Speed-gradient principle for description of
transient dynamics in systems obeying maximum
entropy principle

Alexander Fradkov, Anton Krivtsov

Institute of Problems in Mechanical Engineering, Russian Academy of Sciences,
61, Bolshoy, V.O., 199178, St. Petersburg, RUSSIA

Abstract. The speed-gradient variational principle (SG-principle) for nonstationary nonequilib-
rium systems is formulated and illustrated by an example. It is proposed to use the SG-principle to
model transient (relaxation) dynamics for systems satisfying maximum entropy principle. Nonsta-
tionary processes generated with the method of dynamics of particles are studied. A comparison of
theoretic prediction and simulation results confirming reasonable prediction precision is presented.
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INTRODUCTION

The equations of motion for physical systems are often derived from variational prin-
ciples: principle of least action, maximum entropy principle, etc. [1, 2]. Variational
principles are based on specification of a functional (usually, integral functional) and
determination of real motions as points in an appropriate functional space providing ex-
trema of the specified functional. The principle is called integral if the functional to be
extremized has an integral form.

In addition to integral principles, differential (local) ones were proposed: Gauss prin-
ciple of least constraint, principle of minimum energy dissipation and others. It has been
pointed out by M. Planck [3] that the local principles have some preference with respect
to integral ones because they do not fix dependence of the current states and motions of
the system on its later states and motions. In 1957 E.T. Jaynes formulated the Maximum
Entropy Principle (MEP): the entropy of any physical system tends to increase until it
achieves its maximum value under constraints imposed by other physical laws [4]. Such
a prediction in implicit form can be found in the works of W. Gibbs.

In [5, 6] a new local evolution principle, so called speed-gradient (SG) principle
originated from the SG-design method of nonlinear control theory [7, 8] was proposed
and illustrated by a number of examples from mechanics. In [10] SG-principle was
extended to the case of systems with constraints.

This paper is aimed at application of the SG-principle to entropy-driven systems.
First, the formulation of the SG-principle is recalled. Then the SG-principle is applied
to derivation of transient dynamics for a system driven by maximum entropy principle
and its simulation results are compared with those for molecular dynamics method.



SPEED-GRADIENT VARIATIONAL PRINCIPLE

Consider a class of physical systems described by systems of differential equations

X = f(x,u,t), (1)

T . ) . T .
where x = (xy,...,x,) is n-dimensional column vector of the system state (" is the
transposition sign), u = (uy,...,u,) is m-dimensional column vector of free (input)

variables, X = dx/dt, t > 0. The problem of modelling system dynamics can be posed as
the search of a law of change of u(7) meeting some criterion of “natural”, or “reasonable"
behavior of the system. Let such a behavior be specified as a tendency to achieve a goal,
specified as decreasing the value of the goal functional Q(x), where Q(x) is given a
priori. The choice of Q(x) should reflect physical essence of the problem and it is critical
for the result. An ultimate goal may be also introduced as achievement of the minimum
value of Q(x):
Q(x(1)) — 0 as 1 — e, 2)
if a nonnegative Q(x) is chosen: Q(x) > 0.
The first step of the speed-gradient procedure is to calculate the speed Q = ‘2—? =
o(x,u,t), where ®(x,u,t) = ag)(f) f(x,u,t). The second step is to evaluate the gradient

of the speed V,Q with respect to input vector u (speed-gradient vector). Finally the law
of dynamics is formed as the feedback law in the finite form

u=—yV,0(x,u,t). 3)
or in the differential form
Ccll_l: = —}/VMQ(X,M,I), (4)

where y > 0 is a positive scalar or a positive definite symmetric matrix gain (positivity
of a matrix is understood as positive definiteness of associated quadratic form). The
underlying idea of the choices (3) or (4) is that the motion along the antigradient of the
speed Q provides decrease of Q. It may eventually lead to negativity of Q which, in turn,
yields decrease of Q. Under some natural assumptions achievement of the ultimate goal
(2) can be derived as a mathematical statement [5, 8] which is, however, beyond the
theme of this paper. The speed-gradient principle is formulated as follows.

Speed-gradient principle: Among all possible motions of the system only those
are realized for which the input variables change proportionally to the speed gradient
V.Q(x,u) of an appropriate goal functional Q(x). If there are constraints imposed on
the system motion, then the speed-gradient vector should be projected onto the set of
admissible (compatible with constraints) directions.

According to the SG-principle, to describe a system dynamics one needs to introduce
the goal function Q(x). The choice of Q(x) should reflect the tendency of natural
behavior to decrease the current value Q(x(z)). Systems obeying the SG-principle will
be called SG-systems. In this paper only the models (1) in a special form are considered:

X =u, &)



i.e. a law of change of the state velocities is sought.

Since gradient of a function is the direction of it maximum growth, the SG-direction
is the direction of maximum growth for Q(x,u,t), i.e. direction of maximum production
rate for Q. Respectively, the opposite direction corresponds to minimum production rate
for Q. In the presence of constraints SG-principle suggests that production rate for Q
is maximum under imposed constraints. The laws of dynamics under constraints can be
found using Lagrange multipliers. The SG-principle applies to a broad class of physical
systems subjected to potential and/or dissipative forces, see examples in [6, 10].

SPEED-GRADIENT ENTROPY MAXIMIZATION

Let us underly that the speed-gradient principle provides an answer to the question:
how the system will evolve? It differs from the principles of maximum entropy, mini-
mum Fisher information, etc. providing and answer to the questions: where? and how
far? Particularly, it means that SG-principle generates equations for the transient (non-
stationary) mode rather than the equations for the steady-state mode of the system. It
allows one to study nonequilibrium and nonstationary situations, stability of the tran-
sient modes, maximum deviations from the limit mode, etc. Let us illustrate this feature
by the example of an entropy maximization problem.

According to the 2nd thermodynamics law and to the Maximum Entropy Principle
the entropy of any physical system tends to increase until it achieves its maximum value
under constraints imposed by other physical laws. Such a statement provides knowledge
about the final distribution of the system states, i.e. about asymptotic behavior of the
system when t — oo. However it does not provide information about the way how the
system moves to achieve its limit (steady) state.

In order to provide motion equations for the transient mode, let us employ the SG-
principle. Assume for simplicity that the system consists of N identical particles dis-
tributed over m cells. Let N; be the number of particles in the ith cell and the mass
conservation law holds:

Y Ni=N. (©)
i=1

Assume that the particles can move from one cell to another and we are interested
in the system behavior both in the steady-state and in the transient modes. The answer
for the steady-state case is given by the Maximum Entropy Principle: if nothing else is
known about the system, then its limit behavior will maximize its entropy [4]. Let the
entropy of the system be defined as logarithm of the number of possible states:

N!

If there are no other constraints except normalization condition (6), S is maximized when
N = N/m. For large N one may use the Stirling approximation N;! ~ (N;/e)". Then

N Z N; i N;
ZNiln—’ = — ZMln—l
. N

=1 i=1

e : e
l

S~ Nln



which coincides with the standard definition for the entropy S = —Y 1" | p;In p;, modulo
a constant multiplier N, if the probabilities p; are understood as frequencies N;/N.

To get an answer for transient mode apply the SG-principle choosing the entropy
S(X)=—Y"N;InN; as the goal function to be maximized, where X = col(Ny,...,Ny,)
is the state vector of the system. Assume for simplicity that the motion is continuous in
time and the numbers N; are changing continuously, i.e. N; are not necessarily integer
(for large N; it is not a strong restriction). Then the law of motion can be represented in
the form

M:Miaizlv"'vmv (8)

where u; = u;(t), i = 1,...,m are controls — auxiliary functions to be determined.
According to the SG-principle one needs to evaluate first the speed of change of the
entropy (7) with respect to the system (8), then evaluate the gradient of the speed with
respect to the vector of controls u; considered as frozen parameters and finally define
actual controls proportionally to the projection of the speed-gradient to the surface of
constraints (6). In our case the goal function is the entropy S and its speed coincides
with the entropy production S. In order to evaluate S let us again approximate S from the
Stirling formula N;! ~ (N;/e)V:

m m
§=NInN-N-Y (N;InN;—N;) =NInN— ) N;InN;. 9)
i=1 i=1
Evaluation of § yields
N m Mi m
S=-Y ((uilnN; +N;ﬁ) =—) ui(InN;+1).

i=1 l i=1

It follows from (6) that } ;" , u; = 0. Hence S§—— Y, u;InN;. Evaluation of the speed-
gradient yields % = —InN; and the SG-law u; = y(—InN;+ ), i = 1,...,m, where
Lagrange multiplier A is chosen in order to fulfill the constraint };" ,u; =0, i.e. A =
%Z;”: 1 InN;. The final form of the system dynamics law is as follows:

m
Ni:%ZInNi—ylnNi, i=1,...,m. (10)
i=1

According to the SG-principle the equation (10) determines transient dynamics of the
system. To confirm consistency of the choice (10) let us find the steady-state mode, i.e.
evaluate asymptotic behavior of the variables N;. To this end note that in the steady-state
N; = 0 and Y~ InN; = InN;. Hence all N; are equal: N; = N /m which corresponds to
the maximum entropy state and agrees with thermodynamics.

Global asymptotic stability of the steady-state mode is proven in [9] by means of the
entropy Lyapunov function V (X) = Sjqx — S(X) > 0, where S, = NInm. It is seen that
V < 0 and the equality V (X) = 0 holds if and only if all the values N; are equal, i.e. only
at the maximum entropy state. The physical meaning of the law (10) is moving along
the direction of the maximum entropy production rate.



Let in addition to the mass conservation law (6) the energy conservation law hold.
Let E; be the energy of the particle in the ith cell and the total energy £ = Y | N;E;
be conserved. According to the SG-principle one should form the projection of the law
(10) onto the surface (in our case — subspace of dimension m —2) defined by the relations
Y uiE; =0, Y",u; =0. and the evolution law should have the form [9]

d _ _
N =AIK(@), (11)

where symmetric m X m matrix A is defined as follows:
|
ajj = —5ij+%+EiEj,l,'] =1,....m

oj=1,if i=j, 6;; =0, if i # j, E;=E; — %Z;":]Ei. It depends on the vector of

energies E = (Ey,... ,Em)T). According to its structure the matrix A is symmetric and
has two zero eigenvalues. At the equilibrium point of the system N; = Cexp(—UE;), i =
1,...,m, where p = A;/y and C = exp(—A,/y). The value of C can also be chosen
from the normalization condition C = N(Y/_, exp(—uE;)). We see that equilibrium
of the system with conserved energy corresponds to the Gibbs distribution. Again the
direction of change of the numbers N; coincides with the direction of the fastest growth
of the local entropy production subject to constraints. As before, it can be shown that
V(X) = Spmax — S(X) is Lyapunov function for the system and that the Gibbs distribution
is the only stable equilibrium of the system in non-degenerate cases.

MOLECULAR DYNAMICS STUDY

As an illustration for the above approach we will demonstrate study of the system of
interacting particles that are used in modeling physical and mechanical processes by
means of particle dynamics [11]. We will consider the simplest system and an approach
consistent with the classical molecular dynamics. Such system satisfies the principle
of maximum entropy and the required conservation laws (for energy and number of
particles) are fulfilled.

A set of particles interacting through the Lennard-Jones potential I1(r) is considered.

Initially the particles uniformly fill a cubic volume. Periodic boundary conditions are
imposed. The particles inside the volume are initially ordered in a face-centered cubic
(FCC) lattice. Step size of the lattice is chosen to ensure a given value of the relative
material density p = 0.125, which is calculated in relation to the close-packed state in
which the distance between the nearest atoms is equal to a. To set the initial velocity
distribution of the particles we will choose the following law: the velocity vectors are
uniformly distributed in the volume of a sphere of radius vynq.

Let Ty be period of small oscillations of a particle with mass m under the action of
an elastic force with the stiffness C = IT"(a). The value of Tj is convenient to take as a
microscopic time scale in the system.

For simulation with 256 000 particles the equilibrium distribution density was finally
settled at T = 87p. Qualitatively it corresponds to Maxwell distribution.



The energy area is divided into three intervals:

L= [07 %Kmax) ) L= [%Kmam %Kmax) ) L= [%Kmaxf"w) . (12)
::’7 _-.-F}-'“"L‘H.__‘
Graph in Fig. 1,a) shows time c -~ | T ———

e

interval ;, i = 1,2,3. Values in t -~ f

s e FERY == = — = Sy
-,

FIGURE 1. a). Dynamics of the populations: N () (solid line), N»() (dotted line) and N3(¢) (dashed
line)/ b). Dynamics of coordinates in the indicative plane.

particles N. The graph shows that for T = 87j distribution function tends to the steady
state, which is significantly different from the primary. The values of N; are connected
according to identity

Ni+N,+N3=N, (13)

where N is the total number of particles, which remains unchanged. Relation (13)
specifies the plane in the space of variables N, N, N3 with coordinates X = %(Nz —

Ny), Y = \%(2N3 — N> — Ny) called indicative plane. Then change of the state of

the system will be reflected by movement of the image point on the indicative plane —
Fig. 1, b).

STUDY OF SYSTEM EVOLUTION USING SG-METHOD

Let us turn to study of distribution function evolution by entropy SG-method. Let m = 3,
i.e. particles may take one of three possible states (cells or energy layers)) with energies
Ey = 0.34,E; = 0.83,E3 = 1.4, corresponding to average energy in the intervals 7,
i =1,2,3 for uniform distribution, see Fig.2. Let N;(¢), t > 0 be the number of particles
in ith state, i = 1,2,3, evolution of N;(¢) obeying mass and energy conservation laws.
According to MaxEnt principle the system should tend to the state (N},N3,N53), that
has maximum entropy under two constraints. Let us normalize N;(¢) by total number
of particles N = N;(t) + Nx(¢) + N3(¢). Then N;(¢) is a fraction of particles occupying
energy level E;. Denote E(t) = Ny (t)E| + Na(t)E> + N3(t)E3 total energy of the system.
Since N = 1 total energy coincides with the average energy of a particle E(r) = E(r)/N.

Let initial distribution of frequencies be: Nj(0) = 0.367;N»(0) =0.023;N3(0) = 0.61
and E = 1. Numerical integration of (11) shows that in this case the limit state is
N{ =0.213;N5 = 0.309; N3 = 0.478, see Fig.2,a.

In the indicative plane we have X (1) — X*,Y(t) — Y™ as t — oo, where X* = —
0.068,Y* = 0.1767. As seen from Fig.2,b, the solution belongs to the plane inclined
with the slope K = AY/AX = 0.52. It is easy to see that convergence to the limit
distribution is exponential.

A2
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FIGURE 2. a). Dynamics of the populations: N;(¢) (solid line), N(¢) (dotted line) and N3(¢) (dashed
line)/ b). Dynamics of coordinates in the indicative plane.

DISCUSSION

Calculations with different numbers of particles show that, while smoothness of the
graphs is increasing with increasing number of particles the main tendencies are the
same. Fast transient processes with significant changes of distribution function take
place for t < Tp. After that a slow evolution of the distribution function takes place
until + = 4Ty. The final distribution agrees with Maxwellian one and does not depend
on initial one. Trajectory of image point in the indicative plane visualizes change of the
distribution function. For ¢ > Ty image point trajectory becomes almost a straight line
that coincides with the prediction based on entropy SG-principle.

Comparison with the results based on entropy SG-principle for the case of three
energy cells clearly shows coincidence of the main tendencies: the system reaches a
stationary distribution not depending on initial one; after fast transients it approaches
stationary distribution along the straight line. Numerical comparison is given the table
1. The numbers N; are normalized by the total number of particles N. It can be seen

TABLE 1. Comparison of results obtained by the two methods.

Method | Ny | Ny | N X' | YT | AY/AX
SG-principle 0.213 | 0.309 | 0.478 | -0.068 | 0.1767 0.52
Particle dynamics | 0.33 | 0.29 | 0.38 | -0.024 | 0.055 | 0.67+0.78

that the values N, obtained by two methods are close. The difference in the values of
the slope AY /AX is 20% — 30%. The values of the slope obtained by the molecular
dynamics method based on spherical and globular initial velocity distributions differ not
significantly. The errors are within the computation precision.

Therefore simulation results for a complex system with a large number of degrees
of freedom agree with the results for a low number of DOF based on SG-principle. It
underlines the benefits of the SG-method for qualitative analysis of systems of particles
and molecular dynamics.



CONCLUSIONS

Speed-gradient variational principle provides a simple yet useful addition to classical
results in thermodynamics. Whereas the classical results allow researchers to answer
the question “Where it tends to?”, the speed-gradient approach provides an answer to
the question: “How it reaches its steady-state mode?”. If entropy is chosen as the goal
function then the SG-principle complements the Gibbs-Jaynes MaxEnt principle and
allows one to find the direction of the trend to the MaxEnt state. In other words, if the
Nature tends to a “'maximally unknown’ state, then it does it with maximum speed.

The results of this paper provide, on the one hand, numerical evidences of the SG-
principle. On the other hand, the results demonstrate applicability of the SG-principle to
the predictions of systems of particles and molecular dynamics.
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