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Abstract. This work examines the thin-film properties and diffusion barrier behaviors of thin Ta-
Co films, aiming at depositing highly crystallization-resistant and highly conductive diffusion
barriers for Cu metallization. Structure analyzing indicates that the deposited Ta-Co films indeed
have a glassy structure and are free from highly resistive intermetallic compounds, thus giving a
low resisitivity under 20 uQ-cm. Examining Si/Ta-Co/Cu stacked samples by using 4-point probes
and XRD reveals that thermally induced failure of amorphous Ta-Co barriers are triggered by the
barrier’s crystallization at temperatures just under around 600 °C. The effectiveness of the
nanostructure/amorphous Ta-Co thin film thus can be substantially enhanced by effectively
blocking diffusion of copper towards the underlying silicon.

1. INTRODUCTION

As integrated circuits scale down, Cu (p ~1.67 uQ-
cm) has replaced Al-Cu (p ~2.7 uQ-cm) alloy for
metallization interconnection owing to its lower re-
sistivity and higher electromigration resistance [1,2].
However, Cu atoms diffuse readily into SiO, and Si
induce a degradation of transistor reliability by form-
ing particular impurity level in the silicon [3]. A par-
ticular diffusion barrier layer is therefore required to
suppress Cu atom from diffusion into transistor re-
gions. Reactively sputtered TiN thin film is usually
adopted as diffusion barrier on traditional Al-Cu
metallization. Since the solid solubility between Al
and Si is quite low (<1.59 at.%), TiN diffusion bar-
rier layer mostly failure owing to TiN decomposition
and react with Si to form TiSi, at an elevated tem-
perature. For Cu metallization, however, highly re-
activity between Cu and Siinduce Cu,Si and/or CuO
formation at 200-300 °C. Thus, dielectric materials
degradation cause a circuit short on interconnec-

tion of Si(SiO, )/Cu [4,5]. Many approaches has been
carried out by using various metals and compounds
as Cu diffusion barrier such as Ta(N) [6,7], Ta-Si(N)
[8], W, Cr, Ti, Mo [9]. Among these studies, Ta-
based thin films are frequently adopted as diffusion
barrier to prevent Cu from diffusion owing its supe-
rior characteristics.

Binary or ternary Ta-based polycrystalline thin
films are frequently used as a barrier layer to pre-
vent Cu from diffusion. Their grain boundaries, how-
ever, tend to act as the main diffusion paths for cop-
per atoms to penetrate the diffusion barrier, causing
the failure of silicon/copper interfaces or generating
deep-level recombination centers in dielectrics. In
addition to the needs of low resistivity and high ther-
mal stability, therefore, diffusion barrier layers with
an amorphous structure are more promising due to
the lack of the grain boundary [10]. In particular,
binary amorphous alloys such as refractory metal-
silicon alloys and nitrogen-containing ternary amor-
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Fig. 1. Sheet resistance as a function of annealing
temperature for Ta-Co/Si thin films.

phous alloys frequently exhibit superior barrier prop-
erties for Cu metallization [11]. Amorphous thin films
thus are potentially more promising than crystalline
Ta and TaN thin films as the lack of grain bound-
aries [12]. A survey of the available literature indi-
cates that Ta-TM binary alloy (TM = Fe, Co, Ni)
preparing by mechanical alloying has a capability
of amorphization and a high crystallization tempera-
ture [13]. An amorphous Ta-Co/Si thin film has also
performed by co-deposition to evaluate its phase
formation [10]. A crystallization temperature of 600
°C for amorphous Ta-Co thin film can be observed.
Therefore, this work examines the thin-film proper-
ties and diffusion barrier behaviors of thin Ta-Co e-
beam evaporated films, aiming at depositing highly
crystallization-resistant and highly conductive diffu-
sion barriers for copper metallization. X-ray diffracto-
metry (XRD) and transmission electron microscopy
(TEM) indicate that the deposited Ta-Co films in-
deed have a glassy structure and are free from highly
resistive intermetallic compounds, thus giving a
resisitivity as low as under 20 uQ-cm.

2. EXPERIMENTAL

Ta,,Co,, (at.%) alloy was prepared by an arc melt-
ing method for several times under high purity ar-
gon protection to ensure its homogeneous. p-type
Si wafers of (100) orientations were used as sub-
strate by a standard RCA cleaning process prior to
load into electron gun evaporation chamber. Elec-
tron beam evaporation onto the Si substrate was
performed at a base pressure of under 5:10 Torr.
The deposition rate was controlled at 0.1 nm/sec,
which was monitored by a quartz vibration control-
ler. The films were heat-treated in a rapid thermal
vacuum annealer in protective argon ambient at tem-
perature from 300 to 950 °C. Electrical resistivity of

the films was obtained from the films’ thickness and
sheet resistance, obtained from a four-point probe
measurement. The films were examined by x-ray
diffraction (XRD) and transmission electron micros-
copy (TEM) to elucidate the phase formation and
structure.

3. RESULTS AND DISCUSSION
3.1. Crystallization behavior of Ta-Co/Si

Sheet resistance variation associated with the an-
nealing temperature of Ta-Co(50 nm)/Si thin film was
adopted to elucidate the kinetic of crystallization by
awell-developed model [14]. Fig. 1 displays the sheet
resistance dependence of the annealing tempera-
ture range from 300 to 950 °C for 5 minutes. The
sheet resistance was initially increased with increas-
ing annealing temperature, reached a maximum value
of 21 ohm/sq. (resistivity of 17.55 uQ-cm), then de-
creased with further increasing annealing tempera-
ture. Post annealing above 800 °C/5min, a low and
stable sheet resistance of around 1.3 ohm/sq. was
obtained.

Structure analysis (not shown here) indicated an
amorphous/nanocrystalline structure was obtained
for as-deposited and post annealed Ta-Co/Si thin
films below 500 °C. Post annealed above 500°C, a
tiny Co,Ta phase diffraction peak was detected,
which revealed the crystalline grain was very tiny
with an average grain size of 7.5 nm from TEM ob-
servation. In addition to Co,Ta phase, a Co,Siphase
was also detected for post annealing above 500°C
owing to the reaction of Ta-Co thin film with the sili-
con substrate because of the low reaction tempera-
ture of Co and Si. From XRD and sheet resistance
analysis, the crystallization temperature was 500
°C. Above 500 °C, more crystallization Co,Ta and
Co,Si phase formations induced a decline in sheet
resistance. For post annealed at 900 °C /5min, a
nanostructured grain can be observed with an aver-
age grain size of 11.3 nm.

The change in sheet resistance during Ta-Co
crystallization can be related to the progress of the
transformation by using a resistance model

Xians OFIRO-ROVIRO)}-R()], (1)

where X ___is the volume fraction of the crystallized
phase, R(0) is the initial film sheet resistance of the
amorphous phase, R(f) is the final saturated film
resistance of the crystallized Ta-Co film and R(f) is
the time-dependent film resistance. An increasing
trend can be obtained in plotting the fraction of crys-
tallization structure as a function of normalized an-
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nealing time at 500-600 °C. Normalized sheet re-
sistance increased with increasing annealing du-
rable time in a sigmoidal indicated the crystalliza-
tion involving nucleation and growth mechanism.
Sheet resistance increased with increasing post
annealing temperature and endured time were as-
sociated with increasing the crystallization volume.
A well-developed Johnson-Mehl-Avrami kinetic
analysis was used to deduce the effective crystalli-
zation activation energy. The general equation is in
the form of:
Xians(D)=1-€XP(-kt") , )

trans

where k is a Avrami coefficient, n is Avrami expo-
nent. By defining the time at which crystallization

is 50% complete as 1, and

1, =1, exp (E,/KT) 3)

the effective activation energy E__for the crystalli-
zation can be deduced from Eq. (3). The slope of
In(t, ;) versus 1/kTwas 2.358 eV, as shown in Fig.
2, is the effective crystallization activation energy of
Ta-Co thin film.

3.2. Cu/Ta-Co/Si failure behavior

A four-point probes system was employed to mea-
sure the relative change in sheet resistance of the
post annealed Cu/Ta-Co/Si thin films to identify the
failure behavior. The relative change in sheet resis-
tance (AR/R,)) with annealing temperature of Cu/Ta-
Co(20, 50, 100 nm)/Si was shown in Fig. 3a. The
three curves exhibited a similar trend. AR/R, in-
creased slowly at a low annealing temperature and
then increased sharply at a specified elevated tem-
perature. Referred to curve in Fig. 3a, constant low
ARIR, was obtained for post annealed Cu/Ta-Co(20
nm)/Si below 500 °C /5min and raised abruptly as
temperature above 500 °C /5min. Correspondingly,
Cu/Ta-Co(50 nm)/Si and Cu/Ta-Co(100 nm)/Si thin
films showed a sharp increased at 550 °C /5min and
600 °C /5min, respectively. Since the sharp increases
in resistivity of Cu/Ta-Co/Si indicated serious inter-
mixing and chemical reactions among Si, Ta-Co,
and Cu, and thus degraded the metallization lay-
ers. Apparently, thicker Ta-Co thin film exhibited a
better barrier effect since the failure temperature
increased with increasing the thickness of Ta-Co
barrier layer. Failure temperature of 550 °C can be
obtained for Cu/Ta-Co(50nm)/Si thin films, which is
slightly higher than that of 500 °C for 50nm TaN bar-
rier layer [15]. Ta-Co thin film is therefore more prom-
ising on Cu metallization as diffusion barrier layer.
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Fig. 2. Plot of In(z, ;) vs.1/kT to determine to activa-

tion energy for the crystallization.

Fig. 3b shows the evolution of x-ray diffraction
patterns as a function of annealing temperature of
Cu/Ta-Co(50nm)/Si thin films. For post annealing
below 500 °C, only a tiny and broaden Ta diffraction
peak at 37.4° can be found, which depicted that a
small amount of Ta nanocrystalline structure was
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Fig. 3. (a) Relative changes in sheet resistance, (b)
Evolution of x-ray diffraction patterns, of Cu/Ta-Co/
Si thin films by annealing at various temperatures
for 5 min.



Crystallization and failure behaviors of Ta-Co nanostructured/amorphous diffusion barriers for...

obtained for Cu/Ta-Co(50nm)/Si thin films. However,
only crystallized Co,Ta phase can be traced at 500
°C for Ta-Co (50nm)/Si thin films. Cu deposited onto
Ta-Co/Si thin film led to an early crystallization of
nanostructured Ta grains. For post annealed Cu/Ta-
Co(50nm)/Si thin films above 600 °C /5min, two tiny
Cu,Si diffraction peaks can be examined depicting
the Cu atoms pass through Ta-Co barrier and re-
acted with underlying Si substrate, which induced
the Ta-Co barrier layer failed to prevent Cu diffusion.
Therefore, Cu_Si phase formed at interface between
Ta-Co and Si substrate. Failure temperature of 550
°C for Cu/Ta-Co(50nm)/Si thin films evidenced from
relative sheet resistance change can be summa-
rized, which are slightly higher than that of crystal-
lized temperature of 500 °C for Ta-Co(50nm)/Si thin
films.

4. CONCLUSION

Amorphous/nanostructured Ta-Co thin films were
prepared by electron beam evaporation and acted
as a diffusion barrier for Cu metallization. As de-
posited Ta-Co film was amorphous and remain stable
up to around 500 °C. Crystallization activation en-
ergy for Ta-Co amorphous thin film was 2.358 eV
according to Johnson-Mehl-Avrami method. The first
phase to crystallized was Co,Ta and Co,Si phases
at 500 °C. All Ta-Co thin films prevent the formation
of the cooper silicide up to the high temperature
above their crystallization temperature. The Cu/Ta-
Co(50nm)/Si thin films barrier effect was failure at
550 °C. The failure temperature was slightly higher
than the crystallization temperature of Ta-Co thin
film can be concluded. The effectiveness of the
nanostructure/amorphous Ta-Co thin film thus can
be substantially enhanced by effectively blocking
diffusion of copper towards the underlying silicon.
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