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Abstract: The paper addresses problems of control of pendulum oscillations under
high-frequency vertical vibration of the pivot. By using a model of oscillations and
virtual energy concept, an energy-based feedback control law with the observer
of slow state variables is designed to provide desired stable oscillations of the
pendulum with respect to the upright position. Copyright ©IFAC 2004.
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1. INTRODUCTION

Problems of analysis and control of pendular sys-
tems and nonlinear oscillations permanently evoke
an interest of the researchers and are a subject
of numerous publications of the last century (see
References). Having, as a rule, a minor direct tech-
nical application, such problems often represent a
considerable interest as a benchmarks for many
natural, technological and physical phenomena
from biological processes and vibrational tech-
nologies to problems of anti-gravity. The known
researches were concentrated around the problems
of upright position stabilization, swinging-up and
control of periodic motion of the pendulum by
using energy-based control techniques (Chung and
Hauser, 1995; Miroshnik and Olkhovskaya, 2003),
speed-gradient method (Andrievsky et al., 1996;
Fradkov, 1996; Fradkov and Pogromsky, 1998;
Shiriaev et al., 1998; Shiriaev et al., 1999) and
geometric approaches (Miroshnik and Bobtzov,
2000; Aracil et al., 2002).
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The desired stabilization or oscillating motions are
usually obtained due to horizontal movement of
the pivot of the pendulum. Nevertheless the prob-
lem of control of periodic motion of the pendulum
in the neighborhood of the lower position can
be also solved by using vertical pivot movement
(Fradkov et al., 1999; Miroshnik and Olkhovskaya,
2003). Moreover, under an appropriate high-
frequency vertical excitation of the pendulum sup-
port, a complex periodic motion of the pendulum
in the vicinity of the upright position is observed.
This is referred to as induced or vibrational sta-
bility and studied in a great number of scien-
tific publications (see (Stephenson, 1908; Kapitza,
1951; Bogolyubov and Mitropolsky, 1962; Bel-
man et al., 1986; Blekhman, 1988; Yabuno et
al., 2002; Odinets and Levidova, 2004)).

In this paper we make an attempt to solve the
problem of stabilization of a given periodic motion
of a pendulum around the upright position by
using vertical vibration of the pivot and an aux-
iliary stabilizing control action. The problem is
reduced to stabilization of the virtual energy of the
pendulum which is associated with the energy of
slow motion of an inverted pendular system with



opposite gravity direction, and is solved on the ba-
sis of standard techniques of energy-based control
developed for "normal” pendula with vertically
moved support (Fradkov et al., 1999; Miroshnik
and Olkhovskaya, 2003). In order to separate the
slow variables of the system and the current values
of the virtual energy, a nonlinear observer of the
vibrating pendulum is designed.

The paper is organized as follows. The procedure
of the design of energy-based control laws for
pendulums with mobile supports is considered in
Section 2, and motion of the pendulum with ver-
tical vibration of the pivot is analyzed in Section
3. In Section 4, the problems of the control of
the inverted pendulum oscillation and observing
the slow motion variables are solved by using the
concept of virtual energy.

2. ENERGY-BASED CONTROL OF
OSCILLATIONS

Fig. 1. Pendula with mobile supports

The general model of a pendulum on a mobile
support is described by Lagrangian equation
ol

giy o4
g+ 9

= Glg,)u, (1)

where ¢ is the generalized coordinate (angle), u is
the control action, J = mi?, TI(q) is the potential
energy, G(gq) is a function which depends on the
current angular orientation of the support « (see
Fig. 1,a). The total energy (Hamiltonian function)
of the unforced pendulum is computed as

B(q,p) = Ti(g) + T(p) = T1(g) + 5",

577 (2)

where T'(p) is the kinetic energy, p = Jg is the
momentum. Equation (1) can be rewritten in the
Hamiltonian form

Ji=p, p= aq+G(q,0t)U~ (3)
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Consider the problem of control of oscillations
which is associated with keeping up a required
mode of the undamped periodic pendulum mo-
tion. Taking into account that the mode of oscilla-
tions is connected with a certain level of pendulum
internal energy (Andrievsky et al., 1996; Fradkov
and Pogromsky, 1998; Fradkov et al., 1999), the
problems is usually reduced to those of energy
stabilization. The latter is a standard nonlinear
problem of partial stabilization of a dynamical
system, or stabilization with respect to the func-
tion F = E(q,p) (Fradkov et al., 1999).

Let us set a desired energy level E* and introduce
the energy error (deviation)

£

= E(q,p) - E*. (4)

After simple manipulations, we obtain the error
model

1
ij .

§ = (5)
A stable solution of the problem is given by
different control laws of the form

u = —JU(p,G) k¢, (6)
where k£ > 0 is a feedback gain. Substituting (6)
into (5), one obtains

¢ = —pGU(p,G) k.

(7)

We can conclude that the system is asymptotically
stable with respect to the given partial equilib-
rium point £ = E* when the function U(p, G),
for all £ > 0, satisfies the inequality

t

/pGU( ,GYdr > M,
0

(8)

where A > 0. It is easily seen, for instance, that
the problem is solved by the control laws

u=—J sign(pG) k&,
u=—JpG k€.

Now consider a special case of the problem
when the pivot accomplishes vertical motion (see
Fig.1,b). Here
II(q) = mgl(1 — cosq),
G = —mlsing,

and equation (3) takes the form

J¢g = p, p=-—mglsing—mlsing u. (9)

It is worth to note that the unforced pendulum
(9) has two equilibrium points. The first one



(¢,p) = (0,0) corresponds to the lower position of
the pendulum and is asymptotically stable. The
other points (g,p) = (£, 0) associated with the
upright position, are unstable and, in the case
considered, cannot be stabilized by using standard
control techniques. The same situation is observed
in pendulum oscillations. Energy based control
(7), or, for instance, the control

u=sign(p sinq) k&,

provides stable oscillation around the lower point
corresponding the given energy level

B < By, =2mgl.

(see Fig. 2). If E* > E,,, the pendulum demon-
strates proportional rotation around the pivot.
Oscillations of the pendulum around the upper
position are impossible without special pivot ex-
citation.

A

<

o

Fig. 2. Stabilization of oscillations around lower
position

3. PIVOT EXCITATION AND KAPITZA
PENDULUM

High-frequency vertical vibration of the support
(see Fig. 3) essentially changes the properties of
the pendulum (Stephenson, 1908; Kapitza, 1951;
Bogolyubov and Mitropolsky, 1962; Belman et
al., 1986; Blekhman, 1988; Yabuno et al., 2002).
Under the relevant conditions, the open loop pen-
dular system known as Kapitza pendulum becomes
stable (or asymptotically stable) with respect to
the upper equilibriums (g, p) (£m,0). This
property is a crucial point to the problem of
the control of pendulum oscillations around the
upright position.

Consider a pendulum under a high-frequency ver-
tical excitation of the pivot without an additional
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control actions. Let the vibrational motion of the
support be described by equation

§+wis = 0, (10)
where s is coordinate of the pivot, s(0) = sq,
5(0) = %, w is a frequency of vibration, and

therefore

s(t) = Asin(wt + @),
where A = A(sq, 50), ¢ = p(s0,50). Setting u =
w?s in the model (9), one can write

JG=p, p=—ml(g+w?s)sing. (11)
If the frequency w is large enough, the solution of
the system (11) is approximately represented by
a two-frequency signal of the form (Bogolyubov

and Mitropolsky, 1962; Blekhman, 1988)
q(1+3).

~

q
Here

3(t) = s—s0
is a fast component of the oscillations, and g is a
slow component, being a solution of the equation

. . 0w2A?
JG=p, p=—mgl+ )sing, (12)
where
T T 3
=1 1if [gl <=, 0=-11if = <|g| < =—.
i |q|<2, i 2<|q|<2
When
w?A? > 2gl (13)

equation of slow motion (12) can be rewritten as

JGg=7p, p=—60ml’z*sing, (14)

where

2g01 + w2 A2

—, (15)

Fig. 3. Inverted pendulum with vibrating support



or in the form

0.

G+ 0z°sing = (16)
The latter shows that the system acquires two
stable equilibriums (¢,p) = (0,0) and (q,p)
(£, 0), and the pendulum can accomplish ” slow”
oscillation around the upper (see Fig. 4) or lower
positions.

Consider the pendulum motion in the neighbor-
hood of the upright position, where /2 < |g] <

37w/2 and 8 = —1. Introduce virtual gravity accel-
eration
w2 A?
g = — 0
2 g >\

turned to the opposite direction with respect to
the gravity, and the wvirtual potential energy of
the slow motion

() = mgl(1+ cosq)). (17)

Note that TI(g) > 0 in the neighborhood of the
upright position and II(£7) = 0. Then the model
of the pendulum system (14) can be rewritten as

- oIl

p=——

= (18)

Jg=p,

The latter is equivalent to a description of the
free motion of the ordinary pendulum considered
in Section 2 (see equation (3)).

Thus, under the high-frequency excitation of the
pivot, the equilibrium points (g, p) (£, 0)
become stable that enable one, by using an ap-
propriate control actions, to provide the required
stable slow oscillations of the pendulum around
the upright position.

q

T
t

0
q

Fig. 4. Free oscillations around upper position
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4. STABILIZATION OF OSCILLATIONS OF
INVERTED PENDULUM

Consider the controlled pendulum motion with
respect to the upright position, supposing that
condition (13) is satisfied. Choose the control

u=w’s+ u,
where @ is the stabilizing signal. The model of slow
motion of the pendulum in the neighborhood of

the upright position 7/2 < |q| < 37/2 takes the
form

JG=7, P—mlgsing—mlsinga, (19)
where g is a virtual gravity acceleration (see
Section 3). Let us introduce the virtual energy of

slow motion as

E(g,p)

= @) + 57

573 : (20)

Then the model of the inverted pendulum system
(19) can be rewritten as

. oIl
.]7 — P, D= — e + G q ﬂ 21
q=7, D a7 (@) (21)
where
G(q) = —mlsing.

Such as a desired mode of pendulum oscillations is
associated with a certain level of its virtual energy,
the control problem is reduced to that of energy
stabilization considered in Section 2.

We define the required energy level E*, introduce
the error (virtual energy deviation) as

and find the error model
= 1
€= S06@ (23)

A stable solution of the problem is given by
control laws of the form

u = JU(p,G) kE. (24)
The system is asymptotically stable with respect
to the given level £ when the function U, for all

t > 0, satisfies inequality (8).

The main difficulty of realization of the control
(24) is associated with separation of the signals g
and p, corresponding to the slow motion of the
pendulum, from the measurable two-frequency
signal

where § = s — sg9. This is overcame by using
the following nonlinear observer (Odinets and



Levidova, 2004), corresponding the structure of
the system (21), (25):

Jq=p+ @,
A Oll(g
p=— @ + G(q)T + Us, (26)

where /ﬁ\, /ﬁ, q are estimates of the relevant vari-
ables,

Uy = k2 (g—7q) (27)

are the observer feedback signals, k1 > 0, ks > 0.

iy = k1 (¢—17),

The validity of the result is confirmed by simula-
tion. The pendulum with parameters m = 0.01,
Il = 0.1 and pivot vibration s = 0.002 sin 2000¢
was considered. The control law

u=J sign(/ﬁsin@kg,

where

=t

provides stabilization of the virtual energy E at
the levels E* from 0 to 0.056, which corresponds
to stable oscillations of the pendulum around the
upper position at the amplitudes up to 1.2 rad.
Fig. 5 illustrates the convergence of the processes
for the case 5. = 0.025 when the oscillation
amplitude is 0.45 rad.

A

Fig. 5. Stabilization of oscillations around upper
position

5. CONCLUSION

The problem of stabilization of a given periodic
motion of the inverted pendulum around the up-
right position was solved by using vertical vi-
bration of the pivot and an auxiliary stabilizing
control action. The problem was reduced to sta-
bilization of the virtual energy of the pendulum
and standard techniques of energy-based control
developed for pendula with vertically moved sup-
port. In order to estimate the slow variables of the
system and its virtual energy, a nonlinear observer
of the vibrating pendulum was designed. The sim-
ulation confirmed the validity of the results.
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