctuation in the actual
solidification, fluctuation should be introduced, so
the phase-field equation becomes [11]:
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Correlation function of random item �Mq5t and f�
as follows:
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where k
B
 is the Boltzmann constant, �q5t and f�

follow the Gaussin distribution.
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where F
u
 is thermal perturbation, F� is an interface

fluctuation perturbation.

2.4. Physical property parameters

Pure Ni is chosen as the research object, and the
physical property parameters in the calculation are:
�= 3.70 �Jcm-2, T

M 
= 1728K, L = 2.350 KJMcm-3,

c = 5.42 JM(KMcm3)-1, ��������2<M(KMs)-1, 
= 0.155
cm2Ms-1, and the other parameters: w = 2.1 �m,
�= 400, m = 500 and so on.

Fig. 1. Diffusion interface model.
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2.5. Initial condition and boundary
condition

For initial nuclei radius r
0
, the initial condition in the

calculation is:

If x2 + y2 �r
0

2, �= 1, T=T
0
, c = c

0
;

If x2 + y2 > r
0

2, ��= -1, T = T
0
, c = c

0
;

where x and y stand for coordinate axis, T
0
 is initial

temperature in undercooling melt, in the calculation
of the regional border, Zero-Neumann boundary
condition is chosen in the phase-field and
temperature-field.

��	��4PH%MF#!G�#!G#PG!OF-I�H%OE-A�

The number of calculation mesh in phase-field and
C4<?4A0CDA4�584;P�8B��&&M�&&��C74�B8I4�8B�
M
&-8 m,
the initial nucleation is assumed as a spherical
F7>B4�A0P8DB�8B��M
&-8 m. In the calculation process,
the radius of nuclei can be changed according to
requirement. The number of nuclei should be less
than or equal to the largest nucleation number. Use
the second-order accurate stop-and-poor central
scheme for phase field problem of numerical
computation. Use the ADI algorithm for the equation
for the temperature field control equation, this
algorithm is between fully explicit and implicit
completely, with the display format for a simple
calculation, the calculation of the advantages of the
twisted and implicitly consistent unconditionally.

Fig. 2. Influence of anisotropy coefficient on dendrite growth. (a) ��= 0; (b) ��= 0.01; (c) ��= 0.02; (d) � = 0.03;
(e) � = 0.04; (f) � = 0.05; (g) � = 0.06; (h) � = 0.0667.

3. SIMULATION RESULTS AND
ANALYSIS

3.1. Influence of anisotropy degree on
dendritic growth

Interface anisotropy coefficient � shows the tension
of interfacial surface, interface thickness and
anisotropy degree of interface kinetics [12]. A small
amount of thermal noise is added in this article,
other parameters are kept unchanged, the value of
anisotropic coefficient � is changed sequently. The
results is shown in Fig. 2 with anisotropy coefficient
increased, the grain is gradually changing to equated
dendrite, and the dendrite tip branching-off will not
happen; at the same time, the dendrite tip becomes
more and more sharp. Thus, if the anisotropy
coefficient is 0 or too small, equiaxed dendrite will
not come into being; under the same conditions,
the larger the anisotropy coefficient is, the faster
the dendrite grows. When the anisotropy coefficient
value equals to 6 or more, dendrite variation will
happen. The reason is that when as anisotropy
coefficient increases, the thermal noise is likely to
be amplified, the front interface will become unstable,
the grain shape may becomes complicated.

3.2. The influence of super-cooling
degree on dendrite growth

According to the principle of metal crystallization,
undercooling �T has an important impact on
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nucleation and growth processes of equiaxed grain.
The same computing time and simulate regional is
chosen in this paper. With other parameters
unchanged, undercooling �T is changed
continuously; the results are shown in Fig. 3. As
can be seen from Fig. 3, the dendrite does not grow
any more when �T changes from 0 to 0.3, It can be
known that the smaller �T is, the more difficultly
the dendrite grows. As the value of �T increases,
the dendrite trunk becomes thinner, meantime the
dendrite tip radius decreases, the growth rate in-
creases. With �T increase, the dendrite trunk be-
comes instability, dendrite side-branching become
more and more active, when �T is greater than 0.5,
the dendrite tip branching-off can be seen, the side-
branching are also extremely active, when the un-
dercooling degree is greater than 0.5, the dendrite
tip branching-off will happen, the other branches
become extremely active, branches grow more
and more fast, it can be seen that the branches
stretch into the undercooled melt rapidly. Under

Fig. 3. The influence of undercooling on dendritic growth. (a) �T = 0; (b) �T = 0.1; (c) �T = 0.3; (d) �T = 0.4;
(e) �T = 0.45; (f) �T = 0.475; (g) �T = 0.5; (h) �T = 0.525.

Fig. 4. Morphologies of dendritic growth simulated by phase field with and without noise. (a) Phase-field
with noise; (b) phase-field without noise.

certain condition, the dendrite tip branching-off will
happen.

3.3. The influence of thermal noise on
the morphology of dendrite

In Fig. 4, when fluctuation is introduced, fold can be
seen on the grain. Under the two conditions that
fluctuation is added and not added, crystal dendrite
shape is very similar, that is, the curvature radiuses
of dendrite tip are very similar under the case.
However, the primary branches with fluctuation are
longer than that without fluctuation. That is, it grows
faster than that without fluctuation, which indicates
that fluctuation will promote dendrite growth.

4. CONCLUSIONS

(1) As the anisotropy coefficient increases, the den-
drite gradually changes into equiaxed shape,and the
trunk no longer bifurcates. At the same time, the tip
of dendrite becomes more and more sharp, which
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can show growth of dendrite accurately, when the
anisotropy coefficient changes from 0.03 to 0.05.
(2) Low undercooling melt, growth of lateral branch
is inhibited, smooth dendrites morphology can be
seen; and at deep undercooling condition, the side-
branches develop highly.
(3) With the same parameters, without fluctuation,
the grain grows along the backbone, it is smooth
and secondary arms will not appear; with fluctuation
added, a little fold can be seen on the grain, the
grain with grain grows faster than that without
fluctuation, indicating that fluctuation can promote
dendrite growth.
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