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Abstract

The modified formulation of the hydraulic fracture problem is employed to obtain
analytical solutions, to compare thinning fluids and to develop efficient numerical
schemes for modeling hydraulic fractures.

1 Introduction

Hydraulic fracturing is a technique widely used for increasing production of oil, gas and
thermal reservoirs. Since the pioneering works [1]-[4], it has been a subject of numerous
investigations (see, e. g. reviews in the papers [5]-[11]). Theoretical investigations con-
cerned mostly with asymptotics near the fluid front and regimes of the fracture propagation
(e.g., [12], [13], [10]). Benchmark solutions have been given in [4], [14], [15] for the PKN
model; and in [16] for the KGD model when the fracturing fluid is Newtonian. Solution
for non-Newtonian fluids was given in [8] for the KGD model when there is no lag and the
fracture strength is zero (KIC = 0). In [17], a similar problem was studied for non-zero
strength (KIC 6= 0). The solutions were obtained by involved numerical calculations; the
authors used the conventional formulation of the problem which employs the opening and
the net-pressure as unknowns.

Recently [18], [19] it has been shown that the conventional formulation is ill-posed in
the Hadamard sense when neglecting the lag and fixing the position of the fracture front at
a time step. The disclosure of this feature, which had not been reported for more than three
decades, resulted in the modified formulation of the problem [19]-[21]. This formulation
employs the particle velocity and modified opening as unknowns and it includes the speed
equation, prescribed at each point of the front, instead of the global mass balance. Note
that earlier the speed equation was clearly distinguished in 1990 by Kemp [14],

The modified formulation opens new analytical and computational options for solving
problems of hydraulic fracturing. In this paper, we use them. By employing the analyt-
ical options, we consider non-Newtonian fluids, suggest criterion for their comparison as
concerns with hydraulic fracturing, and discuss general features and differences caused by
using various thinning fluids. By employing the computational options, we suggest a new
efficient numerical approach for pseudo three-dimensional (P3D) models.

2 Modified formulation of Nordgren problem for non-Newtonian
fluid

Consider a viscous fluid with the power-type viscosity law
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τxy = M
(
2
.
εxy
)n
, (1)

where τxy is the shear stress,
.
εxy is the shear strain rate,M is the consistency index, n is the

behavior index. For a flow in a narrow channel in the x-direction, common derivations with
using the dependence (1) yield the Poiseuille type equation between the particle velocity
v, averaged over the fracture opening w, and the net-pressure p:

v =

(
−kfwn+1 ∂p

∂x

)1/n

, (2)

where kf = 1/{2[2(n+ 1)]nM}.
The PKN model refers to the plane-strain conditions in cross-sections parallel to the

fracture front. For it, the elasticity equation connecting the opening with the net pressure
is [4]:

p = krw, (3)

where kr = [2/(πh)]E/(1 − ν2), E is the elasticity modulus, ν is the Poisson’s ratio, h is
the fracture height. By using (3) in (2), we have:

v = k

(
−∂w

1/α

∂x

)1/n

, (4)

where k = (kfkrα)1/n, α = 1/(n + 2). The speed equation [18] implies that the particle
velocity at the fluid front x∗ equals to the front propagation speed v∗. As the latter is
neither zero, nor infinite in physically significant cases, the equation (4) yields that the
function

y = w1/α (5)

has to be linear in x near the front. This favorable property suggests using the modified
opening y rather than the opening w itself, which has singular derivative at the front. In
terms of the particle velocity v and the modified opening y, the continuity equation is
written in the modified form [19], [11]:

∂y

∂t
= −v ∂y

∂x
− y

α

∂v

∂x
− y1−α

α
ql, (6)

where ql is the term accounting for the leak-off into formation. In view of (4) and (5), the
dependence between v and y is:

v = k

(
−∂y
∂x

)1/n

. (7)

The initial condition (IC) for solving the PDE (6) is the condition of prescribed opening
along the perspective propagation path. In terms of y it is:

y(x, t0) = y0(x). (8)
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There are two boundary conditions (BC). One of them is the condition of prescribed
influx q0(t) at the inlet x = 0:

(yαv)x=0 = q0(t). (9)

The other BC expresses zero flux, and consequently zero opening, at the front x = x∗:

y(x∗) = 0. (10)

Besides, at the front we have the speed equation (SE) [18], which in the considered
problem reads:

v∗ =
dx∗
dt

= k

(
−∂y
∂x

)1/n

x=x∗

. (11)

The problem consists in solving the PDE (6), where y and v are connected by equation
(7), under the IC (8) and the BC (9), (10). The SE (11) serves to trace the fracture
propagation.

3 Analytical solution. Simple general solution for thinning
fluids

Following the line of the paper [11], we find the solution of (6)-(11) under the initial
condition of zero-opening (y0(x) = 0) [22]:

x∗ = xd∗xN , v∗ = vd∗vN , v = vdvN , t = tdtN , w = wdwN , y = ydyN , (12)

p = pdpN , q = qdqN , q0 = q0dqN , ql = qldqlN .

Herein, the normalizing values, marked with the subscriptN , are xN = (kfkrq
n+2
N t2n+2

N )1/(2n+3),
vN = xN/tN , wN = qN tN/xN , yN = wN

1/α, pN = krwN , qlN = qN/xN ; tN and qN are
arbitrary typical values of the time and the flux, respectively. The dimensionless values,
marked with the subscript d, are defined by equations:

xd∗ = ξ∗t
β∗
d , vd∗ = V∗t

β∗−1
d , vd = V (ξ)tβ∗−1

d , yd = Y (ξ)t
βw/α
d , wd = yαd , (13)

qd = Y (ξ)αV (ξ)t
βq
d , pd = wd

where ξ = xdt
−β∗
d is the self-similar coordinate. ξ∗ is the self-similar fracture length,

which is uniquely defined by the prescribed influx q0 at the inlet. We assume that the
dimensionless influx q0d = q0/qN changes in time as q0d = t

βq
d . V∗ = ξ∗β∗ is the self-similar

fracture speed. The exponents in the time depending factors are: β∗ =
2(n+1)+(n+2)βq

2n+3 ,
βw =

1+(n+1)βq
2n+3 .

The self-similar particle velocity V (ξ) and the self-similar modified opening Y (ξ) are
defined by the series:

V (ξ) = V∗

∞∑
j=0

bjτ
j , Y (ξ) =

ξn+1
∗ βn∗
α

∞∑
j=1

ajτ
j , (14)
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where τ = 1 − ξ/ξ∗. For j = 2, 3, ..., the coefficients of the series are found recurrently
from equations:

bj = − 1

j + α


j∑

k=2

[(j − k + 1 + αk)akbj−k+1 + (αj − βw
β∗

)aj ]− Cl
j∑

k=1

ckql(j−k)

 , (15)

∑∞
k=0(k + 1)ak+1τ

k =
(∑∞

j=0 bjτ
j
)n
,
∑∞

k=1 ckτ
k = τ

(∑∞
j=0 aj+1τ

j
)α

with Cl =

(
α

ξn+1
∗ β

n+1/α
∗

)α
and the starting values a1 = 1, b0 = 1, b1 = 1

α+1(−α + βw
β∗

+

Clql0), c1 = 1. The solution (14), (15) accounts for leak-off prescribed by the dependence
qld = Ql(ξ)t

βl
d , where βl = βw − 1; the self-similar leak-off Ql(ξ) is given by the series in

τ = 1 − ξ/ξ∗ as Ql(ξ) = τα
∑∞

j=0 qljτ
j with known coefficients qlj (for zero leak-off, all

the coefficients are zero). In the particular case of Newtonian fluid and zero leak-off, the
solution (14), (15) is reduced to that obtained in [11].

Shear thinning fluids have the behavior index intermediate between those for the limit-
ing cases of perfectly plastic (n = 0) and Newtonian (n = 1) fluids. Therefore, by continu-
ity, we may infer conclusions for thinning fluids from the results for the limiting cases. It
appears that the solutions in self-similar variables for n = 0 and n = 1 are quite close. In
particular, for a constant influx (βq = 0), the calculations give ξ∗ = ξ∗New = 1.00101 for a
Newtonian fluid (n = 1) and ξ∗ = ξ∗P = 1.04004 for a perfectly plastic fluid (n = 0).This
allows us to describe all the thinning fluids by general simple equations not depending
on the behavior index. In the case of constant influx (βq = 0) and zero leak-off, the
approximate self-similar solution is:

ξ∗ = 1.02, V (ξ) = V∗ = 0.74, Y (ξ) = 2.20(ξ∗ − ξ). (16)

The relative error of (16) does not exceed 2% in ξ∗, 7.6% in V (ξ) and 6% in Y (ξ).
The equations (16) show that the particle velocity is almost constant while the modified
opening is almost linear along the fracture. Using (16) in (13), we have for the normalized
values:

xd∗ = 1.02tβ∗d , vd = vd∗ = 1.02β∗t
β∗−1
d , yd = 2.24

(
1− x

x∗

)
t
βw/α
d , (17)

wd = pd =

[
2.24

(
1− x

x∗

)]α
tβwd , qd = 1.02β∗

[
2.24

(
1− x

x∗

)]α
,

where in the considered case of constant influx, β∗ = 2(n+1)
2n+3 , βw = 1

2n+3 ; as above, α = 1
n+2 .

We see that the normalized fracture length, particle velocity, speed of propagation, opening,
pressure and flux behave similarly for any behavior index. The difference is actually only in
the exponents in time depending factors. The time exponents for a perfectly plastic fluids
are: β∗ = 2/3, βw = 1/3, α = 1/2; for a Newtonian fluid, they are: β∗ = 4/5, βw = 1/5,
α = 1/3. Therefore, for thinning fluids, the difference in exponents does not exceed 2/15
for both β∗ and βw.
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4 Criterion of equivalence of thinning fluids. Its implications

The similarity of the solutions in the normalized variables, evident from (17), does not
mean that non-normalized physical quantities also behave similarly. It is even impossible to
compare non-Newtonian fluids if not making additional assumptions. Comparison becomes
possible only when fixing a reference value .

εr of the strain rate .
εxy in the viscosity law

(1). When having .
εr fixed, we may compare a fluid with given behavior n and consistency

M indices with a standard fluid, having a reference behavior index nr and a reference
consistency index Mr. For convenience, the standard reference fluid may be taken as a
Newtonian fluid (n = nr = 1) with the reference consistency index Mr = µr. Then, as
clear from (1), to have the same shear stress for the fixed .

εxy =
.
εr, the consistency index

of the considered fluid should be [8]:

M
.

= µr
(
2
.
εr
)1−n

. (18)

The question is: how to properly choose the reference value .
εr for hydraulic fracture

problems?
The answer is not obvious. Indeed, from the second of (17), it follows that the particle

velocity is very large for small time, tending to infinity when t → 0, and it is very small
for large time, tending to zero when t → ∞. It is easy to show that the shear strain rate
is proportional to the particle velocity. Consequently, the shear strain rate changes in the
entire interval [0,∞), and it is unclear which reference value to use in (18)?

In the paper [8], the authors used "an arbitrary reference value of shear strain rate
.
εr = 25 s−1". Following [8], the same value was adopted in the paper [17].

The solution given above provides rationale for a choice. From the definitions (12) and
(13) it follows:

x∗(t) = ξ∗(kfkrq
n+2
0 )βwtβ∗ , (19)

where we have taken q0 as the normalizing flux. Equation (19) suggests the needed criterion
of fluid equivalence as concerns with hydraulic fracturing. We assume fluids equivalent in
their action in hydraulic fracturing when at a prescribed reference time (say, treatment
time) they produce fractures of the same length.

As mentioned, for thinning fluids, it is sufficient to consider the limiting cases of per-
fectly plastic and Newtonian fluids. By using (19) for these cases and equating the results
we obtain the reference shear strength τr = τP :

τr = 541/5

(
ξ∗P
ξ∗New

)3(kr√q0

tr

)2/5

µ3/5
r . (20)

Under prescribed kr, q0 and µr, equation (20) establishes the correspondence between
the reference treatment time tr and the reference shear strength τr of a thinning fluid.
Since τr = µr

(
2
.
εr
)
, it can be also written as:

2
.
εr = 2.49

(
kr
√
q0

µrtr

)2/5

, (21)

where we have used the evaluated values ξ∗New = 1.00101 and ξ∗P = 1.04004. Equation
(21) translates the equivalence of thinning fluids in terms of their action in hydraulic
fracturing into the equivalence in terms of the fluid consistency index, defined by equation
(18).
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With the fixed reference time tr, we may compare differences in evolution of hydrofrac-
ture quantities caused by the difference in the consistency and behavior indices. To this
end, it is sufficient to compare perfectly plastic and Newtonian fluids because for a thinning
fluid, all quantities are intermediate between those for these limiting cases. The solution
obtained yields the following dependencies for the ratios of major quantities:

x∗New
x∗P

=

(
t

tr

)βd
,
v∗New
v∗P

=
β∗New
β∗P

(
t

tr

)βd
,
wNew(0, t)

wP (0, t)
=
W0New

W0P

(
t

tr

)−βd
, (22)

where βd = β∗New − β∗P = 2/15, β∗New/β∗P = 5/6, W0New/W0P = 0.91959.
From (22), it is clear that under a fixed reference time tr and consequently under a

fixed reference strain rate .
εr, the curves x∗(t), v∗(t) and w∗(0, t) for any thinning fluid

intersect at the same instances equal, respectively, to tx∗ = tr for the fracture length
x∗(t), tv∗ = (β∗P /β∗New)1/βdtr = 0.25476tr for the propagation speed v∗(t), and tw =
(W0New/W0P )1/βdtr = 0.53328tr for the opening at the inlet w(0, t). Before these instances,
the fracture length and the propagation speed is greater, while the opening is less for a
thinning fluid than for the equivalent Newtonian fluid. After these instances, the relations
are opposite.

Still, as the exponent βd is quite small, the differences are not really great for the time
within the range of practical significance (10s < t < 105s) given the reference time is of
order of the treatment time (tr ' 104s) This shows that there is no decisive differences to
choose between fluids with various behavior indices. At most, the differences may serve to
have some quantity greater (less) at time notably less or greater than the reference time.
Therefore, the choice between fluids, which have various behavior indices, while providing
the same fracture length at the same reference time tr, is to be made primarily from
technological and/or economic considerations. Meanwhile, when using such considerations,
one needs to know the consistency indices of the compared fluids, for which the fluids are
equivalent in providing the same mechanical effect. The equation (21) (or, equivalently,
(20)) offers an answer. It gives the reference shear rate, which via equation (18) defines
the consistency index of a fluid.

Note that these conclusions are actually obtained due to the possibility to use the
self-similar variables for the PKN model. The similar option being available for the KGD
model, the conclusions stay true (with obvious changes in time exponents) for the latter
model. Numerical results and graphs presented in the papers [8] and [17] for the KGD
model evidently confirm them. In particular, for any thinning fluid, calculations performed
under a fixed reference strain rate, result in graphs x∗(t), which intersect at the same point
(Figure 7 of the paper [8], Figure 7a of the paper [17]). The same refers to the propagation
speed v∗(t) (Figure 8 of the paper [8]). The behavior of quantities before and after the
intersection points is in complete agreement with the analysis above, as well.

5 Efficient numerical solution of problems for P3D models

The modified formulation also serves us to revisit pseudo three-dimensional (P3D) models.
These models, discussed in detail in [6], extend the PKN model to the case when the
fracture propagates into the layers embedding the pay-layer. Then the fracture height is not
constant, while in-situ stresses are various in various layers. Consequently, the net-pressure,
defined as the difference between the fluid pressure and the normal in-situ traction, changes
along the height. Meanwhile, in P3D models, the fluid pressure is assumed constant in
a vertical cross section Therefore, to keep track with the PKN-model, we may employ a
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fixed reference in-situ stress, say that in the pay-layer, to define the net-pressure. Below
we use this agreement and conditionally call the difference the net-pressure.

For a vertical cross-section, it is assumed that we have a crack of the length hf in
plane-strain conditions in an elastic plane. In contrast with the PKN model, the normal
traction, which opens the crack, is now not constant on the crack surfaces. Still the
dependence between the opening and the traction is quite simple (it is defined by the
classical Muskhelishvili’s solution). The positions of the lower zl and upper zu crack tips
are found from the conditions of linear fracture mechanics: KIl = KIC , KIu = KIC , where
KIl and KIu are stress intensity factors (SIF) at the lower and upper tip, respectively;
KIC is the critical value of the SIF, defining the strength of a layer where a tip is presently
located. For prescribed elastic properties, critical SIFs and in-situ normal tractions in each
of the layers, the opening w(z), locations zl and zu of the tips and consequently the fracture
height hf = zl − zu are functions of the fluid pressure. These functions may be evaluated
in advance.

With known distribution w(z) of the opening along the height, we obtain the opening
wav, averaged over a cross section: wav = 1

hf

∫zu
zl
w(z)dz. It is a known function of the fluid

pressure for a prescribed system of layers. Therefore, to keep connection with the PKN
model, we may use wav, rather than the net-pressure p, as the argument in the mentioned
functions: w(z, wav), zl(wav), zu(wav), hf (wav). From now on, we use this option. Then
for the net-pressure, defined as agreed, we can write equation (3) extended to the P3D
model as

p = krwavFp(wav), (23)

where Fp(wav) is a function evaluated in advance. It equals to the unit for sufficiently
small opening, in particular, near the fluid front.

Obviously, the cross-sectional area A = wavhf is also a known function of wav. The
flux Q through the cross section is:

Q =

∫ zu
zl

v(z)w(z)dz, (24)

where the distribution v(z) of the particle velocity along the height is defined by the
Poiseuille type equation (2). Its substitution into (24) allows us to evaluate the particle
velocity averaged over a cross section:

vav =
Q

A
=

(
−kfwn+1

av

∂p

dx

)1/n

Fv(wav), (25)

where Fv(wav) =
∫zu
zl

[w(z)/wav]
1+1/ndz is a function, which may be evaluated in advance;

it equals to the unit near the fluid front.
Turning to the continuity equation, we write it in terms of the cross-sectional area A

and the average velocity as:

∂A

∂t
+
∂(vavA)

∂x
+Ql = 0, (26)

where Ql is leak-off through the entire cross-section. To keep track with the PKN model,

we refer A and Ql to a reference height hr, say the height of the pay-layer. Denote ∼w
= A

hr
= wav

hf
hr
, q = Q

hr
, ql = Ql

hr
. In terms of these quantities, the continuity equation

(26) becomes:

∂
∼
w

∂t
+
∂(vav

∼
w)

∂x
+ ql = 0. (27)
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Since hf is a known function of wav, we have wav =
∼
w
∼
Fw(

∼
w) with

∼
Fw(

∼
w) being a

fuction to evaluate in advance. By using ∼w as the argument instead of wav, we may write
(23) as

p = kr
∼
w
∼
F p(

∼
w), (28)

where
∼
F p(

∼
w) is a known function evaluated in advance. Substitution (28) into (25) yields

the equation for the averaged velocity in the form:

vav = k

−∂∼wn+2

dx

1/n
∼
H(
∼
w), (29)

where
∼
H(
∼
w),=

∼
Fw

[
d(
∼
w
∼
F p)

∂
∼
w

]1/n
∼
F v(

∼
w),

∼
F v(

∼
w) = Fv(wav(

∼
w)). Note that

∼
H(
∼
w) = 1 for suf-

ficiently small ∼w. Again, since the propagation speed is neither zero, nor infinite, equation
(29) implies that the function y =

∼
w
n+2

, which presents the modified opening, should be
linear in the distance from the fracture front.

In terms of the modified opening and the averaged particle velocity, the continuity
equation (27) obtains the same form as (6):

∂y

∂t
= −vav

∂y

∂x
− y

α

∂vav
∂x
− y1−α

α
ql (30)

with the dependence between y and vav similar to (7):

vav = k

(
−∂y
dx

)1/n

H(y), (31)

where H(y) =
∼
H(yα) and, as above, α = 1/(n + 2). The PDE (30) is to be solved under

the IC:

y(x, t0) = y0(x). (32)

where y0(x) is prescribed initial modified opening.
Since q = Q/hr, for the flux Q0(t), prescribed at the inlet x = 0, we have the BC

q(0, t) = q0 = Q0/hr. In terms of y and vav, the BC at the inlet obtains the form similar
to (9):

(yαvav)x=0 = q0(t). (33)

The other BC expresses zero flux, and consequently zero opening, at the fracture front
x = x∗. In terms of the modified opening y it is similar to (10):

y(x∗) = 0. (34)

Besides, at the front we have the speed equation v∗(t) = vav(x∗, t), which in terms of
y and vav reads similar to (11):

v∗ =
dx∗
dt

= k

(
−∂y
∂x

)1/n

x=x∗

. (35)
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The problem consists in solving the PDE (30), where y and vav are connected by
equation (31), under the IC (32) and BC (33), (34). The SE (35) serves to trace the
fracture propagation.

Obviously, the problem (30)-(35) for the P3D models is similar to that (6)-(11) for the
PKN-model. The only difference is: the expression (31) for the averaged particle velocity
contains the multiplier H(y). Since the function H(y) is a smooth function equal to the
unity near the fracture front, this difference is not significant as concerns with methods
used for solving the problem.

We come to the major conclusion: the highly efficient numerical methods, developed in
the papers [19], [21] for the PKN model, may serve for stable, accurate and robust solving
problems for the P3D models, as well. This opens new options for modeling hydraulic
fractures in real time.
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