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Abstract

We consider axisymmetric contact problem about bending of a plate lying on
inhomogeneous foundation. Foundation is modeled by elastic inhomogeneous soft
interlayer and elastic homogeneous half-space. Interlayer can be stratified or contin-
uously inhomogeneous with arbitrary varying elastic properties. Layer also can be
significantly softer than an underlying half-space. Plate bends under the action of
distributed load and elastic response from a foundation. Analytical solution of the
problem is constructed using bilateral asymptotic method [1]. Analytical expressions
for contact stresses and deflection of the plate are provided. Constructed solution
is bilateral asymptotically exact both for large and small values of characteristic ge-
ometric parameter of the problem (ratio of layer thickness to plate radius). Also
it is effective both for flexible and stiff plates. Numerical results demonstrates that
found approximations for kernel transform of integral equation of the problem allows
one to construct analytical solution that is effective in the whole range of values of
inhomogeneous layer thickness and plate stiffness.

1 Introduction

Problem of plate bending on isotropic homogeneous elastic foundation was considered in
[2] and developed further. Most of the known solutions are effective only for rigid plates.
And very few, in particular those that described in [3] and [4], are efficient either for flexible
or rigid plates, each in its own case. There are number of recent investigations in this area
([5], [6]), indicating interest in the solution of this problem. In this work we describe use of
approach, based on bilateral asymptotic method for solution of dual integral equations [1],
which allows one to construct analytical solution of the problem in unified form, effective
for any values of geometric and mechanical properties.

2 Problem statement

Circular plate of radius R and constant thickness h lying on boundary Γ of elastic half-
space Ω, consisting of inhomogeneous soft layer (coating) with thickness H and homoge-
neous half-space (substrate). We use cylindrical coordinate system r, ϕ, z, where z axis
is perpendicular to plane Γ and passes through the center of the plate. Coordinate r is
related to R, and z is related to H. Plate bends under axisymmetric distributed load p(r)
and response from the layer. Function w(r) describes deflection of the plate.
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Figure 1: Problem statement.

Lame parameters Λ(z), M(z) of the foundation vary with depth according to law:

Λ(z) =

{
Λ0(z) , − 1 ≤ z ≤ 0
Λ1, −∞ < z < −1

M(z) =

{
M0(z) , − 1 ≤ z ≤ 0
M1, −∞ < z < −1

(1)

Young’s modulus of the foundation is

E1 = βE0(−1).

Here β denotes magnitude of the leap in elastic properties on layer-substrate boundary.
The larger β, the more stiff underlying half-space is.

Deflection of the plate must satisfy following boundary conditions:(
d2w

dr2
+
ν

r

dw

dr

)∣∣∣∣∣∣
r=1

= 0,
d

dr
(∇w)

∣∣∣∣
r=1

= 0 (2)

where ν = Poisson’s ration of the plate. Conditions (2) correspond to free plate edges.
Due to these conditions, solution of the problem is reduced to following system of

equations:

Dw(r) = p(r)− q(r), 0 ≤ r ≤ 1 (3)
∞∫
0

Q(α)L(αλ)J0(αr)dα = sw(r), 0 ≤ r ≤ 1

∞∫
0

Q(α)J0(αr)dα = 0, r > 1
(4)

where p(r) = applied load; q(r) = contact stresses under the plate; w(r) = deflection
function; L(αλ) – kernel transform; λ = H/R; s is the bending stiffness of the plate:

s = ΘR3D−1 (5)
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where D = cylindrical stiffness of the plate; Θ is given by

Θ = 2M0 (Λ0 + M0) (Λ0 + 2M0)−1 .

Dual integral equation (4) defines relation between contact stresses and plate deflection.
Relations between Q(α) and contact stresses q(r) are:

Q(α) =
1∫
0

q(ρ)J0(αρ)ρdρ,

q(r) =
∞∫
0

Q(α)J0(αr)αdα.
(6)

3 Constructing a solution

It is shown [7] that the solution of described problem can be written out as:

Mr =
(
D
R2

)∑M
m=0wmAmk

2
m

[
v−1
kmr

V1 (kmr) + V0 (kmr)
]
,

Mϕ =
(
D
R2

)∑M
m=0wmAmk

2
m

[
v−1
kmr

V1 (kmr) + vV0 (kmr)
]
.

where

Vi (kmr) = Ji (kmr) +BmIi (kmr) , i = 0, 1.

However, obtaining accurate solution for average values of λ requires high accuracy of
approximation used for kernel transform. Below, we show that, using recent results in
approximation [8] it is possible to obtain a solution, which is effective for all possible
values of characteristic parameters of the problem.

4 Numerical results

4.1 Kernel transforms

Let’s consider case of soft elastic homogeneous layer lying on harder elastic foundation.
Elastic layer is considered to be softer 2, 100 or 1000 times than a substrate. We also
consider that layer is tightly coupled to substrate (we can consider in similar way that
layer lie freely on substrate).

For estimating error of approximation we use following expression:

∆L(u) =

∣∣∣∣LN (u)− L(u)

L(u)

∣∣∣∣ · 100% (7)

The maximum error of approximation shown at Figure 2 is less than 3.5%. In case of β =
error estimate of 3.5% can be achieved at N = 1 (1.4% at N = 8), though in the case of
β = 1000 to reduce error to 3.1% we need to take N = 20.

It is shown [9] that with growth of β kernel transforms are getting close to limiting
case, which is corresponds to non-deformable foundation. Below we show that values of
contact stresses for β = 1000 and non-deformable foundation are close to each other.
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Figure 2: Kernel transforms of integral equation for β = 2, 100, 1000; lines – exact values,
dots – approximation.
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Figure 3: Contact stresses for homoge-
neous layer on elastic foundation, β = 1000,
λ = 0.5.
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Figure 4: Contact stresses for homogeneous
layer, λ = 1; solid lines – elastic foundation,
β = 1000; dashed lines – non-deformable
foundation (from [10], given for comparison.

4.2 Contact stresses

Let’s consider case when plate is subjected to uniform load. Elastic layer is considered
homogeneous, and softer 1000 times than a substrate.

On Figures 3-4 solid lines designate contact stresses for both flexible and stiff plates

14



Distribution of contact stresses under circular flexible plate lying on a two-layer
foundation, with soft interlayer thickness and substrate stiffness taken into account

(s = 0.1 and s = 4, respectively), which are calculated with approximated kernel transform
for β = 1000 (shown on Figure 2). On Figure 4 dash line designates results obtained by
orthogonal polynomials method in [10]. Analysis of Figure 4 shows that difference between
these results is less than 6.5%.

5 Conclusions

Expressions for determining contact stresses, which are plotted at Figures 3-4, are con-
structed using bilateral asymptotic method, which is proven to be convergent both for
large and small values of characteristic geometric parameter λ of the problem. Compar-
ison performed above shows that method is also effective for average values of λ. So it
can be concluded that using sufficiently accurate approximation for kernel transform for
integral equation (4) with bilateral asymptotic method it is possible to obtain solution of
the problem which is effective for all possible values of λ, and both for flexible and stiff
plates.
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