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Abstract

Wave processes in thin membranes are considered on the basis of the nonlinear
dynamic theory of crystals with the complex lattice consisting of two sublattices.
System of the connected nonlinear equations for finding acoustic U and optical umodes
were integrated by a method of the functionally invariant solutions construction. The
nonlinear Klein-Fock-Gordon equation takes place for optical mode u. Its solution can
be found as inversion of an integral which depends on the potential of interaction of
sublattices Φ(uR) (uR is the module of a vector of optical mode). Potential Φ(uR)
is an even periodic function, representable by Fourier’s series. The case was in detail
considered, when Φ(uR) = 1 − cosuR. Partial solutions are found and character of
perturbations is established: periodic, aperiodic, localized like kink, solitons, etc. It
is shown that addition to the potential Φ(uR) of the higher harmonicas gives the
solution for optical mode as the inversion of the hyperelliptic integral. The genus of
the hyperelliptic integral is defined in general case by the highest harmonic entering
into Φ(uR). The problem of the inversion of the hyperelliptic integrals and character
of dependence of acoustic and optical modes from a type of the potential Φ(uR) is
discussed.

1 Introduction

The continual nonlinear theory of elastic and inelastic deformations of crystal mediums
with the complex lattice consisting of two sublattices is developed in works [1]–[3]. As well
as in the theory M.Born, K.Huang [4], shift of the center of inertia of couple of atoms (an
elementary cell) describes vector U (acoustic mode), and mutual shifts of atoms in a cell
— vector u (optical mode). Unlike the theory of [4] of shift of sublattices u can be any
the big. The new element of translation symmetry is entered into the theory — rigid shift
of one sublattice relative another for one period (or their integer) reproduces again the
structure of a complex lattice. It means that its energy has to be periodic function relative
to the rigid shift of sublattices of u, invariant to this translation. Certainly, the classical
principle of translation symmetry resulting in invariant of energy of a lattice relative to
joint translation U of both sublattices on one (or integer) the periods of a complex lattice
remains also.

The equations of movement for U(x, y, z, t) and u(x, y, z, t) are derived from the La-
grange’s variation principle:

ρÜi = λikmnUk,mn − sik[Φ(uR)],k , (1)

µ0üi = kikmnuk,mn − (p− sikUi,k)
∂Φ(uR)

∂ui
. (2)
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Here ρ is average density of mass of atoms; µ0 is density of the reduced mass of atoms
pairs (they differ if masses of the atoms are different); the point over symbols designates
a derivative with respect to time, and a comma in an index — a derivative with respect to
coordinate; λikmn is a tensor of macroelasticity, which is symmetric to permutation of pairs
of indexes and indexes of a pair; kikmn is a tensor of microelasticity, which is symmetric
to permutation of pairs of indexes; sik is the symmetric tensor of a nonlinear striction
describing reorganization of a microstructure under the influence of external tension; p is
an energy of activation of interatomic couplings. Function Φ(uR) describes periodic energy
of interaction of sublattices. In general case

uR =
√
uiαikuk, αik = a−2

1 kikk + a−2
2 mimk + a−2

3 nink. (3)

Here (ka1, ma2, na3, ), (a1, a2, a3) are respectively vectors and sizes of Bravais lattice. For
a cubic lattice one has (a1 = a2 = a3)

uR =
1

a

√
u2
x + u2

y + u2
z. (4)

The function Φ(uR) (with Dirichlet conditions) can be expanded in the Fourier series

Φ(uR) = (1− cosuR) + δ(1− cos 2uR) + . . . (5)

Here we take into account that Φ(uR) is an even function and the potential of interaction
of sublattices is equal to zero, when uR = 0. Only the first term of the series (5) was
taken into account in works of [1]–[3], [5]–[10]. The main aim of the present work — the
analyse of dependence of plane deformation of crystal with a cubic lattice from form of the
potential Φ(uR).

The first equation can be written in a standard form of the equations of mechanics of
the continuous medium

ρÜi = σik,k (6)

with a stress tensor

σik = λikmnUm,n − sikΦ(uR) . (7)

The stress tensor (7), unlike classical, contains the additional term. It can be considered as
a source of internal macrostress which is defined unambiguously by a field of microstress.

2 Solution of the equations of movement

The equations of movement (1), (2) are the system of six connected nonlinear equations
in partial derivatives. Their analytical integration in a general case is connected with
overcoming of great mathematical difficulties. For this reason we made the simplifying
assumptions.

2.1 One-dimensional solitary waves

The simplest are one-dimensional problems. Let’s consider one-dimensional processes of
distribution of perturbations with constant velocities when both fields are functions of a
phase of a wave

Ux = U(q), ux = u(q), q = x− vt, v ≷ 0, (8)
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Here v is a constant phase velocity. Different signs corresponds to two waves running in
opposite directions. For this case Eqs. (1), (2) take form

(λ+ 2µ)

(
1− v2

v2
a

)
U,qq = sΦ(u),q , (9)

k

(
1− v2

v2
k

)
u,qq = (p− sU,q)

dΦ(u)

du
, (10)

where λ and µ are Lamé coefficients, va and vk are correspondent phase velocities of the
acoustic and optic modes.

v2
a =

λ+ 2µ

ρ
, v2

k =
k

µ0
, k = k1 + k2 + k3. (11)

Integrating (9), we obtain

(λ+ 2µ)

(
1− v2

v2
a

)
U,q = sΦ(u) + σ0. (12)

The constant σ0 of integration is the external tension. Macrogradients are excluded from
Eq. (10) with the help (12). As a result we receive the separate equation for optical mode

l20

(
1− v2

v2
k

)
u,qq = V ′(u). (13)

Here

V ′(u) = [p1 + 2p2(1− Φ)]
dΦ

du
, (14)

l20 =
k

p
, p1 = 1− s(s+ σ)

p(λ+ 2µ)
(

1− v2

v2
a

) , p2 =
s2

2p(λ+ 2µ)
(

1− v2

v2
a

) . (15)

From Eq. (13) we find microshifts as inversion of the integral∫
du√

E + V (u)
=
±1

L
(q + q0), (16)

where
l0
L

=

√
2√

1− v2

v2
k

,

E and q0 are constants of integration. If Φ(u) = 1 − cosu, then by corresponding sub-
stitution x = f(u) the expression under radical in (16) can be transformed to a polynom
of the fourth degree P4(x). In this case (16) is an elliptic integral. The inversion of ellip-
tic integral can be expressed through the theta functions of one variable (Jacobi’s elliptic
functions). This variant has been considered in details in [11]. Addition to Φ(u) of the
second or the following harmonicas transforms integral (16) in ultraelliptic n = 5, 6 or into
the hyperelliptic n > 6. The problem of the inversion of ultra- and hyperelliptic integrals
will be considered below.
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2.2 Plane deformation of crystals of cubic symmetry

The important part of mechanics of the continuous mediums is researches of the plane
deformations. The body is subject to the plane deformation, if

Ux = Ux(x, y, t), Uy = Uy(x, y, t), Uz = 0, (17)

ux = ux(x, y, t), uy = uy(x, y, t), uz = 0. (18)

Tensors of elasticity λikmn and microelasticity kikmn for crystals of cubic symmetry take
the forms

λikmn = µ (δimδkn + δinδkm) + λδikδmn, (19)

kikmn = k1δikδmn + k2δinδmk + k3δimδkn. (20)

Taking into account (17)–(20) we write the equations of movement of crystal mediums
with a cubic lattice as

ρÜx = σxx,x + σxy,y, (21)

ρÜy = σyx,x + σyy,y, (22)

µüx = k1

(
∂2ux
∂x2

+
∂2ux
∂y2

)
+ (k2 + k3)

∂

∂x

(
∂ux
∂x

+
∂uy
∂y

)
− (p− sikUi,k)

∂Φ

∂ux
, (23)

µüy = k1

(
∂2uy
∂x2

+
∂2uy
∂y2

)
+ (k2 + k3)

∂

∂y

(
∂ux
∂x

+
∂uy
∂y

)
− (p− sikUi,k)

∂Φ

∂uy
. (24)

Here components of a stress tensor are expressed through gradients of macroshifts Ui,k and
microshifts ui,k as follows

σxx = λθ + 2µ
∂Ux
∂x
− s11Φ(uR),

σyy = λθ + 2µ
∂Uy
∂y
− s22Φ(uR), (25)

σxy = µ

(
∂Ux
∂y

+
∂Uy
∂x

)
− s12Φ(uR).

For plane deformation
uR =

√
u2
x + u2

y,

and the components of a vector of microshifts are measured in units of a constant lattice.
Gradients of macroshifts can be expressed through components of a stress tensor from

Eqs. (25). Then the effective potential barrier of p− sikUi,k takes the form

p− sikUi,k = p [p1 + 2p2(1− Φ(uR))], (26)

where

p1 = 1− 2p2 −
1

2µp

(
sikσik −

λ

2(λ+ µ)
siiσkk

)
, (27)

p2 =
1

4µp

(
siksik −

λ

2(λ+ µ)
siiskk

)
. (28)
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For identical indexes summation is meant, (i, k) = (1, 2).
The parameter p2 is a constant. It is defined by only material properties of the medium.

The coefficient p1 depends on a stress of medium. Let’s consider stress as smoothly chang-
ing function. In this case p1 can consider as a constant

p1 = const. (29)

Besides, we will accept that k2 + k3 = 0. With taking into account the made assumptions
the equation for microshifts take the form

∂2ux
∂τ2

=
∂2ux
∂ξ2

+
∂2ux
∂η2

− ux
uR

V ′(uR), (30)

∂2uy
∂τ2

=
∂2uy
∂ξ2

+
∂2uy
∂η2

− uy
uR

V ′(uR). (31)

Here

ξ =
x

l0
, η =

y

l0
, τ =

t

T
, T =

√
µ

p
, (32)

V ′(uR) =
[
p1 + 2p2(1− Φ(uR))

]
Φ′(uR), (33)

and the prime denotes a derivative with respect to argument.
Microshifts we will seek in the form

ux = ρ cosψ, uy = ρ sinψ, ρ = ρ(ξ, η, τ), ψ = ψ(ξ, η, τ). (34)

Substituting (34) in (30), (31) we can see that the equations for microshifts will be fulfilled
if ρ and ψ are the solution of system of the equations

∂2ψ

∂τ2
=
∂2ψ

∂ξ2
+
∂2ψ

∂η2
, (35)

(
∂ψ

∂τ

)2

=

(
∂ψ

∂ξ

)2

+

(
∂ψ

∂η

)2

, (36)

∂ψ

∂τ

∂ρ

∂τ
=
∂ρ

∂ξ

∂ψ

∂ξ
+
∂ρ

∂η

∂ψ

∂η
, (37)

∂2ρ

∂τ2
= −V ′(ρ) +

∂2ρ

∂ξ2
+
∂2ρ

∂η2
, (38)

The system (35), (36) can be solved if to use a method of construction of functionally
invariant solutions [12]–[16].

The function ψ we will seek in the form of arbitrary function of an ansatz α(ξ, η, τ)

ψ = F1(α). (39)

Ansatz α(ξ, η, τ) is a root of equation

ξ l(α) + ηm(α)− τp(α) + g(α) = 0. (40)

The coefficients l(α),m(α), p(α), g(α) are arbitrary functions of α. Function ψ will satisfy
simultaneously to Eqs. (35)–(38), if

l2(α) +m2(α) = p2(α) (41)
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Eq. (38) is the nonlinear Klein-Fock-Gordon equation. Its solution we will seek in the
form of complex function

ρ = ρ(W ), W = W (ξ, η, τ). (42)

The type of function ρ is defined by choice the function W . Let’s accept that W (ξ, η, τ)
simultaneously satisfies the wave equation

∂2W

∂ξ2
+
∂2W

∂η2
− ∂2W

∂τ2
= 0 (43)

and eikonal type equation(
∂W

∂ξ

)2

+

(
∂W

∂η

)2

−
(
∂W

∂τ

)2

= 1. (44)

Then ρ(W ) has to satisfy the automodel nonlinear ordinary differential equation

d2ρ

dW 2
= V ′(ρ), (45)

which has a first integral. Function ρ is given as inversion of integral∫
dρ√

E + V ′(ρ)
= ±2(W −W0), (46)

Here E, W0 are constants of integration.
The function W (ξ, η, τ) can be taken in the form

W (ξ, η, τ) = a1ξ + a2η − στ + F2(α), (47)

where (a1, a2, σ) are constants, and F2(α) is an arbitrary function of ansatz α(ξ, η, τ).
Function W (ξ, η, τ) will be solution of Eqs (43), (44), if the conditions (41) are fulfilled
and as addition

a1l + a2m = σp. (48)

From Eqs. (41), (48) one obtains l(α)/p(α) and m(α)/p(α). If the found relations to
substitute in (40) and to accept that g(α)/p(α) = −α, then we will find

α = ξ cos(ω ± δ) + η sin(ω ± δ)− τ, (49)

where

a1 =
√

1 + σ2 cosω, a2 =
√

1 + σ2 sinω, tg δ =
1

σ
. (50)

The function W (ξ, η, τ) can be chosen another way. Let W (ξ, η, τ) simultaneously
satisfies the nonlinear differential equations

∂2W

∂ξ2
+
∂2W

∂η2
− ∂2W

∂τ2
= W, (51)

(
∂W

∂ξ

)2

+

(
∂W

∂η

)2

−
(
∂W

∂τ

)2

= W 2. (52)
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Then function ρ has to be the solution of the nonlinear ordinary differential equation

W 2ρ′′ +Wρ′ = −V ′(ρ). (53)

Eq. (53) is reduced to the equation of a nonlinear pendulum (45) by replacement of variable

ζ = lnW. (54)

In this case

W (ξ, η, τ) = eϕF3(α), ϕ = a1ξ + a2η − στ, (55)

where F3(α) is an arbitrary function of ansatz α(ξ, η, τ). One can convince by direct calcu-
lation that the found functions ρ(ξ, η, τ) and ψ(ξ, η, τ) satisfies Eq. (37). It means that they
satisfy system Eqs. (35)–(38) and also are the solution of the equations of microfields (30)
and (31).

Solutions of Eq. (45) are in detail considered in [7]–[11]. It is established that depending
on parameters (p1, p2) the function ρ changes periodically, aperiodically, looks like the
localized perturbations like kinks or solitons. The microshifts ux, uy and the module uR,
which are solutions of the system (30), (31) for Φ(uR) = 1 − cos(uR), in the form (34),
(39), (47) with F1(α) = arctg (α), F2(α) = 1/ ch (α), σ = 1, W0 = 0, ω = 0, are shown
on figures 1, 2. For Fig. 1 as the solution of (45) the function

ρ = 2 arctg exp
(
−
√

2p2W
)

(56)

is chosen. Fig. 2 corresponds to the choosing

ρ = 2 arctg

√
2p2

|p1| − 1

ch
√

2p2 − |p1|W
. (57)
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Figure 1: Microshifts ux, uy, and uR for the case (56) and p1 = 0, p2 = 4.5.

3 Problem of inversion of hyperelliptic integrals

The large number of works is devoted to research of the integral

I =

∫
R(x, y) dx, (58)

where R is a rational function of two variables, and y =
√
Pn(x); Pn(x) is polynom of

degree n which doesn’t have multiple roots. If n is the even number (n = 2ρ + 2), this
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Figure 2: Microshifts ux, uy, and uR for the case (57) and p1 = −1, p2 = 2.

integral can be transformed by an rational substitution to another integral of the same
form but with a polynom of the odd degree n = 2ρ + 1 under the square root. Only one
root of the polynom Pn(x) is enough to be known for this purpose. Remarkable property
of integral (58) consists that his behavior depends not so much on function R(x, y), how
many from degree n. If n = 2, then the integration (58) leads to calculation of Euler’s
integrals. For n = 3, 4, elliptic integrals take place; n = 5, 6 — ultraelliptic; n > 6 —
hyperelliptic.

Depending on function R(x, y) the integral (58) is reduced to integration of a rational
function and calculation of integrals of the types

I12 =

∫
Qm(x)√
P2n+1(x)

dx, I3 =

∫
1

(x− a)
√
P2n+1(x)

dx. (59)

Here a is constant, and Qm(x) is a polynom of degree m. If m < n − 1, then I12 is the
integral of the first kind. It converges for all values x from −∞ to +∞. If m > n — the
integral of the second kind. He approaches to∞, if x→∞. The integral I3 belongs to the
third kind. It has logarithmic infinity in a point x = a. The important characteristic of
ultra- and hyperelliptic integrals is a genus p. He is determined by the polynom’s degree
n. For even degree p = (n− 2)/2, for odd degree p = (n− 1)/2.

At researches of integral (58) the main efforts were directed on a solution of the problem
of the inversion. This problem was solved by outstanding mathematicians of the past and
their followers. Gauss, Abel and Jacobi established the formulas of inversion of the elliptic
integrals [17]. Jacobi constructed the theory of theta functions of one complex variable
and found formulas for inversion of elliptic integrals with their help. The solution took
place in a class of doubly-periodic functions. Jacobi’s ideas were developed by Göpel
and Rosenhain for ultraelliptic integrals of the first kind [18], [19]. They introduced the
theta function of two complex variables into the analysis, investigated their algebraic and
differential properties and showed that formulas of the inversion of ultraelliptic integrals
can be expressed through the relations of the introduced theta functions. Solution took
place in the class of functions with four period. Weierstrass [20] constructed the theory
of theta functions of many complex variables and showed that a problem of the inversion
of the hyperelliptic integral of a genus p can be solved with help of theta functions of p
complex variables. Solution took place in the class of 2p-periodic functions.

Riemann developed [21] essentially another method of the inversion of the hyperellip-
tic integrals. He gave geometrical interpretation of the many-valued functions in a form
of multibranch surfaces (Riemann surfaces) and developed also the theory of inversion of
the hyperelliptic integrals by calculations of the integrals on the special contours. Prym
developed ideas of Riemann in relation to ultraelliptic integrals [22]. In further Klein devel-
oped [23] the method Jacobi, Weierstrass, and Riemann. The researches of the reduction
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(i.e. finding of conditions at which performance the hyperelliptic integrals of a genus of p
will be transformed to the hyperelliptic integral of a smaller genus) is taken the important
place in the theory of the hyperelliptic integrals. These researches are interest to applied
tasks.

Coming back to studying of dependence of nature of perturbations from a type of
potential of interaction of sublattices Φ(uR), we come to a conclusion that addition of a
new harmonic to Φ(uR) transfers integral (58) of genus p in integral of a genus p + 1.
However, if the reduction is possible, the genus can not only increase, but also to decrease.
It is possible when certain ratios between amplitudes of harmonicas take place. Research of
these conditions represents undoubted physical interest. Unfortunately, in literature there
is no available statement of algorithm of the inversion of the hyperelliptic integrals that
doesn’t allow to use the modern computing technologies.

4 Conclusion

In classical mechanics of continuous mediums the plane tasks take a special place. The
effective mathematical methods based on achievements of the theory of functions of a
complex variable has been developed for research of the plane deformation. These meth-
ods allowed to find exact analytical solutions of many problems, which are important for
practical appendices. Problems were solved about distribution of stress near lines of cut,
cracks, boundaries of the section of different mediums etc. The received solutions allowed
to formulate criteria of destruction of materials of the different nature and became a basis
of modern mechanics of the destruction. However the classical mechanics of continuous
mediums proceeds from the assumption of a smallness of shift of sublattices. This hy-
pothesis obviously isn’t fair near the cut’s lines, the crack mouth etc. The new nonlinear
model allows any shifts of sublattices and allows to describe more adequately the phys-
ical phenomena proceeding near lines of singularity, such as cardinal reorganization of a
lattice, formation of defects of different type, structural and phase transitions, formation
of a superlattice, etc. That is why the research of plane deformation on the basis of the
nonlinear models are actual and perspective.
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