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Abstract. Control problem for the model of the multispecies Lotka-Volterra ecosystem 

is considered. The algorithm for control of oscillatory behavior of the ecosystem based 

on the speed-gradient method is proposed. The conditions of convergence of the 

algorithm are obtained. The conditions of convergence of the algorithm are obtained. 

The results of numerical experiments are presented demonstrating that the speed-

gradient method can achieve control goal with a small control signal, which is 

important in controlling real ecosystems where control action should be sufficiently 

small.  In turn, it allows to increase stability and robustness of the oscillation behavior 

by means of increase of the distance from boundaries of population survival area. 

Keywords: Lotka-Volterra ecosystem, ecological stability, speed-gradient algorithm 

1. Introduction 

Mathematical models of populations are important for studying of ecosystems 

stability. Only stable ecosystems are able to exist for a long time and their stability 

limits define those maximum loadings which excess can lead to ecocatastrophes. The 

stability problem is connected with questions of an operation of natural populations, 

estimations of pollution limits of an environment, the forecast of farming [1].  

 

An important tool for study and management of ecological systems is control theory 

that provides  a variety of methods for improving stability of populations. Many 

applications of the control theory to ecological models are based on traditional methods 

of linear and nonlinear control aimed at stabilization of an equilibrium or a given 

reference trajectory of the system [2,3]. However, in many other cases natural system 

behavior is oscillatory, like in classical predator-prey models. In such problems some 

special methods of oscillation control [4] can be more efficient.  

 

An advantageous feature of oscillatory behaviour is existence of one or several 

invariants: functionals on the system states space that remain constant along trajectories 

of  the undisturbed (uncontrolled) system. Such invariants may be interpreted as 

energy-like or entropy-like functions [5-7]. A smart control should respect invariants. 

Moreover, it seems reasonable to reformulate the control goal 

properly in terms of invariants.  
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A general approach to control of invariants was proposed in [4,8,9] and consequent 

works, see [11], based on the Speed-Gradient (SG) method [4,12]. It was successfully 

applied to the classical Lotka-Volterra model for two species [4]. It was shown that SG-

control allows one to change the amplitude of the oscillation cycles in an arbitrary 

manner keeping the amplitude of the control action as small as possible. Such a 

property is important for control of ecosystems were possibilities of control are often 

limited. However no investigation for multispecies models has been done so far. 

 

In mathematical ecology and biophysics the classical Lotka-Volterra model of the 

population dynamics (“predator-prey” model) and its generalization to the case of N 

species are well recognized [1,5-7]. Dynamics of the N-species Lotka-Volterra models 

were considered in detail in [1,10], the special attention was paid to determination and 

methods of stability analysis within the mathematical models of studying ecosystems. 

In [6] these models as the thermodynamic systems were investigated, and generalized 

expressions of entropy-production for the systems and the study of their role in the 

analysis of ecological stability were derived. 

The objective of the present work is to develop the algorithm for control of 

oscillatory behavior of the multispecies Lotka-Volterra model in order to improve its 

stability. The proposed control algorithms are based on the Speed-Gradient method that 

has already demonstrated its efficiency for control of oscillations in a number of 

problems in physics and engineering [4,11,12]. 

2. Mathematical Model of  Ecosystem 

In a class of the ordinary differential equations a generalized Lotka-Volterra model 

represents the system [1]: 
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where ik  is  the speed of the natural increase or death rate of the i-th kind in the absence 

of all other species: 0ik , if the i-th species lives at the expense of others and 0ik  

otherwise.  The parameter i >0 reflects the fact that the appearance of a predator is 

usually connected with vanishing of one or more preys. Quantities jiaij ,  evaluate 

the type and intensity of the interaction between i-th and j-th species and form an 

antisymmetric matrix. The stability of the ecosystem can be interpreted as the special 

behavior of solutions of (1) when all species stay alive, that is their numbers are always 

more than zero.  Stability of the ecosystem described by (1) means that its solutions do 

not approach the boundary of the positive ortant.   

3. Controlled Model and Problem Statement 

In this paper we consider the controlled version of the model (1). Suppose the birth 

rate of the species NMlxl ,..1,   can be controlled. Then the interaction between the 

species is described by the differential system: 
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(2) 

Assume that there exists at least one positive equilibrium of (1) for some values of 

the system parameters: 

  ,,..1,0,,..,, 21 Ninnnnn iN                                            (3) 

and consider an auxiliary function W: 
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It is well known [8] that if the condition (3) holds, then W(x) is constant along 

trajectories of (1), i.e. W(x) is an  invariant of (1). Besides, Hessian matrix of W(x) is 

positive definite and, therefore, W(x)>W(n) for x≠n. Hence W(x) can measure the 

amplitude of oscillations and can be used to achieve the desired amplitude of 

oscillations.  

 

Introduce the control goal: achievement of the desired level of the quantity W(x(t)) as 

t→∞: 

 .,))(( *  tWtxW                                                         (5) 

If W*=W(n)=minW(x), then the goal (5) means achievement of the equilibrium x=n. In 

the case W(n)<W*<W(x(0)) achievement of the goal (5) means decrease of the 

oscillations level. If W*>W(x(0)), then achievement of the goal (5) corresponds to the 

growth of the oscillations intensity. The problem is to find control function u(t) in (2), 

ensuring achievement of the control goal (5). 

 

4. Main results 

 

Apply the speed gradient (SG) method [4] to solve the problem. To this end 

introduce the so called goal function Q:                                                       

  .*)(
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1
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2
WxWxQ                                                 (6) 

In order to achieve the goal (5), it is necessary and sufficient that Q converges to zero. 

According to the SG method one needs to evaluate A) derivative (speed of change) of Q 

with respect to the system (2) and B) the gradient of Q  with respect to u.  

Calculation of time derivative of Q with respect to the system (2) yields:  

  .))((*)(),(
1





N

Ml

lll untxWxWuxQ                                      (7) 

Partial derivatives with respect to lu  are evaluated as follows: 
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According to the SG method the control action is chosen as follows: 

.,..1,0),)(*)()(()( NMlntxWxWtu lllll                        (9) 

The main result of this paper is the following proposition. 

Theorem. Assume that there exists an equilibrium in the system (1) such that (3) 

holds. Then either the algorithm (9) provides the goal (5), or the quantities of the 

controlled species tend to their equilibrium values. 

Proof.  Consider the time derivative of the goal function Q (6):  
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Since Q does not increase, there exists a finite limit of Q(t) as t→∞. Denote it as Q . 

Suppose the goal (5) does not hold. Then *WQ  . Hence   QtQ   for all 0t  and 
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Integration of (11) yields 
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Therefore 
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The integrand converges to zero according to Barbalat Lemma [4,12], that is   

.,..1,,)( NMltntx ll                                    (14)  

Thus either the algorithm (9) provides the control goal (5), or the number of the 

controlled species )(txl  converges to its equilibrium ln ■ 

Remark 1. In Theorem 1 it is supposed that the system (1) has at least one 

positive equilibrium for some values of  its parameters.  For a nonsingular matrix 

composed of ija  we always can choose values of the birth rate ik  such that (3) holds 

[6]. For a nonsingular matrix composed of ija  positivity conditions depending only on 

ija  were found in [1]. Finally, for both nonsingular and singular cases positivity 

conditions were given in [13].  

Remark 2. For real world ecological systems it is important that the desired 

behavior of the system could be achieved with relatively small control intensity. An 

advantage of the proposed approach is that it allows achieve the control goal with 

arbitrarily small control by means of appropriate decreasing of the gain γ. Indeed,  it 

follows from (10) that Q(x(t))≤Q(x(0)) for all t≥0. Since the goal function Q(x) tends to 

infinity as x→∞, the trajectories of the controlled system belong to the bounded set 

Ω0={x: Q(x(t))≤Q(x(0))}. Denote u* maximum value of control (9) with γ=1 over the 

set Ω0. It is finite since the right hand side of (9) is continuous while the set Ω0  is 

compact. Then maximum value of control (9) with any γ will not exceed γu*, i.e. it can 

be made arbitrarily small by choosing small γ. By similar arguments an arbitrarily small 
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value of the time derivative of the control can be achieved by decreasing the gain 

gamma (again compactness of Ω0 is employed). 

5. Numerical experiments 

We present the results of numerical experiments demonstrating the dynamics of 

the system controlled by the algorithm (9). Below the behavior of uncontrolled system 

(1) (Fig.1) and the behavior of the system (2) for the case of controlled the third species 

(Fig.2, Fig.3, Fig.4) for N=4 are shown. We take initial numbers of the species 

]3;5;3;2[];5;6;7;4[ 0201  xx  and the system parameters 

;6;7;8;9;6;3;2;4 43214321  kkkk         (15) 

.2;5.3;4;5;3;2 342423141312  aaaaaa  

Three values for the desired level of  W are considered: 

.40*;62*;52* 321  WWW  

The control gain is taken as 2.03  . The equilibrium of the system (1) for these 

parameters is 4;2;5;3 4321  nnnn , the equilibrium value of the quantity W is 

.2.51eW  
In Fig.2 and Fig.3 initial sizes of the species have been picked such that  

*0 WWW e  . In this case value of W converge to its desired level rather fast. It is 

seen that the smaller the value of W* the larger the distance between the trajectories and 

the boundary of the stability region (coordinate planes or zero sizes of species). 

For the initial sizes of the species in Fig.4 the relation 0* WWW e  holds. In this 

case an alternative scenario from the Theorem is realized: the desired level of W has not 

been achieved, but the sizes of the controlled species converge to their equilibrium 

value. 

In Fig.5 time histories of control for different values of the gain γ3 are shown. The 

system parameter values are taken  as in (15) while controller parameters are taken as 

follows: 7.61*W , ]2;5;5;5[
01
x , 02.0,1.0,2.0 3

3

2

3

1

3
  . It is seen that decrease 

of γ3 implies decrease of intensity of u(t). It is also seen that the smaller control has the 

longer duration of the transients. 

An interesting question is robustness of the closed loop system with respect to the 

controlled system parameter changes. In Fig.6 the behaviors for three different sets of 

parameters (see Appendix 1) corresponding to the same equilibrium and the same goal 

function are shown. It is seen the limit behavior weakly depends on the controlled 

system parameter values. 

6. Conclusion 

In this work we have demonstrated the application of the speed-gradient method for 

solving non-traditional control problems of nonlinear network models, a special case of 

which is the Lotka-Volterra model of the dynamics of the N species. The  SG 

algorithms for control of oscillations in the multispecies 

Lotka-Volterra model are proposed for different numbers of species admitting 

controlled growth coefficients (birth/death rate). It is demonstrated both theoretically 
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and by means of simulations that control of a small level allows one to significantly 

change oscillations amplitude. 

 

The simulation results have shown that for the smaller value of W the oscillation 

variations in the number of the species are lower and the distance between the 

trajectories and the boundary of the stability region is larger. Thus, to improve 

ecosystem stability it is sufficient to reduce the value of W.  The algorithm based on the 

speed-gradient method can do it with small control signal, which is important in 

controlling real ecosystems where control action should be sufficiently small.  

 

In turn, it allows to increase stability and robustness of the oscillation behavior by 

means of increase of the distance from boundaries of population survival area 

(in the case of the multispecies Lotka-Volterra model it is the N-dimensional positive 

cone (ortant) in the state space of the system). 
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Fig.1. Plots of the numbers of the species versus time (top left) and W versus time 

(top right) and the phase portraits (bottom) of the uncontrolled system (1) for N=4 and 

initial numbers of the species ]5;6;7;4[01 x
  

 

 

Fig.2. Plots of the numbers of the species versus time (top left) and W versus time 

(top right) and the phase portraits (bottom) of the controlled system (2) when 

controlling the numbers of the third species, for N=4, initial numbers of the species 

]5;6;7;4[01 x  and desired value W*=52 

 

 

 

Fig.3. Plots of the numbers of the species versus time (top left) and W versus time 

(top right) and the phase portraits (bottom) of the controlled system (2) when 

controlling the numbers of the third species, for N=4, initial numbers of the species 

]5;6;7;4[01 x  and desired value W*=69 

 

 

Fig.4. Plots of the numbers of the species versus time (top left) and W versus time 

(top right) and the phase portraits (bottom) of the controlled system (2) when 

controlling the numbers of the third species, for N=4, initial numbers of the species 

]3;5;3;2[02 x  and desired value W*=40 

 

Fig.5. Plots of the control for different values of the gain γ when controlling the 

numbers of the third species, for N=4, initial numbers of the species ]2;5;5;5[
01
x ,  

02.0,1.0,2.0 3

3

2

3

1

3
   and desired value W*=61.7 

 

Fig.6. The behaviors of the quantity W(x(t)) for three different sets of parameters 

corresponding to the same equilibrium n = [3;5;2;4] and the same goal function desired 

value W*=66 when controlling the numbers of the third species, for N=4  

Appendix 1 

Three sets of system parameters corresponding to the same equilibrium  n=[3;5;2;4] 

and the same goal function W*=66 when controlling the numbers of the third species  

were taken: 

1) The parameter values (15) with initial numbers of the species ]2;5;5;5[
01
x  and 

05.0
3
 . 

2) The parameter values  
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;3.7;7.4;1.4;4.7;5;5;4;5
43214321
 kkkk  

.2;5.3;2.4;5;5.3;2
342423141312
 aaaaaa  

with initial numbers of the species ]5;5;5;2[
01
x  and 2.0

3
 .  

3) The parameter values 

 ;8.6;6.3;7.6;48.7;5;6;2;5
43214321
 kkkk  
.2;3;4;5;2.3;2.2

342423141312
 aaaaaa  

with initial numbers of the species ]3;2;5;2[
01
x  and 2.0

3
 .  
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