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Elena Ivanova

Application of the continuum model with microstructure
(continua with inner rotational degrees of freedom) to

description on the macro-level of heat conductivity and heat
radiation processes.

1 Introduction

A new approach to derivation of the theory of thermoelasticity is proposed. This
approach is based on the mechanical model of a one-rotor gyrostat continuum (see
Fig. 1). The mathematical description of the proposed mechanical model includes
as special cases not only the classical formulation of coupled problem of thermoelas-
ticity but also the formulation of the coupled problem of thermoelasticity with the
hyperbolic type heat conduction equation.

Figure 1: Elementary volume of continuum of one-rotor gyrostats deep in the “ther-
mal ether”

The main ideas of the proposed theory consists in the following:
1. To model a material medium we use the one-rotor gyrostat continuum (con-

tinuum possessing the internal rotational degrees of freedom). This continuum is
considered to be elastic. The interaction of carrier bodies of the gyrostats is charged
with the mechanical processes. The interaction of the rotors models the thermal pro-
cesses. The interference of the carrier bodies and the rotors provides the interplay
of the mechanical and the thermal processes.
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2. Particles of the material medium are considered to be embedded into some
infinite medium which represents the “physical vacuum”, a “field” or an “ether”. In
what follows this medium will be called the “thermal ether”. The rotors of gyrostats
interact (by means of the rotational degrees of freedom) with the particles of the
“thermal ether”.

3. The motion of the rotors of gyrostats cause the appearance of waves in the
“thermal ether”. We consider this process as the heat radiation processes.

4. As a result of appearance of waves in the “thermal ether” the certain part
of energy of the material particles is spent on the formation of these waves. We
suppose that the heat conduction mechanism is provided just due to the material
medium energy dissipation into the “thermal ether”.

2 Linear model of the “thermal ether”. Interac-

tion of a body-point with the “thermal ether”

Now we construct a model of the “thermal ether”, which is considered as the moment
elastic medium of a special kind. We will use a body-point as the base material
object. Let us consider a body-point whose inertia tensors are the spherical part of
tensors and the kinetic energy has the form

K = m∗

(
1

2
v · v + B̂ v · ω +

1

2
Ĵ ω · ω

)
. (1)

Here m∗ is the mass of a body-point, B̂ and Ĵ are the moments of inertia. The
momentum and the proper angular momentum of a body-point are

K1 = m∗ (v + B̂ ω), K2 = m∗ (B̂ v + Ĵ ω). (2)

The material medium (see Fig. 2) consisting of body-points (1), (2) is considered.
Now we formulate the basic equations of the linear theory of the continuum. We

Figure 2: Elementary volume of continuum consisting of body-points

assume that in the reference configuration the tensor P(r, t) (rotation tensor of
body-points) is equal to the unit tensor. Therefore, upon the linearization near the
reference position it takes the form

P(r, t) = E+ θ(r, t)× E, (3)
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where θ(r, t) is the rotation vector field of body-points. Kinematic relations in the
linear approximation are

v =
du

dt
, ω =

dθ

dt
. (4)

Here u(r, t) is the displacement vector vector field of body-points.
The mass balance equation is

dρ̂

dt
+ ρ̂∇ · v = 0, (5)

where ρ̂ is the mass density in the actual configuration. Solving Eq. (5) we obtain
relation between the mass density in the actual configuration and the the volume
strain ∇ · u:

ρ̂ = ρ̃ (1−∇ · u). (6)

Here ρ̃ is the mass density in the reference configuration.
The equations of motion of the material continuum are

∇ · τ + ρ̃f = ρ̃
d

dt

(
v + B̂ω

)
, ∇ ·T+ τ× + ρ̃L = ρ̃

d

dt

(
B̂v + Ĵω

)
. (7)

Here τ and T are the stress tensor and the moment stress tensor respectively, f is
the mass density of external forces, L is the mass density of external moments.

The equation of energy balance is

d

dt
(ρ̃Um) = τ

T · ·dε
dt

+TT · ·dϑ
dt

+∇ ·H+ ρ̃Q. (8)

Here the symbol “··” has the following sense: ab · · cd = (b · c)(a · d) and is called
double scalar product; Um is the internal energy density per unit mass; ε and ϑ are
the strain tensors; Q is the rate of the energy supply in volume; H is the energy-flux
vector. The strain tensors are determined by the formulas

ε = ∇u+ E× θ, ϑ = ∇θ. (9)

If the supply of energy of “non-mechanical nature” is ignored, i. e. the body is
isolated, then Eq. (8) takes a more simple form:

d

dt
(ρ̃Um) = τ

T · ·dε
dt

+TT · ·dϑ
dt
. (10)

In what follows we consider only isolated elastic bodies. For the elastic material
the Cauchy–Green relations follow from the energy balance equation (10):

τ =
∂(ρ̃Um)

∂ε
, T =

∂(ρ̃Um)

∂ϑ
. (11)

We represent the density of internal energy in the form:

ρ̃Um = τ 0 · ·ε+T0 · ·ϑ+
1

2
ε · · 4C̃1 · ·ε+ ε · · 4C̃2 · ·ϑ+

1

2
ϑ · · 4C̃3 · ·ϑ. (12)
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The coefficients of the quadratic form (12) are called the stiffness tensors; the coef-
ficients τ 0 and T0 are the initial stresses. After substituting the expression for the
density of internal energy (12) into the Cauchy–Green relations (11), we obtain the
constitutive equations:

τ T = τ T
0 + 4C̃1 · ·ε+ 4C̃2 · ·ϑ, TT = TT

0 + ε · · 4C̃2 +
4C̃3 · ·ϑ. (13)

The moment theory of the elastic continuum is formulated above. The equations
of a moment continuum and the method of deriving these equations are well known.
The only difference between the proposed model and the known model is in the fact
that the inertia properties of the continuum under consideration are characterized
by the additional parameter B̂.

Accepting three important hypotheses, we consider a special case of the theory
stated above.

Hypothesis 1. There are no the external forces and the force interaction between
the particles of the medium:

f ≡ 0, τ ≡ 0. (14)

Hypothesis 2. The moment stress tensor T is the spherical part of tensor:

T = TE. (15)

Hypothesis 3. The external moments and the initial moment stresses are absent:

L ≡ 0, T0 ≡ 0. (16)

We will call the model of elastic continuum satisfying the hypotheses (14)–(16)
the “thermal ether”. We notice two important properties of the medium under
consideration. First, the medium does not influence by forces upon a body situated
in it. Second, a body in the medium dissipates energy into the medium due to the
moment interactions.

In view of assumptions (14)–(16), the equations of motion (7) take the form:

ρ̃
d

dt

(
v + B̂ω

)
= 0, ∇T = ρ̃

d

dt

(
B̂v + Ĵω

)
. (17)

In view of assumption (15), the last term on the right-hand side of the energy balance
equation (10) can be reduced as follows:

TT · ·dϑ
dt

= TE · ·dϑ
dt

= T
d(E · ·ϑ)

dt
= T

d(trϑ)

dt
. (18)

By using the notation
ϑ = trϑ ≡ ∇ · θ (19)

and Eqs. (18), (14), the energy balance equation (10) is written as

d

dt
(ρ̃Um) = T

dϑ

dt
. (20)
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Since the material medium is considered to be elastic, we obtain the Cauchy–Green
relation which is analogous to the second relation of (11) but has a simpler form:

T =
∂(ρ̃Um)

∂ϑ
. (21)

It is obvious from Eq. (20) that the density of internal energy is a function of of
single variable ϑ. Let us specify the density of internal energy in the simplest form:

ρ̃Um =
1

2
k̃ ϑ2, (22)

where k̃ is the coefficient of stiffness. Then the constitutive equation takes the form

T = k̃ ϑ. (23)

It follows from Eqs. (17), (4), (19), (23) that the “thermal ether” is described
by the wave equation

∆ϑ− ρ̃(Ĵ−B̂2)

k̃

d2ϑ

dt2
= 0, (24)

and the translational and angular velocities are calculated by the formulas

v = − k̃B̂

ρ̃(Ĵ−B̂2)

∫
∇ϑ dt, ω =

k̃

ρ̃(Ĵ−B̂2)

∫
∇ϑ dt. (25)

It is obvious from the first equation of (17) that the displacement vector and the
rotation vector are related to each other by

u = −B̂θ + (v0 + B̂ω0)t+ u0 + B̂θ0, (26)

where v0, ω0 are the initial translational and angular velocities, u0, θ0 are the initial
displacement vector and the initial rotation vector respectively.

Now we discuss the problem of the influence of the “thermal ether” on a particle
imbedded in it. Now we consider two model problems.

First model problem. Let us consider a semi-infinite inertial rod (see Fig. 3),
consisting of the body-points (1), (2). The rod is connected with the analogous
body-point by means of an inertialless spring working in torsion (rotation about the
axis of the rod). The inertia of the rod is characterized by the moments of inertia B̂,
Ĵ and the linear density σρ̃, where σ is “the area of rod section” and ρ̃ is the volume
density of mass. The elastic properties of the rod are characterized by the torsional
stiffness σk̃, where the coefficient σ is introduced in order that stiffness k̃ possesses
the dimension in 3D problem. The inertia of the body-point is characterized by
the mass m and the moments of inertia B, J . The torsional stiffness of the spring
connecting the body-point with the rod is equal to σk∗/r0, where r0 is “the length”
of the spring. The coefficients σ and r0 are introduced in order that stiffness k∗
possesses the dimension like k̃. We suppose that the particles of the rod interact
only by the moment. The force interaction of the rod particles is assumed to be
zero. At the initial instant of time the displacements and the rotation angles as
well as the translational and angular velocities of the rod particles are equal to zero.

5



Figure 3: Interaction of the body-point with the one-dimensional semi-infinite con-
tinuum

The body-point possesses a non-zero initial angular velocity directed along the axis
of the rod and a non-zero initial angle of rotation about the axis of the rod. It is
evident that under such initial condition the system will be in motion which are the
longitudinal–torsional oscillations.

After elimination of variables characterizing the motion of the rod the problem
is reduced to the system of equations:

m(Bÿ + Jψ̈) +mβ(Bẏ + Jψ̇) +
σk∗
r0
ψ = mβ(Bv0 + Jω0), m(ÿ +Bψ̈) = F, (27)

where y(t) is the displacement of the body-point along the axis of the rod, ψ(t) is
the angle of rotation of the body-point about the axis of the rod, v0 and ω0 are the
translational and angular velocities of the body-point at the initial instant of time.
The coefficient β is calculated by the formula:

β =
ck∗

r0k̃
=

k∗/r0√
k̃ρ̃(Ĵ−B̂2)

. (28)

According to Eq. (27), the moment of viscous damping characterizing the radia-
tion of energy in surrounding medium is proportional to the angular momentum of
the body-point, i. e. it depends on both the angular velocity and the translational
velocity. If B = 0 then the dependence on the translational velocity vanishes. In
this case the problem under consideration becomes similar to the problem of the
motion of an ordinary oscillator on the elastic waveguide. Analysis of formula (28)
for the coefficient of damping β allows us to conclude that increasing the torsional
stiffness of the spring connecting the body-point and the rod causes increasing of
the radiation in the surrounding medium.

The problem of the interaction of a body-point with one-dimensional semi-infinite
continuum of body-points is the simplest model illustrating the process of dissipation
of the body-point energy into the “thermal ether”. The problem of the interaction
of a body-point with the “thermal ether” in the case of spherical symmetry is more
complicated but more appropriate model of the process of dissipation.

Second model problem. Let us consider the spherical source of radius r0
(see Fig. 4) consisting of the body-points (1), (2). We suppose that the source can
pulsate, and the change of its radius is characterized by the variable ξ(t). At the
same time the body-points of spherical source rotate about its radius. The angles of
rotation of all body-points are assumed to be the same and they are characterized
by the variable ψ(t). Thus, kinematics of the spherical source is described by the
displacement vector and by the rotational vector:

ξ = ξ(t) er, ψ = ψ(t) er, (29)
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Figure 4: Interaction of the spherical source with the “thermal ether”

where er is the unit vector of the spherical coordinate system. The inertia properties
of the spherical source are characterized by the mass m evenly distributed on the
source surface and the moments of inertia B, J . The spherical source interacts
with the “thermal ether” by means of an elastic connection. The elastic connection
constitutes the system of the identical springs working in torsion. Each of them
connects the body-point of the spherical source with the body-point of the “thermal
ether” (see Fig. 4). The stiffness of the connection per unit area of spherical source
is characterized by the stiffness k∗/r0 where coefficient r−1

0 is introduced in order to
the dimension of stiffness k∗ be the same as the dimension of stiffness of the “thermal
ether”. At the initial instant the “thermal ether” is at rest. The following initial
conditions is assumed for the spherical source: ξ(0) = ξ0, ξ̇(0) = v0, ψ(0) = ψ0,
ψ̇(0) = ω0.

After elimination of variables characterizing the motion of the “thermal ether”
the problem is reduced to the system of equations:

m
(
Bξ̈ + Jψ̈

)
+mβ

(
Bξ̇ + Jψ̇

)
+

mk∗

r20ρ̃(Ĵ−B̂2)

(
Bξ + Jψ

)
+ 4πr0k∗ψ =

=
mk∗

r20ρ̃(Ĵ−B̂2)

[
(Bv0 + Jω0)t+Bξ0 + Jψ0

]
, m

(
ξ̈ +Bψ̈

)
= 4πr20f, (30)

where the coefficient β is calculated by the formula:

β =
ck∗

r0k̃
=

k∗/r0√
k̃ρ̃(Ĵ−B̂2)

. (31)

A comparison of Eq. (30) with Eq. (27) obtained in the case of the interaction of a
body-point with the one-dimension continuum shows that although these equations
somewhat differ from each other, they have one important similarity. Both of them
have the dissipative terms proportional to the angular momentum and the same
dependence of the coefficient of viscous damping β on the parameters of the model,
see Eqs. (28), (31). This result is important for the subsequent constructions.
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3 The simplest theory of one-rotor gyrostats con-

tinuum

Now we consider the material continuum (see Fig. 1) that consists of one-rotor gy-
rostats. In limits of linear theory the motion of this continuum is described by
equations which can be found in Lecture 2. The body-points in the space between
the gyrostats are the elementary particles of a continuum which is called the “ther-
mal ether”. In fact, the material continuum represented in Fig. 1 is a two-component
medium. Now we are not going to study in detail the motion of the body-points
continuum (“thermal ether”) and the interaction between the gyrostats continuum
and the body-points continuum. We consider only the gyrostats continuum as an
object under study. The body-points continuum (“thermal ether”) positioned in
space between gyrostats is considered to be an external factor with respect to con-
tinuum under study. That is why we will model the influence of the “thermal ether”
on the gyrostats by an external moment in the equation of the rotors motion.

Accepting three important hypotheses we consider a special case of the linear
theory of one-rotor gyrostats continuum.

Hypothesis 1. Vector L (the mass density of external actions on the rotors of
gyrostats) is a sum of the moment Lh characterizing external actions of all sorts and
the moment of linear viscous damping

Lf = −β(Bv + Jω). (32)

The moment (32) characterizes the influence of the “thermal ether”. Structure of
the moment is chosen in accordance with the results of solving the model problems
considered above.

Hypothesis 2. There is no the external moment influence upon the carrier bodies
of gyrostats; and the inertia tensors of the carrier bodies can be neglected

m = 0, I0 = 0. (33)

Hypothesis 3. The moment stress tensor T characterizing the interactions be-
tween rotors is the spherical tensor

T = TE. (34)

In view of assumptions (32), (34) the equation of the rotors motion takes the
form

∇T − ρ∗β (Bv + Jω) + ρ∗Lh = ρ∗
d

dt

(
Bv + Jω

)
, (35)

In view of assumption (34) the last term on the right-hand side of the energy
balance equation can be reduced to the more simple form. By using notation ϑ =
trϑ the energy balance equation is written as

ρ∗
dU

dt
= τ T · ·dε

dt
+ µT · ·dκ

dt
+ T

dϑ

dt
. (36)

The material medium under consideration being elastic, we obtain from Eq. (36)
the Cauchy–Green relations:

τ = ρ∗
∂U

∂ε
, µ = ρ∗

∂U

∂κ
, T = ρ∗

∂U

∂ϑ
. (37)
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According to Eq. (36) the density of internal energy is a function of arguments
ε, κ and ϑ. Let us construct the physically linear theory based on representation of
the internal energy density in the following form:

ρ∗U = τ 0 · ·εs + T∗ (ϑ− ϑ∗) +G dev εs · · dev εs+

+
1

2
Kad ε

2 +Υ ε (ϑ− ϑ∗) +
1

2
K(ϑ− ϑ∗)

2, (38)

where ε = tr ε, and εs is the symmetric part of tensor ε. Then the constitutive
equations take the form

τ = τ 0+Kad εE+2G dev εs+Υ(ϑ−ϑ∗)E, µ = 0, T = T∗+Υ ε+K(ϑ−ϑ∗). (39)

Thus the simplest linear theory of the material continuum consisting of one-rotor
gyrostats is described by equations of motion of the carrier bodies of gyrostats
(having standard form) and Eqs. (35), (39).

4 Temperature and entropy

Let us consider the foregoing mathematical model of elastic continuum of one-rotor
gyrostats. Suppose that the model describes behavior of the classical medium which
possesses not only elastic properties but also the viscous and thermic properties.
Now we can give a thermodynamic interpretation of the variables describing motion
and interaction of the rotors and next we can carry out identification of parameters
of the model and well-known thermodynamic constants.

Let us consider the energy balance equation (36). Conceive that Eq. (36) is the
equation of energy balance for classical moment medium (medium without rotors).
Then the last term on the right-hand side of Eq. (36) can be treated as thermody-
namical one. The physical quantities T and ϑ acquire meaning of temperature and
volume density of entropy respectively.

Such treatment appreciably differs from conventional one. However, we would
like to note that whatever physical experiment does not enable to determine what is
the temperature and what is the entropy. Particularly, there are no physical experi-
ments establishing that the temperature is the average kinetic energy of the chaotic
motion. The temperature is known to be quantity measured by a thermometer,
which behavior obeys the thermodynamics equations for the most “normal situa-
tions”. The entropy is immeasurable quantity. There are no physical experiments
verifying probabilistic character of the entropy.

It is evident, that dimensions of the temperature and the entropy defined by for-
mula (36) are different from dimensions of those in classical thermodynamics of the
present simple case. This problem can be solved by introduction of a normalization
factor:

T = aTa, ϑ =
1

a
ϑa. (40)

Here a is the normalization factor; Ta is the absolute temperature measured by a
thermometer; ϑa is volume density of the absolute entropy. Let us introduce the
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similar relations for the remaining variables:

θ =
1

a
θa, ω =

1

a
ωa, Lh = aLa

h, Lf = aLa
f . (41)

Now rewriting all equations for new variables and using new parameters

Ba =
B

a
, Ja =

J

a2
, Υa =

Υ

a
, Ka =

K

a2
(42)

we can eliminate the normalization factor a from these equations at least in the linear
formulation of the problem and in some particular cases of physical nonlinearity.

5 Hyperbolic type thermoelasticity

Now we consider a special case when the parameter Ba is equal to zero, and the
remaining parameters are calculated by

βJa =
T ∗
a

ρ∗λ
, Ka =

T ∗
a

ρ∗cv
, Υa = −αKizT

∗
a

ρ∗cv
, (43)

where cv is the specific heat at constant volume, λ is the heat-conduction coefficient,
Kiz is the isothermal modulus of compression (the isothermal bulk modulus), α is
the volume coefficient of thermal expansion,

Kad = Kiz
cp
cv
, cp − cv =

α2KizT
∗
a

ρ∗
⇒ Kad = Kiz +

α2K2
izT

∗
a

ρ∗cv
, (44)

where cp is the specific heat at constant pressure. As a result we obtain the well
known equations of the coupled problem of thermoelasticity including the hyperbolic
type heat conduction equation:

∇ · τ s + ρ∗f = ρ∗
d2u

dt2
, τ s =

(
Kiz −

2

3
G
)
εE+ 2G εs − αKizT̃a E,

∆T̃a −
ρ∗cv
λ

(
dT̃a
dt

+
1

β

d2T̃a
dt2

)
=
αKizT

∗
a

λ

(
dε

dt
+

1

β

d2ε

dt2

)
− ρ∗∇ · La

h,

εs =
1

2

(
∇u+∇uT

)
, ε = tr εs, T̃a = Ta − T ∗

a .

(45)

Comparison with the phonon theory. The coefficient of the second time deriva-
tive of the temperature in the heat conduction equation (45) is concerned with the
velocity of propagation of the thermal wave cr:

c2r =
βλ

ρ∗cv
. (46)

For identification of parameter cr we can carry out the comparison with the phonon
theory. The essence of the phonon theory is as follows. Thermodynamic processes
in crystals are due to atomic oscillation about their equilibrium positions. Therefore
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for description of the thermodynamic processes it is necessary to solve the problem
of the lattice vibrations. Further, the quantum theory introduces the concept of
phonons as some quasi-particle moving in the lattice instead of waves propagating
in the lattice. At present there is no universally accepted value of velocity of the
thermal waves propagation. In a number of works is pointed out that propagation
velocity of phonons (thermal waves) must be of the same order of magnitude as the
acoustic speed. There exist works in which more explicit data can be found. In
these works the velocity of the thermal waves propagation is asserted either to be√
3 times less than the acoustic speed or to be equal to the acoustic speed. In what

follows we consider both version.
When the comparison of the equations describing the dynamics of one-rotor

gyrostat continuum with the equations of thermoelasticity has been carried out we
assumed that Ba = 0. We suppose that the terms containing parameter Ba are
concerned with the internal damping mechanism.

6 Conclusion

A model of two-component continuum is suggested for account of thermomechanical
processes. Mathematical description of this model is developed in the framework
of physically and geometrically linear theory. It is possible to carry out further
development of the theory in two directions. The first one is concerned with con-
sideration of nonlinear effects in the context of the same mechanical model. This
is necessary for describing the behavior of substance in the states near the phase
changes and heat-conduction processes under the circumstances of quickly varying
and superhigh temperatures. The second direction deals with modification of the
mechanical model by taking into account the additional degrees of freedom for intro-
ducing the chemical potential and a number of additional physical characteristics of
the medium. This is necessary to describe the phase changes and chemical reactions
and also to account interaction of the substance with the electromagnetic field and
to describe the thermoelectric and thermomagnetic effects.

11


