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Abstract: Energy speed-gradient control of singulary perturbed Hamiltonian systems is
studied both theoretically and by computer simulation. Previous results on stability of
speed-gradient control of singularly perturbed systems are extended to the case of partial
stability. Quantitative results are obtained for synchronization of two coupled pendulums,
taking into account inertia of the coupling link. Copyright © 2004 IFAC.
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1. INTRODUCTION

Control of system energy is an important problem
having different applications to control of mechanical
and electromechanical systems, particularly to control
of oscillatory modes (Fradkov and Pogromsky, 1998;
Astrom and Furuta, 2000). A general approach to en-
ergy control based on speed-gradient method was pro-
posed in (Fradkov, 1996) and later extended to control
of several invariants of a nonlinear systems (Fradkov
and Pogromsky, 1998; Shiriaev and Fradkov, 2001).

For control of complex nonlinear systems an impor-
tant problem is dealing with an unmodeled dynam-
ics, particularly with singularly perturbed systems.
It is well known that unmodeled dynamics may not
only prevent from achieving the control goal, but
also cause unboundedness of control system trajec-
tories (Toannou and Kokotovi&, 1983; Kokotovié, et
al., 1986; Fradkov, et al., 1999). Conditions for stabil-
ity of singularly perturbed speed-gradient based con-
trol systems were proposed in (Fradkov, 1987), sec
also (Fradkov, et al., 1999). These conditions are well
suited for adaptive control systems where stability
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with respect to only a part of variables may be ob-
served. However, the conditions of (Fradkov, 1987)
are not fulfilled for energy control problems, since (A)
the energy-based Lyapunov function is not radially
unbounded and (B) an unperturbed systems possess
weaker stability properties, namely, partial stability
with respect to a function rather than stability with
respect to a part of variables.

In this paper the results of (Fradkov, 1987) are ex-
tended to encompass the problems of speed-gradient
based energy control of singularly perturbed Hamilto-
nian systems. In Section 2 new stability results for sin-
gularly perturbed nonlinear systems is presented and
applied to energy control of Hamiltonian systems. An
example of application to controlled synchronization
of two coupled pendulums, taking into account inertia
of the coupling link is studied in the Section 3 by
computer simulation.

2. SPEED-GRADIENT METHOD FOR
SINGULARLY PERTURBED SYSTEMS

Consider the following plant model

& = fr(z1, 2, u,t) (D
ey = folw1,22,u,t), 2)
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where wu is the control action, z1 € R™ is the vector of
slow variables, x2 € R™2 is the vector of fast variables,
and f1(-), f2(-) are the vector functions of appropriate
dimensions.

Let the control objective be the fulfillment of the
relation

Jim Qa1 (1),1) =0, e
where Q(x1,1) is a scalar smooth objective function,

x = col(z1, z2).

To design a simplified control law, the initial system
(1), (2) is replaced by a reduced-order one obtained
by substitution € = 0 as follows:

jjl - 7(3317“7 t)a Ty = n(mlaua t)a (4)
where To = n(z1,u,t) is a root of the equation
f2 x1, 29,4, t) = 0 (the root is assumed to exist and
be unique), f(21,u,t) = fi(z1,9(z1,u,t),u,1).
Then, the speed-gradient control algorithm (see Sec. 2)
for the reduced-order system model is designed:

u=V Lw(z1,u,t), (5
where = 7T > 0is a positive definite matrix and
b5) _
o t) = 524 (T.Q F (e, ut). (6)

ot
The final stage of the design consists in verification
of stability properties of the closed-loop system. It is
casy to show that, to provide the fulfillment of the
control objective @ — 0 as t — oo for the reduced-
order system (4), (5), it suffices to assume that the
function w(-) is convex in w and there exists a vector
Uy such that the system (4) with substitution 4 = .
is exponentially stable with respect to function @,
Le., w(zy,ugt) < @ for some @ > 0. How-
ever, the fulfillment of the control objective for the
reduced-order system does not guarantee the same for
the initial one (1), (2), (5), see (Toannou and Koko-
tovi¢, 1983). Therefore application of the above de-
sign method requires additional conditions assuming,
in particular, small value of the parameter €. These
conditions are introduced below.

The known classical results concerning the method of
singular perturbations either deal with a finite period
of time (Tikhonov’s theorem, the first theorem of
Bogoliubov) or require uniform asymptotic stability
of the reduced-order system (the second theorem of
Bogoliubov, the Hoppenstedt theorem).

Fradkov (1987) weakened the uniform asymptotic sta-
bility condition and extended the result to the case
when 21 = (z,0) and the reduced system is asymp-
totically stable with respect to x4, i.e. asymptotically
stable with respect to the part of the state variables.
Such a case is important for adaptive control where
 is the vector of adjustable parameters. However, in
the energy control problems the system (4), (5), in
general, exhibits only partial asymptotic stability with
respect Lo some function of state variables z; () and

the previous results cannot be applied. Besides, the
energy based goal function does not meet standard
assumptions of radial unboundedness for Q).

Below we extend the results of (Fradkov, 1987) to the
form, suitable for speed-gradient energy control.

For the sake of simplicity consider the case of time-
invariant system

&1 = f1(21, 22, u) (7N
et = f2(21, T2, u) ®
and the time-invariant goal function @ = Q(z1). In

this case the speed-gradient algorithm, derived on the
basis of a reduced-order system

&1 = f(z1,u), €
takes the form
ww(z1, 1), (10)
where = T >0,
w(z,u) =(VaQ)* f(z1,u),

(w1, u)= fi1(z1, n(z1, u),u),

and To =n(z1, u) is aroot of the equation fa(z1, z2, )=
0.

The main result of the paper is as follows.
Theorem 1. Given a system (7), (8) and (10). Let the

Sunctions f1(-), Q(-) and f2(-) be twice continuously
differentiable, and satisfy the following conditions:

AO0) The functions f(x1,u), Q(x1), and their first and
second derivatives are bounded in the set Qp = {z1 :
Q(z1) < R} for all u satisfying (10).

Al) for any 1 and u there exists a unique root To =
n(z1, u) of the equation fz(x1,x2,u) = 0 and the
Sunction n(z1,u) is twice continuously differentiable;

A2) the function w is convex in u, and there exists a
constant vector u,. such that for all x1 € Qp

w(@1,us) < plz 1)

Jor some p(x1) > 0 and there exist numbers c; > 0
(z =0,1,2) such that

0 < arp(z1) < Ve, Qz1)] < aaQ(ar)'/?
A3) there exist a continuously differentiable function

Va(Z2), where To = a2 n(x1,u), and numbers [;
(z =0,1,2) such that

Ve < Bol@a)?, Bil@e| < [VVa| < BalFal,
where

02Va = (VVa(Z2))" falz1, T2 + n(z1, u), u).

Then:

i) for any bounded set D of the initial states xs there
exists a number g9 > 0 such that for 0 < € < g¢ the
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solutions of the system (7), (8) and (10) with =1 € Q
satisfy the following relations

Jim (1) =0, lim (w3(t) nar(t), u(t))) =0

ii) let

Br={(z1,32) : Q(x1)<R,z5€ D}CR™™,
eY)

and let the values

Of1(x1, w2, u)
L1(R) =su 7‘
1( ) SBE 8932
0
Ly~ sup | SOy, w)|,
Br 1021
LS(R):SEE EeN (a:l,u)‘.

be bounded for some R > 0 and bounded D C R™.
Additionally, if

2(0) € Dp = {(ml,mg) ;

OélLl(R)
B1L2(R)

then g can be chosen in the form

Q1) + V(@) < R}

_ aoalﬁoﬁl
BaLla(R)(a2Ll2(R) + apar La(R))

co(R) - (12)

Remark 2. If aga1Ls(R) < aslo(R), then the
right-hand side of (12) can be approximated as

c0(R) & kika(kiaks1)t (13)

where the coefficients k1 = aga /as, ko = BoB1/ 5o
are proportional to the stability degrees of the fast
and slow subsystems, and the numbers k1o = L2(R)
and ka1 = L1(R) can be interpreted as degrees of
interconnection between the subsystems.

In brief, the above theorem means the following. If
the fast subsystem (8) is exponentially stable on x
for v = 0 and the reduced-order system (9), (10)
is partially asymptotically stable with respect to the
function g1 ), then the algorithm (10) ensures partial
stabilization of the initial system (7), (8) with respect
to the function p(x4) for sufficiently small parameter
€ > 0. The particular value of € depends on initial
conditions z(0), since the right-hand sides of (7), (8)
may be locally, but not globally, Lipschitz. Thus, we
can conclude that the considered control algorithm
(10) is robust with respect to unmodeled fast dynamics
(singular perturbations).

The above result applies to the controlled system is the
Hamiltonian form

OH OH
s Mgy . g
dq; Op;
(14)
where p = col(p1,...,0n), ¢ = col(q1,...,qn) are

the vectors of generalized coordinates and momenta,

H = H(p,q,u) is the Hamiltonian function, and
u(t) € R™ is the input (generalized force).

Consider the problem of approaching the prespecified
level of energy of the free (unforced) system

Ho(p(t),q(t)) — Hy as t —o0,  (15)
where Ho(p, ¢) = H(p, q,0) is the “internal” Hamil-
tonian describing the unforced system
The speed-gradient algorithm for the posed problem is
as follows:

w=1 (Ho H,)[Ho, Hi]"), (16)

where 1 is a smooth vector function with values in

R™ which satisfies the strict pseudogradient condition
¥(z)Tz > 0 for z # 0, where

— (Of dg
is the Poisson bracket of smooth functions f(p, ¢) and
g(p, ¢) (if the functions f, g are the vector functions

then the Poisson bracket is defined componentwise).

of Og
0q; Op; )

Theorem 1 applies to the energy control problem for
singularly perturbed Hamiltonian system (14). In that
case Q(z1) = % H(z1) H*)z, z1 = col(p,q),
xo 18 a state vector of the perturbed system (1), (2).
The condition A2 of the theorem holds for p(z1) =
[Ho(z1), H1(21)])2Q(x1). Tt follows from Theorem 1
and Corollary 1 that the goal (3) is achieved with the
control algorithm (16) for initial conditions from Bg
and sufficiently small e > 0, if [Ho(z), H1(z)] # 0
for x € Bg for some R > 0.

3. EXAMPLE. FLEXIBLY COUPLED
PENDULUMS

3.1 Model of the controlled system

Consider the two pendulums coupled by the spring
(see Fig. 1). Such a system is the special case of the
diffusively coupled oscillators model, which is often
used for modeling various physical and mechanical
systems (Jackson, 1990). To take into account the
dynamics of the coupling unit, it is assumed that
the coupling torque between the pendulums depends
dynamically on the difference between the pendulum
angles. The coupling unit is conceived here of a small
flywheel, mounted on the torsion spring. The both
ends of the spring are connected with the pendulum
rods. The system dynamics can be described as

Jpp1 + Rpp1 + mglsing,
=K 1)+ M),

Jpp2 + Rppo + mglsin o an
=K(p  p2),

o+ Rsjr+ 2K p = K(p1 + 92),

where ;(t) are the pendulum rotation angles G =
1,2); M(t) is the external torque (the control action),
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applied to the first pendulum; m, I are the mass and
the length of the rod for each pendulum; J, is the
pendulum moment of inertia (J, = mi? for the point
mass pendulum); g is the acceleration of gravity; K is
the coupling parameter (the stiffness of the spring);
R, and R, are the viscous friction coefficients for
the pendulums and the coupling unit, respectively;
Js is the moment of inertia of the coupling unit (of
the “flywheel”™); w(¢) is the twist angle (the flywheel
rotation angle). The mass and the damping of the
coupling unit are assumed to be small.

i Balancers with
i Magnets

Hall é\\yg

Sensor, P

Electric i o

Magnet ‘k Ve

]J::Idlll‘-.“L 2, Magnets

Fig. 1. Two pendulums, coupled by the spring.

Consider the problem of excitation oscillations with
the desired amplitude, understood as achieving the
given energy level. An additional goal may be posed as
the requirement that pendulums have either coinciding
or opposite phases of oscillation (in-phase or anti-
phase synchronization). To design the control law
we use speed-gradient method for the reduced plant
model, neglecting the coupling dynamics.

3.2 Plant model reduction

Assuming that the coupling dynamics are “fast”, in-
troduce the “small parameter” € into the third of Egs.
(17). To this end, the following notations are intro-
duced: J, = €2J,, R, = £R,. Then the plant model
(17) takes the form

rtpprtu’sing =k(n o1)+u(b),
¢2+P¢2+wzsins@2:k(ﬂ ©2), (18)
€% jirk-epefit 2heps = Kelipr +ip2),

where u(t) =M (t)/J, is the rescaled external torque
(the control action); w is the natural frequency of
small oscillations for the uncoupled pendulums, w? =
mgl/Jp; k = K/J, is the coupling coefficient; p =
R/J, is the friction parameter; ps = Rg/Js, ks =
K/ J,. Evidently, Eq. (18) is a particular case of Egs.
(1), (2), where 21 = col 1, @1, ¢a, ¢2) € R is the
vector of slow variables and z2 = col g, /l) € R?%is
the vector of fast variables.

To design a control law, the full-order initial system
(18) is replaced by a reduced-order one, obtained by

substitution ¢ = 0 and described by the following
equations

@1+ pp1tw’sing; +0.5k(01 @a)
=u(t), (19)
Gotppatw’singa+0.5k(px 1) =0,
(the notations are given above, see Eqs. (17), (18).)

The simplified model (19) is used further on for energy
control law design.

3.3 Control law design for the reduced plant model

The total energy H(z1) of the system (19) can be
written as follows

1. 1.
H(z:) = %1t w?(1  coser) + §<P§
k (20)
2 2
Tl cospz) + 7 ¢ ),

ml(t) = col ¥1, ¢1a ©2, @2)

In order to apply the speed-gradient procedure of Sec.
2, introduce the two objective functions as follows:

DO =

Qw(‘plaQbZ) = 5@)2

. @D
Qu(z1) = §(H($1)

H,)?.

where 6y —H 3:1) H, is referred to as energy error;
0, = 1+ oo isreferred to as synchronization error;
o€{ 1,1} is a reference phase-shift parameter; H.
is the prescribed value of the total energy.

Apparently, minimization of @z means achievement
of the desired oscillations magnitude. The minimum
value of the function @, allows, additionally, to meet
the “inphase/antiphase” requirement (at least for small
initial phases ¢1(0), ¢2(0)) : Q, (1, ¢2) = 0 if and
only if o1 = o09. Hence option o = 1 sets the
antiphase desired pendulums oscillations, while o =
1 sets the inphase ones.

To design the control algorithm, the objective function
Q(z1) as the weighted sum of Q,, and Qg is intro-
duced:

Qz1) = aQu(P1,¢2) + (1 )Qnu(z1), (22)
where o € [0, 1] is a weighting coefficient.

The speed-gradient procedure of Sec. 2 leads to the
following control laws:

—the proportional form
—the relay form
u= rysign ad, + (1 a)upr), 24)

where v > 0 is a gain factor. The case « = 0 cor-
responds to the energy control problem Application
of the results of Sec. 2 (Corollary 1) yields that for
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« = 0 the sufficient conditions for the achievement of
the control goal Q(z1(t)) — 0 are valid if the desired
level of energy does not exceed the value H, = 2w?,
corresponding to the upper equilibrium of one pendu-
lum and the lower equilibrium of the other one.

It is worth noting that the control law (23) for the
system (19) with o =1 has been proposed and numeri-
cally examined in (Andrievsky and Fradkov, 1999). In
the paper (Kumon ez al., 2002) the case of o= 1 and
nonlinear coupling function in (19) is considered and
the results of analytical, numerical and experimental
study of the closed-loop system are presented. Numer-
ical analysis of the system with the control law (24) for
the both o = {0, 1} and for the cases of conservative
(p=0) and dissipative (p > 0) oscillators is performed
in (Fradkov and Andrievsky, 2003).

3.4 Comparative examination of
Jull-order and reduced systems

the closed-loop

In this subsection some numerical results of exami-
nation the closed-loop system with the proportional
control law (23) are presented. The parameter values
are as follows:

— the control law parameters: v = 1, = 0.7, 0 = 1
(the anti-phase steady-state oscillations are required),
H,=10s% ;

— the plant model parameters: w? = 10s? , k = 1.75
s2 ,k, =857-10% s? ,p,=0.01s' ,e=005.

The phase variables have zero initial values. Two cases
of the damping parameter p are studied: p = 0 (the
conservalive system), and p = 0.1 s (the dissipative
system).

The simulation results are depicted in Figs. 2—7. First
consider the energy control problem (@ = 0) for
conservative case (p = 0). It is seen from Fig. 2 and
Fig. 3 that the energy approaches the desired value
both for reduced and for the full order systems. This
result confirms the theoretical statements.

Now consider more complex problem of energy con-
trol with synchronization (o > 0). Since the existing
theoretical results do not apply, simulation is the only
way of its analysis. It is seen that for the lossless case
(p = 0) and the “ideal” plant model (¢ = 0) the con-
trol goal is achieved: both pendulums fall in anti-phase
oscillatory mode, the total energy H (z;1(t)) tends to
the desired value H,, and the control torque (1) tends
to zero, see Fig. 4. Note, that the relation between
transient times for /' and for @, can be changed by
means of changing the weight coefficient «. In the
lossless case the control amplitude can be arbitrarily
decreased by means of decreasing the gain «y. For the
the initial plant model (18), the small amplitude os-
cillations of the energy and the control action around
the steady-state values occur, see Fig. 5. In the case of
the damped pendulums (p > 0), for both initial and

reduced plant models some steady-state error in the
energy H (x1) appears and the control actionu(¢) does
not vanish, see Figs. 6, 7. Additionally, oscillations
with a small amplitude occur in the full-order system
(18), see Fig. 7. The simulations show that the exam-
ined speed-gradient energy control law (23) possesses
the robustness with respect to unmodeled dynamics of
the coupling unit. Moreover, using more sophisticated
goal function allows to achieve, additionally, in-phase
or anti-phase synchronization and this property is also
robust with respect to dynamical disturbances.

o i i i i ts
0 10 20 30 40 50

Fig. 2. Energy control; reduced plant model (19), p=

.20 i | i i ts
H(t), Href , , , |
C) 10 E AAI‘:A i nh:nAAAlAAnA E lllllllll
J 777777777 A .
| | | | ‘s
0 1 1 1 1 )
0 10 20 30 40 50

Fig. 3. Energy control; full plant model (18), p = 0.

4. CONCLUSIONS

In the present work an energy speed-gradient control
of singularly perturbed Hamiltonian systems is stud-
ied both theoretically and by computer simulation.
Previous results on stability of speed-gradient control
of singularly perturbed systems are extended to the
case of partial stability. Quantitative results are ob-
tained for synchronization of two coupled pendulums,
taking into account the coupling link dynamics. The
simulations show that the examined speed-gradient
energy control law possesses the robustness with re-
spect to unmodeled dynamics of the coupling link.
Moreover, using more sophisticated goal function al-
lows to achieve, additionally, in-phase or anti-phase
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25 30
Fig. 4. Excitation of anti-phase oscillations; reduced
plant model (19), p=0.

25
Fig. 5. Excitation of anti-phase oscillations; full plant
model (18), p = 0.

a)

b)

10 15 20 25 30

Fig. 6. Excitation of anti-phase oscillations; reduced
plant model (19), p = 0.1 st .

synchronization and this property is also robust with
respect to dynamical disturbances.
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