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MODIFIED ENERGY FUNCTIONAL
FOR THE REISSNER THEORY OF PLATES

- P. A. Zhilin and E. A. Ivanova

The solution to the plate bending problem in the Reissner theory is known to include rapidly
varying functions of boundary layer type. Since the theory of plates provides exact solutions only
for some exceptional cases, numerical methods, mostly based on variational principles, are of great
importance. From the purely formal viewpoint, the minimum energy principle in the Reissner
theory of plates seems attractive since it can be reduced to minimizing a convex functional of the
first derivatives of the unknown functions. However, this functional includes variables of different
asymptotic orders, which is a serious disadvantage in the numerical implementation. Actually, the
solution to the boundary value problem has the property that the leading asymptotic term in the
functional vanishes, whereas the unknown functions must satisfy certain constraints that should
be satisfied exactly for the leading terms of their asymptotic expansions. Since, in general, this
cannot be achieved by solving the problem numerically, substantial qualitative and quantitative
errors are likely to occur. That is why the Kirchhoff theory of plates is preferred in practice. In
the latter theory, some variables are a priori calculated with an error that does not tend to zero
with the relative thickness of the plate. We suggest a functional that combines the advantages
of the Kirchhoff functional with the possibility of finding all unknown functions with a relative
error of O(h?).

Our approach is based on the fact that the overall solution combines slowly varying com-
ponents that penetrate deeply into the plate domain with boundary layer terms that rapidly
decay away from the boundary. The boundary layer equation admits a simple asymptotic solu-
tion containing slowly varying functions, which are determined by the equation only on the plate
contour. Thus, the original functional can be expressed (with taking account of the structure of
the boundary-layer part) via the slowly varying functions alone, which simplifies the numerical
solution dramatically.

1. MAIN EQUATIONS OF THE REISSNER THEORY OF PLATES

We consider the problem of plate bending under a distributed transverse load p(z,y). The main equa-
tions are used in the form given in [1]. Let us introduce the following characteristics of the stress-strain
state of the plate: the transverse deflection w, the vector of rotation angles 1, the vector of transverse stress
resultants IN, and the tensor of stress couples M. These variables are related to the displacements and
siresses in the three-dimensional elasticity theory by the formulas

h/2
hw=(u-n), h*Pp=(uz), N=(a.-7-n), M=(a-r-az), a=E-nn, (f) :/ fdz. (1.1)
—h/2
Here u and 7 are the displacement vector and the stress tensor of the three-dimensional theory, h is the
plate thickness, n is the unit normal to the plate plane, and E is the unit tensor. The complete system of
equations comprises the equilibrium equations

V.-N+4php=0, V-M-N=0, (1.2)
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the elasticity relations
N =GhTy, M =D[(1 - p)x + ptrkal, {1.3)

and the geometric relations

T=Vu+y, k= é—(Vl/)'f'Vl/’T)- (1.4)

Here ~ is the vector of transverse shear deformation, & is the bending-torsion tensor, D = %Eh:’/ (1—u?)is
the bending rigidity, GAT is the transverse shear rigidity, G = +E/(1+p), T is the coefficient of transverse
shear, u is Poisson’s ratio, and p is the mass density.

The kinematical boundary conditions acquire the form

wlc = w", v-yle=¢), T Ylc=4;. (1.5)
The force boundary conditions can be represented as follows:
U'N‘CZN;, V~M-Vl(;=M;, U-M-T]c:M:. (16)

Here ¢}, and ¢} are the angles of rotation about the tangent and the normal to the plate contour, respectively,
N is the shear force, M is the bending moment, M is the torque, v and T are the unit normal and tangent
vectors to the plate contour, respectively; the vectors v, r, and n are assumed to form a right-handed system.

Introducing the potentials ® and F reduces the plate bending equations to the more convenient form (1]

DAA® + php=0, h?AF —12IF =0. (1.7)
The characteristics of the stress-strain state of the plate are expressed via the potentials by the formulas

hZA®

Y=t S

Y=Vd+VF xn,

M = D[(l — u)VVS + puAda + -21-(1 - u)(VYF xn—-n x vvp)], (1.8)

N = DVA® + GhI'VF x n.

In what follows all external loads are supposed to be slowly varying functions of the coordinates. Then
the function @ describes the solutions that penetrate into the interior of the plate domain and is a slowly
varying function, that is, its derivatives in all directions have the same asymptotic order as ® itself. The
function F' is a solution to an equation with a small parameter at the highest derivative [2], and, consequently,
is a function of boundary layer type (that is, rapidly decays inside the domain and slowly varies along the
boundary). Thus, F describes solutions decreasing away from the boundary and satisfies the asymptotic
estimate 0F/8v ~ h='F, 0F/0r ~ F, where (v,7) is a local coordinate system on the boundary. Let
us estimate the asymptotic order of the interior potential ® and of the boundary layer potential F under
external loads of the order O(1): ® ~ h~3, F ~ A1,

2. STATEMENT OF THE APPROXIMATE EQUATIONS
AND THE BOUNDARY CONDITIONS IN THE REISSNER THEORY OF PLATES.
COMPARISON WITH THE KIRCHHOFF THEORY

Let us carry out the asymptotic study of the equation for the boundary layer potential. Since the
solution to the second equation in (1.7) rapidly decays (at the distance 2h from the plate edge it is virtually
zero), the local coordinate system introduced on the plate contour is especially convenient to write out the
equation provided that the contour curvature radius R(r) is much greater than 2h. In the local coordinate
system the second equation in (1.7) reads ‘

82F 1 8F 8*F _12r
ov? +ﬁ—67 ar? h?

Set ¢ = h/é (6 = V12T ) and v = €n. In the new variables Eq. (2.1) becomes

F=0 (v<0). (2.1)

O*F e OF  £28%F

- —_— - F=0. 2.2
302+R80+5T2‘ 0 (2.2)
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The solution to Eq. (2.2) is sought in the form of an asymptotic series expansion in powers of ¢:
F(n,7) = Fo(n,7)+eFi(n7)+ - (2.3)

On substituting the expression (2.3) into (2.2) and on equating the coefficients of the powers of ¢ to
zero, we obtain

62Fo 52F1 1 aFO
o’ e 6_7’2_1;‘1“—? on (2.4)
8*F; 1 0Fi., ©*Fiz . _ o
_67]2 _F’*——f—f— B -5 (1=2,3,...).
The solution to Egs. (2.4) has the form
Fo(n, ) = fo()exp(m),  Faln, ) = (i(r) = 5 fo(r) L) exp(n)
) ) ) 2 R ) (25)
Fi(n, ) = filn,m)exp(n) (1=2,3,...).
Set f(r) = fo(r) + €f1(7); then, by Egs. (2.3) and (2.5), we have
_ 1 en 2 -
Fin,m) = [£(r) (1= 352 + O(e?)] exp(n). (2.6)
Thus, the boundary layer potential F has the asymptotic representation
1 v v
Fv,r)=f(n)(1- 55) exp( ) (v <), (2.7)

where f(r) is some function of the coordinate on the plate boundary and is determined by the boundary
conditions. The dependence of the boundary layer potential in (2.7) on the coordinate along the normal
to the plate boundary is given explicitly. The use of Eq. (2.7) for the boundary layer potential enables us
to solve the plate bending problem with a relative asymptotic error O(h?). Hence, it makes little sense to
retain the terms of higher order in the expressions for w, ¥, N, and M.

Thus, the approximate solution to the plate bending problem is reduced to the integration of the first
equation in (1.7) for the interior potential and to the determination of the function f(r), which characterizes
(according to (2.7)) the variation of the boundary layer potential along the plate contour. The asymptotics
of the stress-strain state characteristics are

w=-9 P=Vd- %—f(r)rexp(—i—u),

N = DVAG + Ghl‘{[(l -5z )f () + %}:—; (n)]v - %(1 - 37 - E%K)f(’)’} e"P(%")' (2.8)

M = D[(1 — p)VVP + uAda]

J v 2h %)
+ [D(l - #)F’f (r} v —r71) ~ GhF(l ~5F " —ﬁ‘g-)f(r)(uf - ru)] exp(Tl-u).
The kinematical boundary conditions acquire the form
. 00 . 09 é .
“tle=w Flo=v Gl FI0=v (29)
The boundary conditions for the forces and the moments read
Ad , .
D—éy—‘c +GhLf'(r) = N3,
9?d p 0P bR )
R SNTEN ol i — W —f(r)= M". 2.10
D(Gor + T t g |+ DU - W f(0) =M (2.10)
8%® 2h. .
DL~ w) 5| - Ghr(1- m—)f(r) = M.
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[t should be noted that, according to (2.8), the leading terms of the transversal forces and of the torques
depend on the boundary layer potential. Thus, there is an error of the order O(1) in the expressions given
by the Kirchhoff theory for the transversal forces and torques in the vicinity of the boundary. Three types of
boundary conditions, for which the leading term of the boundary layer potential is zero, are the exceptions:
the kinematic boundary conditions if 47 = —8w"/8r; the first and the third conditions in (2.8) and the second
condition in (2.10), if ¥} = —0w"/9r; the first and the second conditions in (2. 9) and the third condition
n (2.10) if M7 = D(1 — u){0v; /8t + (1/R) dw*/87].

Thus, despite the fact that the Kirchhoff theory permits us to find the leadmg terms of the deflection,
the angles of rotation, and the bending moments, the statement about its relative asymptotic error O(h)
needs to be revised since the transversal forces and the torques are evaluated at the boundary with an error
in the leading terms.

We point out that the suggested approximate statement of the problem differs from the Kirchhoff theory
in that it takes into account the transverse shear deformation in the vicinity of the boundary,

é v
¥ = _Tf(T)TeXP(T) (v <0), (2.11)
which allows one to satisfy all of the three boundary conditions.

3. VARIATIONAL FORMULATION OF THE PLATE
BENDING PROBLEM IN THE REISSNER THEORY

The energy of plate bending in the Reissner theory acquires the form
1
H(w,d;):/ [—2—(M--n+N~7)—phpw} dS—/[M;¢u+M;wT+N:w]dC'. (3.1)
(AS) : c

Here the tensor of moments M, the vector of transversal forces N, the bending-torsion tensor s, and the
vector of transverse shear deformation v are expressed via the vector of rotation angles v and the deflection w
by formulas (1.3) and (1.4). The potential energy functional (3.1) attains the minimal value at the equilibrium
configurations provided that w and 4 satisfy the kinematic boundary conditions (1.5) if they are imposed
at all.

The direct use of the functional (3.1) for numerical calculations is hardly possible since it depends on
functions rapidly varying in the vicinity of the boundary. The approximation of the rotation angles v by
slowly varying functions, typical of the finite element method and some other methods, leads to substantial
errors and to the necessity to refine the grid. The effective use of the functional (3.1) in numerical calculations
is only possible under a quite special choice of the coordinate functions to approximate the rotation angles
on the boundary. To avoid the difficulties related to this choice, one should explicitly take into account the
boundary layer phenomenon.

4. MODIFIED ENERGY FUNCTIONAL IN THE REISSNER THEORY OF PLATES

To take account of the boundary layer phenomenon explicitly, we transform the functional (3.1) as

follows:
i) We express the functional (3.1) via the interior potential and the boundary layer potential, thus sepa-
rating the rapidly and the slowly varying functions;
i) We transform the area integral for the boundary layer components of the functional into a contour
integral by the divergence theorem;
ii1) Finally, we substitute the expression (2.7) for the boundary layer potential into the functional.

This permits us to construct an energy functional in which the variation of the boundary layer potential
along the normal to the contour is taken into account explicitly.

The modified energy functional is defined on the set of functions ®(z,y) and f(r) that satisfy the
following conditions: the functions ®(z, y) are continuous and twice continuously differentiable in the closed
domain S = S + C; the functions f(r) are continuous and continuously differentiable on the curve C; both
®(z,y) and f(7) saiisfy the kinematic boundary conditions (2.9) if they are imposed. The modified energy
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functional has the form

2 2 2
rnn= [ {olboorson((£5) - 558 e}

5§ 0% |, 1 8% § 1
b [ [pu-mg(erin+ 55 i) + 6ar(gr = ) 110
+N;¢+M;%%—M;(%‘T3— —;—i—f(r))] dcC. (4.1)

The Euler equations for the modified functional (4.1) coincide with the first equation in (1.7) and with
the boundary conditions (2.10) for the forces and moments. In the equilibrium configurations, the modified
functional (4.1) assumes stationary values. However, the functional is actually minimal for a majority of
“nonpathological” problems.

Since the Euler equations for the functional (4.1) have been derived from the equations of the Reissner
theory of plates under the condition that the terms of the relative order O(h?) are omitted, we can conclude
that the functional (4.1) allows us to solve the bending problem with the relative accuracy O(h?). However,
the energy functional (4.1) is not the strict asymptotic consequense of the functional (3.1), since it contains
the term GATR~1f2(r) = O(h2), whereas the other O(h?) terms are not included.

5. BENDING OF A CIRCULAR PLATE BY A TORQUE
UNIFORMLY DISTRIBUTED ALONG THE CONTOUR
Let us consider a plate of radius R subjected to a torque M7 uniformly distributed along the boundary.
The boundary conditions are given in the form

v-Nlc=0, v-M-vic=0, v- M T1lc =M. (5.1)

Since M: = const, it follows that the problem is axisymmetric, that is, in the polar coordinates we have
® = &(r) and F = F(r). The boundary problems for the interior potential and the boundary layer potential
have the form

8? d 4 1 2 9
(Zvtdyo=o Z(Griz)ala=o (Friz)ol,=0 o
8? a 2 :

(& +35)F-FF=0 (F- 5573 T (5-3)

The function & = 0 is a solution to problem (5.2). The solution to problem (5.3) with the asymptotic
error O(h?) is determined by the formula

__l_r-R
M: ? R §
F=-—k % exp(-h-(r-R)). (5.4)
" Rs

Let us consider the solution to this problem with the aid of the energy functional (4.1). In the polar
coordinates the functional acquires the form

. R r1,0% 1088\2 1-p 09 5°® § 1\, .0
II ((I),f)-—2ﬂ'{/o D[E'(—a-—r?—"“;—g;‘) ————r———é:' 67‘2]rdr+GhF(§F——§)'f +M,—h— } (5.5)

The stationary conditions for the functional (5.5) lead to the equations

=0, f=-—1 (5.6)

Taking into account Eq. (2.7) and the fact that the local coordinate v introduced on the contour is equal
to r — R, we find that the solution obtained with the aid of the functional (4.1) coincides with the exact
solution.
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6. BENDING OF A HINGED RECTANGULAR PLATE UNDER TRANSVERSAL LOAD

Let the plate occupy the domain 0 € z < a, 0 < y < b. The transversal load is p(z, y) = posin(rz/a) x
sin(ry/b). On the plate contour the conditions of hinge support are satisfied. We point out that there are
two kinds of such boundary conditions.

Problem 1.

wle=0. v M -vec=0, 7 9¢lc=0. (6.1)
Problem 2.
‘LU|(;=0, l/rM-Vlc:O, U-M“rlc:O. (62)

Both problems are considered below, and we compare the solutions.
Problem 1 has the exact solution

po sin(wz/a)sin(mry/b)

= D /ey + (/)T

Fy(z,y) = 0. (6.3)

Problem 2 has no known solution in a closed form. However, on representing the functions ¢ and F' as
power series in h, the problem splits into twe problems for the leading terms in the asymptotic expansion.
The problem for the loading term of the interior potential coincides with Problem 1, ng) = ®,, whereas the
problem for the boundary layer potential reads

12T 0 h? 92¢”
R2 =0, Fi'lo=gF 6T dvdr lc’ (6.4)

AF® -

It is obvious that the leading term for the boundary layer potential FZ(O) is not zero, and hence, the
solutions to Problems 1 and 2 differ by their leading terms in the vicinity of the boundary. Let us solve
Problems 1 and 2 with the aid of the functional (4.1).

Problem 1. The interior potential is sought in the form of the following series in coordinate functions:

= - wkz Ty
= ZZA’"‘SIH . sin T (6.3)
k=ln=1

Obviously, the coordinate functions (6.3) satisfy the first condition in (2.9). The third condition in (2.9)
is satisfied only if f = 0. By substituting the expression (6.5) into Eq. (4.1), we obtain :

2 - k\? mn\2]? ab ab
= 2 D ——ﬂ- - - .
@n=y 3 4, [(a) (2] &+ aumd (6.6)
The stationarity condition for the functional (6.6) yields
A = —E[<:) + (T) ] , Akn=0 (kn#1). (6.7)

The obtained solution (6.5), (6.7) coincides with the exact solution (6.3).
Problem 2. We search the interior potential in the form of the series (6.5). The function f need not
satisfy any kinematic boundary conditions. We represent f in the form of a series in coordinate functions,

A, C() i 7\’k.'L‘
y=0: fi(z)= +ZCkcos "

k
y=2b: fg(£):i0+25kcosﬂx
k= (6.8)
=0 faly) = 22 +ZB cos ”:y
ny

V o0
z=a faly) = 0+ZVCOS ;
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The substitution of the expressions (6.5) and (6.8) into Eq. (4.1) yields

= 2
D;§{Azn[( ()]
+- “)%%‘Akn”zk"[(@c +(=1)"Se)b™! = (Bn + (—1)"vn)a-‘j]}

oQ
1
Z (CZ + St)a+ (B + Vi2)b] + ZAUPOGU (6.9)

The stationarity condition for the functional (6.9) yields

Ay = ——’31;—{ [(%)2 + (%)2]2 - 8—:—(1 —p)ri(a+ b)a-sw}—l,

Ay n2h? (6.10)
= e
Akn =0 (kn#1), Ci=Sk=Be=Vi=0 (k#1).

The leading term of the interior potential for the solution to Problem 2 {(by the functional (4.1)),
coincides with the interior potential for Problem 1. The boundary layer potential for Problem 2 is not zero,
and hence, it differs from the potential for Problem 1 in the leading term.

7. BENDING OF A RECTANGULAR PLATE WITH
THREE HINGED EDGES AND ONE LOADED EDGE
Consider a rectangular plate in the domain 0 < z < a, 0 < y < b. The hinge support conditions are

imposed on the three edges,

w =0 =0,' T-ll) =0y v-M- v = 0. (71)

y=0,b y=0,6 y=0,b

The load is applied on the fourth edge:

v N|z=5 = NJ sin %, V-M:T|z=g = M] cos —7%-/-,‘ v-M vi-, =0, (7.2)
where NJ — (7 /b)M; = hp and the quantities N, M;, and p are of the asymptotic order O(1). The leading

terms of asymptotlc expansions for the interior and the boundary layer potentials are determined from the
solutions to the boundary value problems

maF-1orF =0, 9L =y =0, GATF|seq = —M; cos -2, (7.3)
v y=0b b
AA®=0, | _ =0, A®|__ =0, (7.4)
y=.(-),b =.b,b
liad ) liad ) hp Ty 6% 8% 0*F
i —_— ) —— =fgpy o 9% = —(] -
61'3 + (2 I‘) 626y2 r=a D sin b ! 632 + H 6y2 r=gq ( ﬂ) 61:(9y z=a

The interior potential is of order O(h~2) and the boundary layer potential is of order O(h™1). By
Egs. (7.3) and (7.4), the leading term of the boundary layer potential depends only on M?, and the leading
term of the interior potential depends both on p and on M:. The statement of the problem in the Kirchhoff
theory yields system (7.4) with zero boundary layer potential. Obviously, the interior potential in the
Kirchhoff theory is also of order O(A~2), but it depends only on p and is independent of M. Hence, the
solution provided by the Kirchhoff theory contains an error in the leading term not only on the boundary,
but also in the interior of the domain.
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Let us consider the solution with the aid of the functional (4.1). The interior potential and the function f
are sought in the form

®(z,y) = u(z)sin —7%2, r=a: f(y) = Scos fbi (7.5)

According to the kinematic boundary conditions, the function f is zero on the sides z = 0, y = 0, and
y = b, and the function u(z) must satisfy the conditions

u(0) =0, u"’(0)=0. (7.6)

On substituting the expressions (7.5) into Eq. (4.1), we obtain

1 (u(e),5) = {0 [ |5 [0) - (5) @] + 0= () (@) + w(ehuta)]
-D(1- y)—i——g—u'(a)s + %JGI‘SQ + hpu(a) + M,‘%S}. (7.7)
The stationarity condition for the functional (7.7) yields
WV (z) - 2(-11)211"(:) + (%)411(1:) =0,
w(a) - 2~ (F) Wla) = 2L, s
w(@) - u(2) u@) = 1 - L Ls, |

Equations (7.6) and (7.8) show that the leading part of S depends on M alone, and the leading part
of u(z) depends both on p and M;.

REFERENCES

(1] P. A. Zhilin, “On the Poisson and Kirchhoff theory of plates from the modern point of view,” Izv. RAN.
Mekhanika Tverdogo Tela [Mechanics of Solids], No. 3, pp. 48-64, 1992.

[2] M. 1. Vishik and L. A. Lusternik, “Regular degeneration and boundary layer for linear differential equa-
tions with a small parameter,” Uspekhi Matematicheskikh Nauk [Russian Math. Surveys], Vol. 12, No. 5,
pp. 3-122, 1957.

27 February 1993 Saint-Petersburg



