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Abstract: New algorithm for passing through resonance zone of an unbalanced rotor in
plane motion is proposed and analyzed by computer simulation. The algorithm is based
on speed-gradient method and allows to significantly reduce the required level of the
controlling torque. The algorithm has only one design parameter. Compared with the
known Malinin-Pervozvansky algorithm it is more simple for design and exhibits stronger

robustness properties. Copyright © 2004 IFAC
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1. INTRODUCTION

Vibrational units with unbalanced (eccentric) rotors
are widely used in the industry. It is well-known
that the maximum power of driving motor is
required during the spin-up mode (Blekhman,
2000). The decrease of the spin-up power leads to
decrease of nominal power and, therefore to
decrease of the weight and the size of the motor.
Another problem is that in order to obtain the
desired mode of vibration it is necessary to control
the rotor speed in a broad range including both pre-
resonance and post-resonance regions. It means
that the problem of passage through resonance
arises naturally. It is important for development of
new generation of vibrational equipment with
improved technological characteristics.

The key idea to reduce the power of the unbalanced
rotor is to swing the rotor during the spin-up period
by feedback control. The control algorithms
implementing this idea were proposed in (Kinsey
et. al., 1992; Kel'zon and Malinin, 1992; Malinin
and Pervozvanskii 1993; Tomchina and Nechaev,
1999). In (Kel'zon and Malinin, 1992) and
(Malinin and Pervozvanskii, 1993) the optimal
control method was used leading to complicated
and not sufficiently robust controller. Kinsey et. al.
(1992) proposed the algorithm based on derivation
of the averaged controlled plant equation which is
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labor-consuming. The algorithm of (Tomchina and
Nechaev, 1999) is based on the speed-gradient
method (Fradkov, 1990; Fradkov et. al., 1999) and
energy-based goal functions. As it was shown in
(Fradkov, 1996) the speed-gradient algorithms for
energy control of conservative systems allow to
achieve an arbitrary energy level by means of
arbitrarily small level of control power (so called
swingability property). Using this approach for
systems with losses allows to spend energy only to
compensate the losses, and to reduce the power of
driving motor significantly. However, reduction of
the motor power for systems with several degrees
of freedom may increase the influence of resonance
and lead to appearance of Sommerfeld
phenomenon and capture (Blekhman, 1971;
Blekhman, 2000). Sommerfeld phenomenon is
caused by a limited power of motors. It may
prevent the system from passing through resonance
region and achieving the desired post-resonance
value of rotor speed.

Therefore it is important to develop control
algorithms allowing to decrease the power of motor
at the stage of passing through resonance. An
additional requirement of achieving fast passage
through the resonance zone by electrical correction
means is also important (Tomchina and Nechaev,
1999). In the paper by (Tomchina and Nechaev,
1999) only the case of one-dimensional motion of
the rotor axis was considered. The case of plane
motion was studied by Malinin and Pervozvanskii
(1993), who designed the controller using optimal



control technique, see also (Kel'zon and Malinin,
1992).

In this paper the problem of controlling flexural-
and-torsional oscillations of a rotating shaft with an
unbalanced rotor in the middle (Blekhman, 1971)
is solved by means of speed-gradient method. The
proposed algorithm allows to significantly reduce
the required level of the controlling torque. The
efficiency and robustness of the algorithm are
investigated by means of computer simulation for
different values of plant and algorithm parameters.

2. PROBLEM STATEMENT

Consider the following system of differential
equations describing the flexural-and-torsional
oscillations of a rotating shaft with an unbalanced
rotor in the middle (Blekhman, 1971):

JO = me(X cos @+ y sin @) +u(t)—kq,(p

mx+cx = ma(('[Scosq)—(p2 sing)—k,x (1)

mj}+cy=ma(i['>sin(p+(p2 cosQ)—k, v,
where ¢ — rotor angle, x,y — coordinates of the rotor
center of mass, u(f) — control action (rotating
torque of a motor), J - moment of inertia of an
unbalanced rotor (disk), m - mass of a rotor (disk),
€ - eccentricity of the rotor center of mass, ¢ - shaft
torsional stiffness, kq,,kx,ky - damping factors.

It is well-known (Blekhman, 1971; Kononenko,
1964), that the “capture” of angular velocity of a
rotor (Sommerfeld phenomenon) sometimes takes
place in the near-resonance zone. The capture
phenomenon happens when the level of constant
control action u(f)= M, is small. If the level of

constant control action u(f)= M, is higher, the
system passes the resonance zone. Simulation
results for system (1) are shown in Fig. 1.1, 1.2. for
the parameters: J = 0.014 [kg'm?], m = 1.5 [kg], € =

0.04 [m], k, = 0.02 [Jsec], ¢=130 [N/m],

ky=k, =1 [kg/sec] and the constant control
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action M= 0.6 [N-m] (Fig. 1.1) and M, = 0.7
[N'm] in Fig. 1.2.

The problem is to design the control algorithm
u:U(z), providing the spin-up of unbalanced
rotor until the system passes through resonance

zone, where z = [x,)'c, Y, 0,0, (p]T - state vector of
the control plant. It is assumed that the level of
control signal is restricted and does not allow the
passage through resonance when the control signal
is constant. Passage through resonance is
understood as significant decrease of the rotor
center of mass oscillations. Detecting of the exit
from resonance zone is a separate problem which
will be considered in the next section as a part of
control algorithm design.

3. SYNTHESIS OF CONTROL ALGORITHM

To describe the proposed control algorithm first
describe the way to define the time of passing
through resonance zone. It is easy to see that the
capture of rotor speed is equivalent to the increase
of average sum of coordinate squares x+ yz.
Also, the sum of coordinate squares decrease when
system is passing through the resonance zone. This
fact is confirmed by simulation: the sum x4 y2
increases when the level of constant control action
is small and does not allow system to pass through
the resonance zone (see Fig. 2.1 for u(t)=M,,
My =0.6 [N-m]). In case of higher control torque,

the average sum of coordinate squares x+ y2

increase in the pre-resonance zone and decrease in
the post-resonance zone (see Fig. 2.2, My= 0.7
[N-m]).

In order to smooth the variable x>+ y2 we
introduce the additional low pass filter:

Tod(x,y,0)=—0+x% +y%, 6(0)=60)=0, (2)
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where Ty > 0,7y =const — algorithm parameter.
The filtered variable O(x,y,) increases when the
system is in the pre-resonance or resonance zone
(see Fig. 3.1, My = 0.6 [N'm]). In the post-
resonance zone the value of 6(x,y,7) decreases
significantly in comparison with the maximum
value (see Fig. 3.2, My = 0.7 [N'm]). Thus the
variable 6(x, y,z) of the filter (2) allows to fix the
moment of the passage through resonance. To
synthesize the control algorithm we use the speed-
gradient method [Fradkov efr. al, 1999]. At this
stage we suppose that the control plant is
conservative, i.e. the friction equals to zero. Then it
is convenient to formalize the control goal as
follows: To find controlling function u(f)

providing the goal equality H (x,)'c, ¥, jz,(p,(b): H ,

where H(¢) is a current energy, H " is the given

energy level corresponding to the desired average
rotation speed. Then it is possible to choose the
goal functional as follows:

0(z)=1/2 (H(z)— H" )2, where z =[x, %, 7, 7,¢,¢]".
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For the controller design purposes it is convenient
to use Hamiltonian form

. dH
q:a—, p=——+8u,

ap aq
where p=p(f) is the vector of generalized

are  generalized

g=lp.xy]"
coordinates, H =H(p,q) is the Hamiltonian

momenta,

function (total energy of the system), B = [1,0,0] T

Then
0(z)= (e = 1" Jou
and the speed-gradient method applies. One of the

standard forms of speed-gradient algorithm is the
“relay” one:

u=-M, sign [(H —H*)bJ. 3)
It is worth noticing that the algorithm (3) was
designed neglecting the system dynamics. In case
of 3-DOF oscillatory system such a design is not
sufficient because of interaction between rotor and
shaft, and because of the Sommerfeld phenomenon.
It leads to appearance of fast oscillating motions



that make difficult passing through resonance zone.
In (Tomchina and Nechaev, 1999) new control
algorithms were proposed facilitating passage
through resonance by means of introducing
additional low pass filter. Another pecularity of the
algorithm (3) is large variability of the debalance
angular velocity because of changes of potential
energy due to gravity. Then the algorithm takes
form:

oMo i -1 - w)>o,
0, else,

Ty¥=-y+6.
where y(t) - filtered variable, T, >0,T,, = const.

However the efficiency of this algorithm is rather
low because of high amplitude of rotor oscillations.

So the value H " may be achieved in the resonance
zone. Also this algorithm requires choosing the

value H~ for every set of plant parameters, and
this task has no evident solution.

Thus we propose to exclude the factor H—-H *
having the negative sign in the post-resonance
zone, from the algorithm. The modified algorithm
will be again of speed-gradient type with respect to
the goal function Q=-H . We also propose to
switch off the control in the post-resonance zone
and to leave only constant control torque. The
algorithm is modified as follows.

The variable v,(¢):

v1{#) = max sgn |:K sup (1) — G(t):| R
0. (0]

is introduced, where K >0
parameter. The properties of the variable

is the algorithm
0()
allows to say that v,(#) =0 means that the system
is in the pre-resonance or resonance zone (there
was no significant decrease of 0(7)). Also
Y1(#H)=1 means that the system is in the post-
resonance zone. Thus, v,(¢f) characterizes the

current behavior of the system if K is properly
chosen. The value of K should be sufficiently small
to guarantee that the system is already in the post-
resonance zone. At the same time the unjustified
decrease of K may reduce the efficiency and
transient time of the proposed algorithm.

Finally, the algorithm takes form:

My, 7 (t ) =1,

Mo, if ml)=0 & G-v)<0,
0, else,

T\VW = _W+(p9

ult)=

“4)

v1(t) = max sgn |:K sup 8(1) - 9(’):| )
0.1 [04]

To 6(r)=—0()+x* +y2, 6(0)=6(0)=0.
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The value of 7,, (time constant of the angular

velocity filter) should be more then the period of
the resonant oscillations. At the same time, if the
value of T, is too high, the algorithm works too

slowly.
4. COMPUTER SIMULATION RESULTS

The designed control algorithm was numerically
investigated to analyze the efficiency of the
proposed algorithm for various values of plant and
algorithm parameters. Numerical integration was
made in MATLAB environment by means of
Runge-Kutta method of second order. The value of
the fixed step equal to 0.00025 [sec] was chosen so
as the relative simulation error does not exceed
5%.

It was established by simulation that the worst
values of simulation error are obtained when the
damping factors are small. This is due to the
increase of the oscillation amplitude when the
damping factors decrease.

The nominal values of system parameters were
chosen as follows: J = 0.014 [kgm*], m = 1.5 [kg],
e=0.04 [m], k, =0.02 [J:sec], ¢=1300 [N/m],

ky =k, =1 [kg/sec].

The torques M, and M, were calculated for every
series of experiments. M is the value of the

rotating torque of a motor, which allows system to
pass the resonance zone for u(t)= M;, but not

allows system to pass the resonance zone for any
My< M,. M, is the value of the rotating torque of

a motor, which allows the system to pass through
the resonance zone for relay control algorithm (4),
but not allows it for any M, < M.

Firstly, the influence of the shaft torsional stiffness
¢ on system dynamics was investigated for nominal
values of other plant parameters. The dependence
of the minimal value of control action, allowing the
passage through resonance, on the shaft torsional
stiffness ¢ is shown in Fig. 4.1. It is seen that the
dependence of the constant control action M, on the
stiffness ¢ (dotted line) is linecar. However some
nonlinearity for the dependence of the torque M, on
the stiffness ¢ (solid line) is observed. The
dependence of the efficiency of the proposed
algorithm n=M,/M, on the stiffness ¢ is shown in
Fig. 4.2. It is clear that the efficiency is small when
¢ is small. However value of rotating torque M

can be reduced in 4-5 more times if the shaft
torsional stiffness ¢ increases. The time constant of
the angular velocity filter 7, varies from 0.1 to 1.1

seconds.

Further the influence of the damping factor k, on

system dynamics was investigated for nominal
values of other plant parameters. The dependences
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of the torques M, and M, on the damping factor
ke It

dependence on kg, is almost linear both for the

are shown in Fig4.3. is seen that

constant control action (dotted line) and relay
control algorithm (solid line). The dependence of
the efficiency of the proposed algorithm n=M,/M,
on the damping factor k, is shown in Fig. 4.4. It

is clear that the efficiency is higher when kg, is

smaller. The value of rotating torque M can be
reduced in 7-8 times when k, decreases to 0.005

[J'sec].The time constant of the angular velocity
filter 7\, was equal to 0.1 seconds and was not

varied.

Finally, the influence of the eccentricity of a rotor ¢
on system dynamics was investigated for nominal

values of other plant parameters, k,= 0.005

[J'sec]. The dependence of the torques M; and
M, on the eccentricity & are shown in Fig. 4.5. It
is seen that dependence on ¢ is almost linear both
for the constant control action (dotted line) and
relay control algorithm (solid line). The
dependence of the efficiency of the proposed
algorithm n=M,/M, on the eccentricity € is shown
in Fig. 4.6. It is clear that the efficiency is higher
when ¢ is higher and the value of rotating torque
M, can be reduced in 7-8 times. The time constant

of the angular velocity filter 7,, was equal to 0.1

seconds and was not varied.
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5.STUDY OF THE ALGORITHM
ROBUSTNESS

The designed control algorithm was numerically
investigated to analyze the robustness of the
proposed algorithm for various values of plant
parameters.

The algorithm has three design parameters: T, -

time constant of the angular velocity filter, Ty -
time constant of the additional variable 0 filter,

and K — the parameter allowing to fix the time of
passing through resonance zone.

Simulation showed that the proper choice of the
algorithms parameters Tg =1[sec], K = 0.7 allows
to achieve satisfactory results described in Section
4. Further changing of these parameters does not
increase the algorithm efficiency.

Further, the algorithm robustness for different
values of the shaft torsional stiffness ¢ was
investigated for nominal values of other plant
parameters J = 0.014 [kg'm?], m = 1.5 [kg], € =
0.04 [m], ktP =0.02 [Jsec], ky =k, =1 [kg/sec].

The torques M, and Mz were calculated for

every value of the stiffness ¢. M, is the value of
the rotating torque of a motor, which allows the
system to pass through the resonance zone for relay
control algorithm (4) and some value of T\V’ but
does not allow it for any My < M, and any value of
Ty (T varied in the range 0.1 + 1.1 [sec] with the

step 0.05 [sec]). M3 is the value of the rotating

torque of a motor, which allows the system to pass
through the resonance zone for relay control
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algorithm (4), but does not allow it for any M, <
M,; the value of Ty is fixed Ty = 0.45 [sec]. The

dependence of p=M,/M;on the stiffness ¢ is

shown in Fig. S5.1. It allows to evaluate the
robustness of the proposed algorithm. The
dependence of the best value of T, on the

stiffness ¢ is shown on Fig. 5.2 (this dependence
results from the fact that decrease of stiffness leads
to decrease of period of oscillations, and it is
desirable to increase the time constant).

CONCLUSION

Computer simulations show that the use of the
proposed algorithm allows to significantly
(sometimes by order) decrease the level of the
controlling torque required to pass through the
resonance zone.

To increase the algorithm efficiency it is
sufficiently to change the only design parameter T,,
If the choice is proper, the algorithm efficiency is
sufficiently high.

The robustness of the algorithm is significant. If the
stiffness ¢ changes from 30 to 3000 [N/m], then
the constant value T, = 0.45 [sec] provides the
algorithm efficiency not less then 65% of the
efficiency achieved for choice of T, for every
value of stiffness. Compared with the optimal
control algorithm of (Malinin and Pervozvansky,
1993) the proposed algorithm is more simple for
design and exhibits stronger robustness properties.

It is planned to test the proposed algorithm on the
two-rotor vibrational set-up (Blekhman er. dl,
1999).
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