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Abstract

Multilayer thin �lm materials are extensively used in engineering systems
to accomplish a wide range of speci�c functions. The layered structure could
be used for improving mechanical, optical, electrical, magnetic and thermal
properties of microelectronic devices. However, multilayer thin �lm structures
are inherently stressed owing to lattice mismatch between di�erent layers. Sim-
ilar to other stressed solids, such materials can self-organize a surface shape
with mass redistribution to minimize a total energy. But the morphological
stability is very important in fabrication of defect-free microelectronic devices.
In this paper, we present a model of surface pattern formation in multilayer
thin �lm structure with an arbitrary number of layers by considering com-
bined e�ect of volume and surface di�usion. Based on Gibbs thermodynamics
and linear theory of elasticity, we design a procedure for constructing a gov-
erning equation that gives the amplitude change of surface perturbation. A
parametric study of this equation leads to the de�nition of a critical undula-
tion wavelength which stabilizes the surface. As an application of presented
solution, we analyze the surface stability of two-layered �lm under di�erent
conditions.

1 Introduction

Nowadays it's a well-established phenomena that during �lm deposition and subse-
quent thermal processing the �lm surface evolves into an undulating pro�le. Surface
roughness a�ects on many important aspects in the engineering application of thin
�lm materials such as wetting, heat transfer, mechanical, electromagnetic and op-
tical properties. Numerous experimental results demonstrate that surface e�ects
become important in mechanical behavior of nanosized structural elements. Ana-
lyzing a regular surface patterns in mono- and multilayer �lm coatings, it was found
that even a slight undulation in surface morphology can lead to nucleation of mi-
crocracks and �lm delamination. It should be noted, that there are some positive
aspects of surface roughening. For instance, control annealing of thin �lm causes
to break up it to nanosized islands, which exhibit unusual electrical and optical
properties. So, to accurately control the morphological surface modi�cations at the
micro- and nanoscale and improve manufacturing techniques, we need to model this
process to gain a better theoretical understanding.
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2 Problem formulation

Consider an isotropic multilayer �lm coating of a total thickness hf =
N∑
r=1

hr, which

consists of N dissimilar layers and is deposited on a substrate with Poisson's ratio
νN+1 and shear modulus µN+1 under plane strain conditions (see Fig. 1). The layer
of thickness hj has Poisson's ratio νr and shear modulus µr.

Figure 1: Multilayer �lm coating with curved surface.

The substrate is modeled as an elastic half-plane of complex variable z = x1 + ix2

ΩN+1 =
{
z : x2 < 0, x1 ∈ R1

}
. (1)

The coating is modeled as coherently bonded strips Ωr

Ωr = {z : Hr+1 < x2 < Hr, x1 ∈ R1} ,

HN = hN , HN+1 = 0, Hr = Hr+1 + hr, r = 2, N
(2)

with rectilinear boundaries

Γr = {z : z ≡ zr = x1 + iHr} , r = 2, N + 1. (3)

Taking into account the results of experimental studies, we assume that the �lm
surface has an arbitrary small perturbation which changes with time τ through the
mass transport

Γ1 = {z : z ≡ z1 = x1 + i [H1 + g(x1, τ)]} ,

g(x1, τ) =
+∞∑
n=1

An(τ) cos kx1, An(0) = an,

max
n
|An(τ)| /λ = ε(τ)� 1 ∀τ, k = 2πn/λ.

(4)

The conditions at free surface, interfaces and in�nity are, respectively

σ(z1) = 0, z1 ∈ Γ1, (5)
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∆u(zr) = u+ − u− = 0, ∆σ(zr) = σ+ − σ− = 0, (6)

σ∞22 = σ∞12 = 0, σ∞11 = T, ω∞ = 0. (7)

In Eqs. (5)�(7), u = u1 + iu2, σ = σnn + iσnt; u1, u2 are displacements along
corresponding axes of Cartesian coordinates x1, x2; σnn, σnt are components of the
stress vector σ at the area with unit normal n in the local Cartesian coordinate
system n, t (vector n is perpendicular to the boundary Γ1 in Eq. (5) and the interface
Γr in Eq. (6); u± = lim

z→zr±i0
u(z), σ± = lim

z→zr±i0
σ(z), zr ∈ Γr, r = 2, N + 1; σ∞αβ =

lim
x2→−∞

σαβ, ω
∞ = lim

x2→−∞
ω; σαβ (α, β = 1, 2) are the components of the stress tensor

in the axes x1, x2; ω is the rotation angle of a material particle.
As it was mentioned above, the analysis of morphological instability is based on
combined e�ect of surface and volume di�usion that are assumed to take place in
the region close to the free surface Γ1. Following Panat et al.[1], the normal velocity
of the surface can be computed as

∂g(x1, τ)

∂τ
= Ks

∂2

∂x2
1

[
U(x1, τ)− γ ∂

2h(x1, τ)

∂x2
1

]
+

+Kvk

[
γ
∂2h(x1, τ)

∂x2
1

+ ∆P (x1, τ)

]
,

(8)

where Ks = DsCsΩ
2/kbTa, Kv = DvCvΩ/kbTa; Ω is the atomic volume, Ds is

the surface sel-di�usivity, Cs is the number of di�using atoms per unit area, kb is
the Boltzmann constant, Ta is the absolute temperature, Dv is the vacancy self-
di�usivity in bulk of top layer, Cv is the concentration of vacancies in the bulk
of top layer in equilibrium with a �at �lm surface under a remote stress, γ is the
surface energy, U is the elastic strain energy at the perturbated �lm surface, ∆P is
the variation of the hydrostatic pressure at rough and �at free surface.
Here, the elastic deformation caused by surface perturbation is treated as a quasi-
static state. Thus, in order to integrate the surface evolution equation (8), we solve
the corresponding boundary-value problem of plane elasticity for multiply connected

domain Ω =
N+1⋃
r=1

Ωr under boundary conditions (5)�(6) and conditions at in�nity (7).

3 Perturbation Solution

In accordance with the superposition technique [2, 3], the solution of formulated
problem of linear elasticity (1)�(7) is represented as

G(z) =

 Gk
k(z, ηk) +Gk+1

k (z, ηk), z ∈ Ωk,

GN+1
N+1(z, ηN+1), z ∈ ΩN+1,

(9)

where k = 1, N .
In Eq. (9), the following notations are introduced

G(z, ηj) =


σ(z), ηj = 1,

−2µjυ(z), ηj = −κj,
z ∈ Ωj, (10)
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Gr
j(z, ηj) =


σr(z), ηj = 1,

−2µjυ
r(z), ηj = −κj,

z ∈ Ωj. (11)

Here, κj = 3 − 4νj; υ =
du

dz
; υr =

dur

dz
; σr and ur are the stress and displacement

vectors in the problem with number r, similar to σ and u; r, j = 1, N + 1. The
derivative is taken along the area with normal n, i.e. in the direction of the axis t.
In the �rst problem, it is supposed that unknown self-balanced periodic load p is
applied to the periodic curvilinear boundary Γ1 of the homogeneous half-plane with
the same period λ. The longitudinal load at in�nity is equal to T 1

1 .
In the problem r ( r = 2, N + 1 ), the coupled deformation of two dissimilar half-
planes Θr−1 and Θr with elastic properties of the corresponding phases Ωr−1 and
Ωr is caused by the unknown jumps of tractions ∆σr and displacements ∆ur at the
rectilinear interface Γr under longitudinal remote load T rj in Θj (j = r − 1, r).
Quantities T 1

1 , T
r
r−1, T

r
r ( r = 2, N + 1 ) are found from recurrence relations which

follow from conditions (6) and equations ∆σr = ∆ur = 0 corresponding to the case
of the coating with the �at surface.
Boundary conditions (5) and (6) at Γi lead to the system of boundary equations for
unknown functions p, ∆σr and ∆ur.
According to papers [2, 3], the stresses σr and displacements ur are related to
Goursat-Kolosov complex potentials Φr

j and Υr
j by the equality

Gr
j(z, ηj) = ηjΦ

r
j(wk) + Φr

j(wk)−
(
Υr
j(wk)+

+Φr
j(wk)− (wk − wk) Φr′

j (wk)
)
e−2iα, z ∈ Ωj,

(12)

where α is the angle between axis t of the local coordinates n, t and axis x1, the
prime denotes di�erentiation with respect to the argument; r, j = 1, N + 1; w1 =
z + i(g(x1)−H1), wk = z + iHk, k = r − 1, r, k 6= j.
Following boundary perturbation technique, we expand functions Φr

j , Υr
j and p in

power series of small parameter ε

p(z1) =
∞∑
n=0

εn

n!
pn(z1), Φr

j(wk) =
∞∑
n=0

εn

n!
Φr
jn(wk), Υr

j(wk) =
∞∑
n=0

εn

n!
Υr
jn(wk). (13)

And boundary values of functions Φ1
1n, Υ1

1n and pn at Γ1 into Taylor series in the
vicinity of the line Imw1 = 0, i.e. z = iH1, considering x1 as parameter

Φ1
1n(w1) =

∞∑
m=0

[iεf(x1)]m

m!
Φ

1(m)
1n (x1),Υ1

1n(w1) =
∞∑
m=0

[−iεf(x1)]m

m!
Υ

1(m)
1n (x1),

pn(z1) =
∞∑
m=0

[iεf(x1)]m

m!
p(m)
n (x1).

(14)
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In view of relation εf ′(x1) = tg (α1) and condition |εf ′(x1)| < 1, one can write

e−2iα1 = 1 + 2
∞∑
m=0

(−iεf ′(x1))
m+1

. (15)

Based on the solution of Riemann-Hilbert problem for holomorphic functions
Φr

1n(w1), Υr
1n(w1) (r = 1, N + 1), representations (12)-(15) allows us to transform

the system of boundary equations for unknown functions p, ∆σr and ∆ur into
Fredholm integral equations of the second kind in expansion coe�cients σrn and v

r
n

(r = 2, N) and their conjugates

∆σrn(x1) +
+∞∫
−∞

Kr1(x1, ξ)∆σ
r
n(ξ)dξ +

+∞∫
−∞

Kr2(x1ξ)∆σrn(ξ)dξ+

+
+∞∫
−∞

Kr3(x1, ξ)∆v
r
n(ξ)dξ +

+∞∫
−∞

Kr4(x1, t)∆vrn(t)dt = Hr
1n(x1),

∆vrn(x1) +
+∞∫
−∞

Kr5(x1, ξ)∆σ
r
n(ξ)dξ +

+∞∫
−∞

Kr6(x1, ξ)∆σrn(ξ)dξ+

+
+∞∫
−∞

Kr7(x1, ξ)∆v
r
n(ξ)dξ +

+∞∫
−∞

Kr8(x1, ξ)∆vrn(ξ)dξ = Hr
2n(x1).

(16)

Here the kernels Krj(x1, ξ), j = 1, 8 are the same for every order of approximation
and belong to the class of continous functions.The right hand sidesHr

1n(x1), Hr
2n(x1)

are known continuous functions which depend on solutions of all previous approxi-
mations.
Periodicity of a surface perturbation (4) makes it possible to solve the problem in a
form of Fourier series as in the case of the single layer coating [2, 3, 4]

∆σrn(x1) =
+∞∑

k=−∞

ArknEk(x1), ∆vrn(x1) =
+∞∑

k=−∞

Br
knEk(x1) (17)

where Arkn B
r
kn ∈ C, Ek(x1) = exp(bkx1), bk =

2πik

λ
.

FunctionsHr
1n(x1) andHr

2n(x1) are periodic as well and can be represented by Fourier
series with known coe�cients

Hr
1n(x1) =

+∞∑
k=−∞

Cr
knEk(x1), Cr

kn =
1

λ

λ/2∫
−λ/2

Hr
1n(t)E−k(x1)dt,

Hr
2n(x1) =

+∞∑
k=−∞

Dr
knEk(x1), Dr

kn =
1

λ

λ/2∫
−λ/2

Hr
2n(t)E−k(x1)dt

(18)

Using expansions (17) and (18), the system of 2N − 2 integral equations (16) is
reduced to the linear system of algebraic equations in the unknown coe�cients
Arkn, B

r
kn.
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4 Stability conditions

Using the method described above, a stress and strain distribution modi�ed by
surface perturbation (4) is obtained in the �rst-order approximation

σij(x1, τ) ≈ σij(0)(x1, τ) + ε(τ)σij(1)(x1, τ),

εij(x1, τ) ≈ εij(0)(x1, τ) + ε(τ)εij(1)(x1, τ).
(19)

Substituting obtained equations for the elastic strain energy U at the wavy surface
and the hydrostatic pressure variation ∆P into Eq. (8), equating coe�cients of
cos(kx1) and then integrating over the time we derive the governing equations which
give the exponential growth of each Fourier wavemodes An with time [5]

ln

(
An(t)

an

)
= Pn(λ, h1, . . . , hN , µ1, . . . , µN+1, ν1, . . . , νN+1, γ,D, T )τ, (20)

while λ > λcr, where critical wavelength λcr is determined from equations

Pn(λ, h1, . . . , hN , µ1, . . . , µN+1, ν1, . . . , νN+1, γ,D, T ) = 0, D =
DvCv
DsCs

. (21)

As an example, we consider two-layered �lm structure where the surface undulation
is speci�ed by the periodic function [4]

f(x1) =
λ

d

[
Imctg(

πx1

λ
− iy)− 1

]
, d = Imctg(iy) + 1, (22)

here the real quantity y ∈ (0,+∞) plays the role of the parameter determining the
surface shape. Fig. 2 presents the �lm surface relief for y = 0.5 and 5.

Figure 2: The surface shape with di�erent values of parameter y.

Table 1 shows the critical values of surface perturbation wavelength where shear
modulus is µ1 = 100GPa, Poisson ratios are ν1 = ν2 = ν3 = 0.3, surface energy is
γ = 1J/m2, volume to surface di�usion ratio is D = 10−25m2 and atomic volume is
Ω = 4.29× 10−29m3. Young modulus ratios E1/E2, E2/E3; thicknesses of layers h1,
h2 and parameter y are varying in Eq. (22).
As one can see from the table, the surface shape has most signi�cant e�ect on critical
wavelength. The relative di�erence of critical values in the case of y = 0.5 and y = 5
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Table 11: The critical perturbation wavelength for various system parameters.

E1/E2 0.3 0.3 3 3
E2/E3 0.3 3 0.3 3

h1, µm h2, µm y λcr, µm

0.6 0.6
0.5 1.287 1.287 1.248 1.248
5 2.887 2.625 1.926 1.911

1.2 0.6
0.5 1.264 1.264 1.263 1.263
5 2.190 2.186 2.100 2.098

0.6 1.2
0.5 1.287 1.287 1.247 1.247
5 2.728 2.694 1.917 1.916

Table 12: The e�ect of di�erent longitudinal load T signs.

E1/E2 0.3 0.3 3 3
E2/E3 0.3 3 0.3 3

h1, µm h2, µm y (λ+
cr − λ−cr)/λ+

cr

0.6 0.6
0.5 0.153 0.152 0.138 0.138
5 0.365 0.306 0.185 0.180

1.2 0.6
0.5 0.144 0.144 0.143 0.143
5 0.242 0.240 0.215 0.214

0.6 1.2
0.5 0.153 0.153 0.138 0.138
5 0.330 0.322 0.182 0.181

ranges from 53% to 125% for di�erent parameters. In the case of a sinusoidal surface
(y = 5), e�ect of Young modulus ratios E1/E2 and E2/E3 and thicknesses of layers
h1 and h2 are also considerably (33%, 10%, 25%, respectively). However, in the case
of y = 0.5 variation of these parameters has insigni�cant e�ect on the result.
The contribution of volume di�usion depends on the sign of the stress T [1]. The
relative di�erences of critical wavelengths λ−cr and λ+

cr for compressive and tensile
stresses, consequently, are presented in the Table 2. According to the results, the
load sign has greater in�uence in the case of the soft �lm coating.

5 Conclusion

In the present study, we designed the theoretical model of multilayer thin �lm coat-
ing in order to analyze the stability of free surface against di�usional perturbations.
Using the complex variable representations, superposition method and boundary
perturbation technique, the original boundary value problem is reduced to the suc-
cessive solution of the set of Fredholm integral equations, which is given in the terms
of Fourier series. As a result, governing equation is derived and gives the amplitude
of morphological evolution as a function of time.
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