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The solutions of the two-dimensional Einstein equation or Ernst equation, parametrized by arbitrary functions and gen- 
erated by the solutions of the corresponding O(2,1) o-model and by a special choice of the determinant of the metric are 
presented. The metric is also given. For the Einstein-Maxwell equations analogous results are obtained. The solutions 
have a non-trivial curvature tensor. 

1. The Einstein equations that admit two commuting Killing vectors are being actively considered now [1 ]. In 
this case the Einstein equations are reduced to two-dimensional nonlinear equations which can be analyzed by 
powerful methods [2]. The presence of the Geroch symmetry which has been recently identified with the K a c -  
Moody algebra SL(2,R) ® R(t, t -1)  is of special interest [3]. This symmetry according to the Geroch hypothesis 
should generate all the solutions of that equation. The problem naturally arises how to construct the solution 
that corresponds to these symmetries. The corresponding solution should be complete, i.e. should be paramet- 
rized by the necessary number of  arbitrary functions (for example, the formula for the Liouville equation). The 
presence of arbitrary functions in the solution may increase the class of metrics under consideration. A large 
number of papers deal with the construction of the solutions [1,2]. For example, a construction was obtained 
that permits one to parametrize the solution of the initial equation by the solution of the radial part of the 
Laplace equation [4]. This construction generalizes the well-known classes of Weyl and Papapetrou [5]. But the 
given constructions do not provide the presence of an arbitrary function in the solution. In this situation, in ac- 
cordance with the idea proposed by one of the authors in the chiral and Toda models [6] it is useful to refrain 
from some number of arbitrary functions in the solution and to obtain a simply enough explicit formula con- 
taining an arbitrary function. Such formulae were obtained by one of us for 0(3) and O(2,1) o-models and by 
means of a generalized Pohlmeyer transformation [7] for the A (1) Toda chain [6]. In ref. [6] the simplest case 
of the Ernst equation was also considered. The consideration, as in ref. [6], is based on reducing the Ernst equa- 
tion to an equation for the O(2,1) o-model. We use a special choice of  the determinant of the metric instead of 
using the Weyl coordinates. Such a consideration gives the possibility to obtain a non-trivial solution, paramet- 
rized by arbitrary functions by means of a solution of the corresponding O(2,1) o-model. It should be noted that 
in ref. [6] another Ansatz gives an elliptic solution of the O(2,1) o-model and that the case of the Ernst equa- 
tion considered in ref. [6] corresponds to the meron sector of the O(2,1) o-model. It should also be noted that 
the simplest of the solutions considered in this letter has a non-trivial curvature tensor: not all components R~k l 
are equal to zero. 

In section 3 we give the solution of the Ernst equation, in section 4 the main part of  the metric, in section 5 
the full metric and the curvature in the simples case, and in section 6 we consider the Einstein-Maxwell case. 
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2. The two-dimensional Einstein equation or Ernst equation (we follow the notat ion o f  ref. [8] ) corresponds 
to the metric 

- d s 2 = H ( t , x ) ( Y ~ d t 2 + d x 2 ) + f A B ( t , x ) d x A d x B ,  A , B = 2 , 3 ,  x 2 = Y  , x 3 = z  (1) 

The cases o f  an axially symmetric stat ionary vacuum and gravitational waves are considered in the same way. The 
upper sign corresponds to the waves, the lower one to the vacuum. In the first case the solution is parametrized 
by  two arbitrary functions depending on light-cone variables and in the second case by  an arbitrary holomorphic 
function. We consider the new variables u and v, u = x + it ,  v = x - i t  and u = b- in the vacuum case, and 
u = ½(x + t), v = ½(t - x)  in the wave case. In the coordinates u, v the Ernst equations are 

f u o + ( r u f o + r v f u ) / 2 r - 2 f u f v / ( f + - f )  = 0 ,  ruo=O,  r = Y ,  f=/=f, r2=de t fAB  . (2) 

The metncfAB from (1) is obtained from the solution of  eqs. (2): 

- 2 / ( f  + f )  l ( f  - f ) / ( f  +'f) [ 
lAB = r , (3a) 

i ( f  - f ) / ( f  + f )  - 2 f - f  / ( f  + f ) 

and H is obtained from the solution o f  the linear equations. 

(In H)u = (In r)uu/(ln r)u + Sp A 2 /4rru , (In H)o = (In r)vo/(ln r)o + Sp B2 /4rro , 

A = --r(fAB)u(fAB) -1 , B = r(fAB)o(fAB) -1 . (3b) 

If  r = const eqs. (2) give the equation of  mot ion of  the O(2,1) o-model. Its lagrangian is: 

L = h ( f u f  o + fo fu ) ,  (4) 

where h = ho(2,1)  = ( f  + y ) - 2  is the metric on the group O(2,1). 

3. We look for a solution of  the form [6] 

f(U, V) = A(V) exp i N ( v ) ,  (5) 

where 

y = y ( u , o ) ,  y =-fi, Yuo = 0 ,  (6) 

and 

r=r(s), s=s(u,o), s=~, Suo=O, 

where the condit ion 

ru f  o + rof  u = O , r ¢ c o n s t ,  (7a) 

in eq. (2) gives the relation 

soy u + Suy o = 0 . (7b) 

If  (7b) holds eq. (2) transforms into a system of  two differential equations for the functions A = A(V) and N 
= N(y): 

(Ay/A)y + 2(Ay/A)Ny tan N = 0 ,  Nyy - (Ay/A)  2 tan N + N 2 tan N = 0 .  (8) 

From the first o f  them with 

B = Ay/A , (9) 
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we obtain 

B = B 0 cos2N(y) 

and 

=A 0 expB o fcos2N(y) dy. A (10) 

The second one gives 

Nyy + N 2 t a n N -  B 2 cos4N t anN= 0.  (11) 

From this we obtain 

f dN (12) 
Y --Y0 = 'cos(N)(C+B 2 sin2N) 1/2 

C, B0, Y0, A 0 are real constants. Further let us consider the three cases: (1) B 0 --- 0, C 4= 0; (2) C = 0, B 0 4= 0; (3) 
C=/= 0, B 0 4= 0. In case (1) we obtain: 

( 2 e x p x / ~ ( y - y 0 )  +i e x p 2 x / - C ( y - Y 0 ) - I )  
f=Ao 1 + e x p 2 v ~ ( y - y o )  1 +exp2x/-((-------~-~0) " (13) 

From (9), (10) it can be seen that this corresponds to the case of constant modulus A = A 0. If C = 0 we have 
from (12) 

sinN= exp[B0(Y -Y0)] {1 + exp[2B0(Y -Y0)])-1/2 , cosN= {1 + exp[2BoCv -Yo)] )-1/2 

and by means of (9), (10) we finally have: 

exp q0y) 
f=Ao 1 + exp[2B0(Y -Yo)I {1 +i  exp[B0(Y -Y0)] }" (14) 

In this case Ill 4= const. In case (3) with C4= 0 we have 

(C +B2) 1/2 sin N + (B 2 sin2N + C) 1/2 
(y -Y0)2(B0 2 + C) 1/2 = In (15) 

--(C + B2) 112 sin U + (B 2 sin2U + C) 1/2 ' 

this gives (C > 0 

sin N = x/C'[exp(2 ¢ )  - 1 ] 
{C[exp(2~) + 1] 2 + 4B 2 exp(2~)~ 1/2 ' 

2(C +B02) 1/2 exp ..~ 
cos N = (16) 

{C [exp(2 ~ )  + 1 ] 2 + 4B 2 exp(2 ~ ) )  1/2 ' 

with ~ = (B20 + C) 1/2 (y -Y0)" Further by using (16) and (9), (10) we have for A(y) withy 0 4= 0 (B 2 + C >  0) 

(2Ctexp(2~)  + II +4B2-4Bo(B2+c)l/2)1/2 
A = A 0 2C [exp(2 ~ )  + 1] + 4B0 2 ~ 4B0(B---- ~ + C) 1/2 (17) 

Now we must have the conditions (6), (7) satisfied, that is, we must give the expressions for y and s. Analogously 
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[6] we have an the vacuum case (u = z, v = g): 

v or s=½1n[g(z)g,(5)] or (1/2i) ln[g(z)/~(z)]  , (18a) 

(one of  the two), g = g(z), g~- = 0; in the wave case (u, v are light-cone variables). 

1 y or s=-~ln[gl(u)g2(v)] or ½1n[gl(u)/g2(v)] (18b) 

(one of the two), gl  = gl(tt), g2 = g2(v) , and 

7" = k l  s + k2 , (18c) 

where k 1, k2 are real constants. So, formulae (16) - (18)  gave the solution of  eqs. (2) af C 4:0  and (14), (I 8) if 
C = 0. These solutions are parametrazed by an arbxtrary holomorphic functaon g = g(z) an the vacuum case (18a) 
and by two arbitrary functions gl = gl(u) ,  g2 = g2(v) in the wave case (18b), 7"2 = det I~4B in formula (18c). 

4. According to formula (3a) let us find the maan part of  the metric CA B" The solution (13), (18) gives 

cosh [v (y -) 'o)]/A o sam [x/C(y -v0) ]  
JAB = --7" 

sinh [V~-(y -3 '0 ) ]  

The solution (14) ,  (18)  gives 

1 + exp [2B0(Y - Y0)]/A 0 exp(B0Y) 

lAB = --7" 
exp [Bo(Y - Y o ) ]  

In the wave case 

A 0 cosh [v 0' - Y0)] 

1 
.tAB = - ~ { k l  ln[gl(u)/g2(v)] + k2) 

The solutions (16) - (18)  gwe 

f x l  f12 
fAB = --7-fo 

where 

. 

exp [Bo(Y - Y0)] 

A 0 exp(B0Y) 

[1 + exp( -2BoYo) (g lg2 )  Bo ]/A O(glg2) Bo/2 

exp ( -BoYo) (g lg2 )  B°/2 

i~2C[exp(2_~) + 1] + 4B02 + 4Bo(B 2 + C) 1/2 ] 1/2 

f l l  = f ~ l  = A o I \  ~ 1 ]  + 4B 2 - 4B0(B 2 + C ~  / 

(19) 

(20) 

e x p ( - B o Y o ) ( g l g 2 )  B°/2 

A o(glg2) Bo/2 

f12 =f21 = ~/ 'C[exp(2M) - 1] 
(C[exp(2-~)  + 1] + 4 B  2 exp(2-~)} 1/2 " 

( C [ e x p ( 2 ~ )  + 1] 2 + 4Bo 2 exp(2_~)}l/2 (21) 

f0 = 2(B02 + C) 1/2 exp -~ 

5. The functaon H in the metric (1) is given by the solutaon of  the linear equations (3b). From (3b) we have in 
the simplest case (13), (19) (we shall consider the other cases separately) 
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S p A 2 = 2 ( r u  2+r2y2uC),  S p B 2 = 2 ( r  2 + r 2 y 2 C ) ,  

and for H we obtain the expression 

H = exp [(C/4k2)r2 ]! r u r o I/IV~, (22) 

where for r we have the expressions (18c), (18a) or (18b). It should be noted that in (22) it is possible to omit 
the sign of the modulus as the arbitrariness permits us to choose H real and positive. Thus the formulae (19), (22) 
give the metric (1) parametrized by two arbitrary real functions depending on the light-cone variablesg 1 = gl(u), 
g2 = g2(v) in the wave case or by one holomorphie function g = g(z), &- = 0 in the vacuum case. In the particular 
wave case when C = 1, k I = - 2 , y  0 = k 2 = 0 ,g l (u)  = exp u,g2(o ) = exp(-o)  we have from (18c), (18b) Irl -- u 
+ v = t and from (19), (22) 

AO 1 cosh ½x sinh ½x 
f A B = t  , H=t -1 /2  exp~gt  2 

1 ~x sinh A 0 cosh ½x 

It should be noted that even this simplest case has a nontrivial curvature tensor, for example 

. 1 smh ~x exp - 1  t2 
R2223 = -  4wq" (1 +¼t2) .  

We shall consider the curvature invariants separately. It should be noted that the obtained solution (13) looks like 
the Papapetrou solution [5] but in the last case the solution is parametrized by the solution of the radial part of 
the Laplace equation and therefore does not provide the presence of an arbitrary function in the solution. 

6. The Einstein-Maxwell equations are (we follow the notation for ref. [9] ) 

(Re E + ~U~)(2Euo + w- l (w ,  E)) = 2EuE v + 2~(~b, E ) ,  

(Re E + ~Ub)(2~uu + w- l (w ,  cb)) = 4Ub~uCb ° + (~, E ) ,  w = ~ , Wuu = 0 ,  (23) 

def 
(w, E) = wuE u + wuEu , (24) 

where • is the Maxwell field, E is the gravitational field. We look for a solution in the form: 

E = E 0 exp iN(x) ,  • --- B(x) exp[iM(x)] , w = w(s), (25) 

where 

x = x ( u , o ) ,  s = s ( u , v ) ,  x = ~ ,  s = ~ ,  Xuu=0 , Suu=O. (26) 

In this letter we consider the simples case 

M x = b ,  N x = a ,  (27) 

where EO, a, b are real constants. According to (24)-(26) we have 

(w, E)  = wsEx(s ,x  U + SoXu) , (w, ~) = ws%(SuXo + soxD 

We choose the functions x(u, o), s(u, o) so that they should give 

( w , 6 )  = o ,  (w, ~ )  = o .  (28) 

Eqs. (23) with the use of the expression (25)-(27) are reduced to the four equations (two of them coincide) 
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2b = a , Eoa sin ax = 2BB x ,  Bxx + b2B = O . 

Thus we have the solution for (23) 

E = E  0 e x p i a x ,  cb=B(x)  exp½iax ,  B2(x) = E 0 ( 1 - c o s a x ) .  

Now we have to satisfy the condit ions (28), that is to give the expressions for x, s, w. We have 

x or s=½1n[g(z )~(~) ]  or (1 /2 i ) ln[g(z ) /~(F)] ,  g = g ( z ) ,  g F = 0 ,  

f o r u = z , v = ~  and u =~ ;  

1 
x or s = : l n [ g l ( u ) g 2 ( v ) ]  or ½1n[gl(u) /g2(v)] ,  

for u, v, the light-cone variables and w = k 1 s + k2, where k l ,  k 2 are real constants. It should be noted that  Re E 
+ q ~  = E 0 but  this simpest solution is nontrivial because the "background"  gravitational field E = E 0 exp iax has 
a nontrivial curvature tensor. We shall consider these questions in detail separately. 

We extend this construction also to the case of  presence o f  matter:  perfect fluid with equation o f  state e = p 
[10]. We get formulae that  might be looked upon as a possible description of  the gravitational waves. We think so 
because the Ernst equation is conformally invariant just  as the wave equation f t t  - J x x  = 0 and consequently :ts 
"wave solution" (in contrast to the "soli ton sector")  also must be parametrized by two arbitrary functions of  the 

light-cone variables g l  (t + x),  g2(t  - x). 

One of  us (M.G.Z.) would like to thank V.N. Popov, A.D. Chernm, A.A. Grib, M.A. Semenov-Tian-Shansky 
and A.N. Fedorova for useful discussions. 
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