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COMPARATIVE ANALYSIS OF LOW-FREQUENCY
FREE VIBRATIONS OF RECTANGULAR PLATES

E. A. Ivanova

(Received 25 July 1995)

It is well known that in solving bending problems for plates, the Kirchhoff theory aliows determining
leading asymptotic terms of all variables inside the domain of the plate and yields an O(1) error compared
with the leading term of the expressions for shearing forces and torsional moments near the boundary. It is
also known that the numerical results given by the Kirchhoff theory and the Reissner theory well agree with
the conclusions drawn from asymptotic analysis. A vast variety of papers dealt with the discussion of the
asymptotic transition from a Reissner-type theory to the Kirchhoff theory and with the comparison of the
results predicted by the two theories, so that one cannot seemingly add anything. However, most authors
restrict themselves to the consideration of clamped, hinged, or free boundaries of plates, whereas there are
another five types of boundary conditions in the Reissner theory, which are also of interest at least from the
theoretical viewpoint. At first sight, it seems obvious that the conclusions drawn {from the analysis of the
accuracy of the Kirchhoff theory for the above three types of boundary conditions are always valid. However,
a more detailed insight into this matter has shown that this statement must be refined.

In the present paper, the comparison of the asymptotic and actual accuracy of the Kirchhoff theory is
carried out, exemplified by problems on free vibrations of rectangular plates. By the actual accuracy we
mean the relative difference of a variable calculated by the Kirchhoif theory and by the Reissner theory for
a given value of the small parameter. All eight types of boundary conditions possible in the Reissner theory
are considered. In six cases (including the three types of boundary conditions traditionally dealt with in the
literature), there are no contradictions with the well-known facts. As to the other two types of boundary
conditions, the results turn out to be surprising. It has been found that for the sliding fixing conditions at the
contour (N, |c =0, ¥, |c =0, and W, |. = 0) and for the reinforced free edge conditions (N, |. =0, M, |. =0,
and W | = 0), the Kirchhoff theory results in so large real errors (even for a few first natural frequencies) that
we have to conclude that the Kirchhoff theory is inapplicable for these two types of boundary conditions. This
is of special interest with regard to the fact that, from the asymptotic viewpoint, the statement of a problem
within the framework of the Kirchhoft theory allows one to predict the natural frequencies with an error not
exceeding O(h) as compared with unity for all the types of boundary conditions possible in the Reissner
theory. So in the formal approach to the problem discussed it is not clear why the Kirchhoft theory provides
a solution with admissible real errors under some conditions but fails to do so under another conditions. It
became possible to answer this question only after the asymptotic analysis of the frequency equations had
been carried out and asymptotic formulas had been obtained to estimate real errors in the natural frequencies
calculated by the Kirchhoff theory for different types of boundary conditions.

In[1], an approximate statement of the problem on low-frequency vibrations of Reissner’s plate was sug-
gested, in which, as opposed to the Kirchhoff theory, the transverse shear strain near the plate edge is taken into
account (the asymptotic accuracy of the statement in question is O(h?)). In the present paper, the comparison
of the actual accuracy of the Kirchhoff theory with that of the theory taking into account the transverse shear
strain near the boundary (for all the types of boundary conditions) is exemplified by problems on natural vibra-
tions of rectangular plates. The study accomplished shows that for the six types of boundary conditions where
the Kirchhoff theory makes quite admissible errors, the allowance for the transverse shear strain significantly
influences only the appearance of natural forms near the plate edge. In the two cases where the Kirchhoff
theory is not applicable, namely, in the case of sliding fixing conditions at the contour (N, |c =0, ¥..|. =0, and
Y. le = 0) and the reinforced free edge conditions (N, |. = 0, M,|. = 0, and ¥.|. = 0), the allowance for the
transverse shear strain changes the picture dramatically. It turns out that the use of the theory taking account of
the transverse shear strain near the boundary allows predicting both natural frequencies and natural forms with
the same real errors as for the type of boundary conditions where the Kirchhoff theory makes “normal” errors.
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1. SUMMARY OF THE BASIC EQUATIONS
GOVERNING FREE VIBRATIONS OF REISSNER’S PLATE

The differential equations have the form (2]

- pm 2 . p2h3
AAD + phd — I Ad = 11
DA/ +ph® == < " r(1-u)> *er v =0 (1.5
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The variables characterizing the stress-strain state of the plate are given by

- h? ph?
- B AD-
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¥ =Vd+VFxn,

b,

.
N=DVA® - %V@ + GhT'VF xn,

M=D [(1 —)VV® + pAda+ é—(l - p)VVFE xn- nVVF)],

where w is the deflection, ¥ is the vector of rotation angles, N is the vector of transverse forces, M is the tensor of
moments, D = %Eh}/(l — %) is the bending stiffness, GhI is the shear stiffness, G = %E/(l + 1), I' is the transverse
shear coefficient, F is Young’s modulus, j is Poisson’s ratio, p is the mass density, I is the plate thickness, n is the
unit normal to the plate plane, a = E —nn, and E is the identity tensor.

The boundary conditions are stated later and now we only note that the Reissner theory allows one to satisfy three
conditions at the contour and, hence, eight different types of boundary conditions are possible.

2. APPROXIMATE STATEMENT OF THE PROBLEM
ON LOW-FREQUENCY FREE VIBRATIONS OF REISSNER’S PLATE
WHICH TAKES ACCOUNT OF THE TRANSVERSE SHEAR STRAIN NEAR THE PLATE EDGE

We consider the statement of the problem suggested in [1]. The differential equations coincide with the Kirchhoff
equations

DAA® + phd = 0. (2.1)

The function characterizing the boundary layer has the form

Fu,m) = f(T)(l - E%) exp(%—u), §=V12T (<0, 2.2)

where v, 7 is the local coordinate system introduced on the plate contour and R(7) is the radius of curvature at a given
point.
The deflection, the vector of angles, the vector of transverse forces, and the tensor of moments are given by

w=-P,
= V@—%f(r)exp(%u> -
N= DVVM”G’W{ [—% (1—5%) +51§]f(7)¢+ [(1—{}-2) f'(T)+—;/—}I§—;f(T)} V} exp(—i—v), 2:3)

where 1 and T are the unit outward normal and the unit tangent vector to the plate contour (v, T, and n form a
right-handed trihedral).

Note that in proceeding from the exact statement of the problem to the approximate one discussed here, the
boundary conditions do not qualitatively change, since the introduction of the boundary layer function (2.2) makes it
possible to satisfy all the three conditions on the contour.
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3. STATEMENT OF THE PROBLEM ON FREE VIBRATIONS
OF A PLATE IN THE KIRCHHOFF THEORY

The statement of the problem under consideration in the Kirchhoff theory can be obtained from system (2. 1)—(2.3)
provided that the boundary layer function F is assumed to be identically zero. Two difficulties are immediately
encountered. The first difficulty is that the transverse forces and torsional moments near the plate boundary are
determined, in the general case, with errors in the leading terms of asymptotic expansions. Obviously, this difficulty
cannot be resolved within the framework of the Kirchhoff theory, since the only way out is to take account of the
leading asymptotic term of the boundary layer function. The second difficulty is associated with the statement of the
boundary conditions: neglecting the boundary layer function results in reducing the order of the system of differential
equations for the spatial coordinates, which gives rise to the necessity to replace three conditions on the contour by
two.

Let us discuss the problem of stating the boundary conditions in more detail, We pose the question: Is it possible,
for all types of boundary conditions used in the Reissner theory, to restate the boundary conditions so that two of them
will depend only on the function ® characterizing the solution penetrating into the entire domain of the plate, and the
third condition will be a consequence of the first two or an equation for the function F, provided that the asymptotic
error is O(h)? The affirmative answer to this question would mean that the Kirchhoff theory allows one to determine
the natural frequencies and vibrational shapes inside the plate domain with an asymptotic error of O(h) for all types of
boundary conditions.

Below we present the statements of boundary conditions in the Kirchhoff theory which correspond to different
types of boundary conditions in the Reissner theory. The conditions for determining the leading asymptotic term of
the boundary layer potential are also stated.

1. Clamping:

wl, =0, W] =0, W =0 3.1)
The Kirchhoff theory:
od
(I) = O’ _ = 0 32
‘C 61/ c ( )

The condition OCD/OTIC = 0 is a consequence of the first condition in (3.4). The leading term of the boundary layer
potential is zero.
2. Constrained hinged support:

wl, =0, M| =0, Y. | =0. (3.3)

c

The Kirchhoff theory:

o' O oo
bl = O, D|—— + — + — =0. 34
IC v R Ov o2 . (4)
The condition Od)/arlc = 0 is a consequence of the first condition in (3.4). The leading term of the boundary layer
potential is zero.
3. Free hinged support:

w| =0, M, =0, M| =0 (3.5)

In the Kirchhoff theory, the boundary conditions have the form (3.4), just as in the case of constrained hinged support.
However, the leading term of the boundary layer potential is nonzero:

n: oo
fn= 6T Ovdr Ic. 3.6)
4. Free edge:
N,|, =0, M, =0, M| =0 3.7
The Kirchhoff theory:
b p 0D o*d OAD o
Di— ¢+ L — - = - W)= =0. .

o? R bv TR or? ]c ’ D{ dv - oot |, (-8)

The leading term of the boundary layer potential is nonzero and is given by formula (3.6).
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5. Sliding fixing:

Ny, =0, @,| =0, ¥, =0 (3.9)
The Kirchhoff theory:
a9 ad
=0, =0. 3.10
v e ar e (3.10)
The leading term of the boundary layer potential is nonzero and is determined by the relation
h? IAD
(1) = —— e — 1 3.11
PO =550 70 o e (1D
6. Weakened clamping:
) wl| =0, ¥,| =0, M| =0 (3.12)

In the Kirchhoff theory, the boundary conditions have the form (3.2), just as in the case of clamping. The leading term
of the boundary layer potential is zero, since the third condition in (3.12) is a consequence of the first two.
7. Weakened sliding fixing:

N, =0, ¥,| =0, M =0 (3.13)
The Kirchhoff theory:
a9 OAD o'
= el ) ———o| =0. 3.14
v e 0 D[ By (= dvdT? L 0 -1

The leading term of the boundary layer potential is given by (3.6), which, in view of the first condition in (3.14),
becomes

K2 1 9%

IO="F " ar

that is, the leading term of the boundary layer potential is nonzero only if the contour of the plate is curvilincar.
8. Reinforced free edge:

[

)

N,|, =0, M, =0, ¥ =0 (3.15)

The Kirchhoff theory:
o 8¢ u 00 9%
— 0, —_——— ————— = 0 3 1 6
a7 le [81/2 "R o #OTZL (-10)
The leading term of the boundary layer potential is determined by (3.11).

Conclusion. The Kirchhoff theory allows one to determine the asymptotically leading terms of natural frequencies
and natural forms inside the domain of the plate for all types of boundary conditions possible in the Reissner theory.

4. FREE VIBRATIONS OF A RECTANGULAR PLATE HINGED ON TWO OPPOSITE SIDES

Consider a plate occupying the domain ~a € & < a, b < y < b. The conditions of constrained hinged support
are assumed o be satisfied on the sides y = b and an arbitrary condition, on the sides = = +a. We study vibrations
symmetric about the axes = 0 and y = 0. It can be readily shown that the natural shapes satisfying the differential
equations (1.1) and (1.2) and the boundary conditions (3.3) at y = b are given by

@n(a:, y) = [Cln COS(/\lnz) + CZn COS(/\Zn:E)] COS(#ny), Fn(IE, 1/) = C]n sin(&nz) Sin(/"ny)v (4!)

where

2n-Drm wi 12T
Alp = V Ap - By, Aop = \Y Ap + B, Hn = —('_'_—)) On = \/ﬁ"“‘ - —/1‘31‘

2 G h?

s h pw?
Ap=[1+ i) B _ 2 B =\/ﬁ— -0 -] Zn
n= 1+ 3T ”)]26’1“ ph, Bn D+[ > T( “)]ZGF
Satisfying the boundary conditions at z = +q, we arrive at a system of linear homogeneous algebraic equations for
the unknowns C,,, Ca,, and Chi,,. Equaling the determinant of this system with zero yields equations for determining
the natural frequencies. When solving the problem discussed, the eight types of boundary conditions have been
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considered and for each of them, the frequency equations have been obtained. (These equations are not written out
here, because they are too cumbersome.)

It should be noted that in the Reissner theory, there exist three spectra of natural frequencies, one low-frequency
spectrum (w ~ h) and two high-frequency spectra (w ~ h"). The Kirchhoff theory, just as the theory taking account
of the transverse shear strain near the plate boundary (1], allows one to calculate only the frequencies pertaining to the
low-frequency spectrum. Therefore, in what follows we do not consider the high-frequency vibrations.

Let us briefly dwell on specific features of the solution of the problem in question according to the theory taking
account of the transverse shear strain near the plate edge {1] (in what follows, we refer to this theory as the shear theory
for brevity). The natural shapes satisfying equations (2.1) and (2.2) and the boundary conditions (3.3) at y = b have
the form

¢, (z,y) = [Cln cos(A1nx) + Con COS()an)] cos(ptn¥)s

é é
Folz,y) = fn(y){CXP [—(a - m)f] —exp [—(a + fc)—h—} }

ph | ph
/\ln = _/L% —Wn “D_ s )\211 = ‘“/L;ll +Wnp F .

Here we have already taken account of the symmetry about the axes z = 0 and y = 0). The function f,,(y) is determined
by the boundary conditions at £ = +a: foly) = Cy, sin(pay).

The asymptotic analysis has shown that the frequency equations and the natural shapes calculated by the shear
theory follow from the exact (provided by the Reissner theory) frequency equations and natural shapes with an
asymptotic error of Oh?).

Let us discuss the solution of the problem following from the Kirchhoff theory. The natural shapes satisfying the
differential equation (2.1) and conditions (3.4) of constrained hinged supportat y = £b are determined by relations (4.2),
provided that the function f,(y) is assumed to be identically zero. Let us make two remarks concerning the results of
solving the problem under various types of boundary conditions at z = *ta.

(4.2)

where

Remark 1. If the clamping conditions (3.1), the constrained hinged support conditions (3.3), the weakened
clamping conditions (3.12), or the weakened sliding fixing conditions (3.13) are set on the sides z = *a, then the
leading asymptotic term of the boundary layer potential is identically zero. Hence, for these types of boundary
conditions, the Kirchhoff theory permits solving the problem on natural frequencies and natural shapes with an
asymptotic error of O(h?), and the solution by the shear theory completely coincides with that given by the Kirchhoff
theory.

Remark 2. If the conditions of constrained hinged support (3.3), free hinged support (3.5), or reinforced free
edge (3.15) are set at z = %a, then the Kirchhoff theory provides the same solution. Indeed, the conditions of tree and
constrained hinged support in the Kirchhoff theory coincide and have the form (3.4), and the conditions of reinforeed
free edge (3.16) differ from (3.4) in only one condition: 8<D/(?T|( = 0 is used instead of (I)lp = 0, with the former
being a straightforward consequence of the latter. If the conditions of clamping (3.1), sliding fixing (3.9), or weakened
clamping (3.12) are set at = = +a, then the Kirchhoff theory leads to a common solution as well. The conditions
of clamping and weakened clamping in the Kirchhoff theory coincide and have the form (3.2), and the conditions of
sliding fixing (3.10) differ from (3.2) in only one condition: B@/@T‘c = 0 is used instead of (I>|C =0.

Thus, the eight types of boundary conditions present in the Reissner theory can be divided into four groups:

(i) clamping, sliding fixing (¥), and weakened clamping (%);

(i) constrained hinged support (%), free hinged support (), and reinforced free edge;

(i1i) free edge; and

(iv) weakened sliding fixing (). -

The groups combine the types of boundary conditions which are indistinguishable in the Kirchhoff theory. The
asterisk marks the types of boundary conditions which result in asymptotic errors of the order of O(h?).

5. FREE VIBRATIONS OF A RECTANGULAR PLATE. COMPARATIVE ANALYSIS
OF THE NUMERICAL RESULTS OBTAINED BY DIFFERENT THEORIES

This study is exemplified by the problem discussed in Section 4. The calculations were performed for a plate
with dimensions a = b= I m and h = 0.1, 0.04m and for the constants B = 2.1 - 10" Pa, p = 025, = 5/6, and
p=795110° kg/m?, which characterize the elastic and inertial properties of the plate material.
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Table 1
No WR w A WK e
h=0.1
1 740.831 746.960 0.83 756.153 2.07
2 3613.906 3762.387 4.11 3780.612 4.61
3 3614.672 3764.217 4.14 3780.612 4.59
4 6271.550 6716.355 7.09 6805.070 8.51
5 8895.791 9807.466 10.30 9829.529 10.50
h=0.04
1 300.561 300.990 0.14 302.461 0.63
2 1499.312 1509.547 0.68 1512.245 0.86
3 1499.373 1509.670 0.69 1512.245 0.86
4 2676.121 2708.665 1.22 2722.028 1.72
5 3860.653 3928.806 1.77 3931.812 1.84

The numerical results can be summarized as follows.

1. The first ten natural frequencies of the low-frequency spectrum are caleulated. The computations are made
by three different theories (the Reissner theory, the Kirchhoff theory, and the shear theory). All the type of boundary
conditions possible in the Reissner theory are considered.

2. Real errors emerging in using the approximate theories arc calculated (for all types of boundary conditions as
well).

3. The natural forms corresponding to the first ten natural frequencies are found for the types of boundary
conditions for which the leading asymptotic term of the boundary layer potential is zero.

Let us now proceed to the detailed analysis of the results obtained. The types of boundary conditions for which
the leading asymptotic term of the boundary layer potential vanishes—conditions (3.1), (3.3),(3.12), and (3.13)—arc
of little interest and will not be discussed in what follows. Note that the calculated estimates of the real errors made by
the Kirchhoff theory for these types of boundary conditions agree well with those known previously.

Tables 1-4 present numerical results for the first five natural frequencies for the cases in which the conditions of
hinged support (3.5), free edge (3.7), sliding fixing (3.9), and reinforced free edge (3.15) are setat x = +a, respectively.
In these cases, the leading asymptotic term of the boundary layer potential does not vanish. The following notation is
used in the tables: N is the frequency number, wy is the frequency predicted by the Reissner theory, w is the frequency
predicted by the shear theory, A is the relative error of the shear theory, A = (jw — wgrl/wr) X 100%, wx is the frequency
predicted by the Kirchhoff theory, and éx is the relative error of the Kirchhoff theory, 8k = (jwk — wr|/wr) X 100%.

Tables 1 and 2 show that the errors of the Kirchhoff theory in the cases of hinged support and free edge conditions
behave “normally,” that is, their values, their monotonic increase with the frequency number, and overstated values
of the frequencies agree with the results obtained earlier by other researchers. The allowance for the transverse shear
strain near the plate edge raises the accuracy of predicting the natural frequencies insignificantly for these types of
boundary conditions. However, this does not mean at all that the shear theory offers no advantages over the Kirchhoff
theory in this case. Indeed, since the leading term of the boundary layer potential is nonzero, the Kirchhoff theory
makes quite large errors in the shearing forces and torsional moments; it is by taking into account the transverse shear
strain near the plate boundary that these errors can be eliminated.

In the cases of sliding fixing and reinforced free edge (see Tables 3 and 4), the real errors of the Kirchhoff theory
cannot be considered “normal.” Oppositely, their behavior is quite strange: (i) they loose the property of monotonic
increase with the frequency number and (ii) for some frequencies, they become so large that we have to conclude that
the Kirchhoff theory is inapplicable for these types of boundary conditions. This is remarkable, since the frequency
equations obtained within the framework of the Kirchhoff theory are the leading asymptotic terms of the corresponding
equations obtained by the Reissner theory! Interestingly, the errors made by the shear theory are quite “normal” (see
Tables 3 and 4), i.c., the same as the errors for the other types of boundary conditions. Such results suggest to check
whether there is no miscalculation. To remove doubts on this matter, we write out the frequency equations obtained
by the Kirchhoff theory and by the shear theory, as well as formulas for the relative errors 8, of the Kirchhoff theory,
8, = [{(wk —w)/w] X 100%. (We do not give the frequency equations obtained by the Reissner theory, since they are too
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Table 2
No WR w A WK 1%
h=0.1
1 370.032 371.565 0.41 372.024 0.54
2 1385.438 1404.897 1.40 3124.050 2.79
3 3255.978 3376.258 3.69 3381.774 3.86
4 4451.880 4667.923 485 4713.277 5.87
5 4840.758 5102.156 5.40 5133.873 6.05
h =0.04
1 148.626 148.748 0.08 148.810 0.12
2 565.330 569.313 0.70 569.620 0.76
3 1343.761 1351.913 0.61 1352.709 0.67
4 1863.737 1885.127 1.15 1885.311 1.16
5 2030.259 2053.365 1.14 2053.549 1.15
Table 3
No WR w A WK ok
h=0.1
1 772.548 773.774 0.16 1109.024 43.55
2 2202.267 2254.363 2.37 4945.102 124.55
3 3613.446 3752.419 3.85 3915.448 8.36
4 5669.845 5985.636 5.57 7653.923 35.00
5 6104.690 6537.085 7.08 11771.931 92.83
h=0.04
1 371.902 371.840 0.02 443.610 19.28
2 1085.428 1089.106 0.34 1978.041 82.24
3 1526.035 1535.835 0.62 1566.179 2.63
4 2653.017 2685.316 1.22 4708.772 77.49
5 2671.404 2693.713 0.84 3061.569 14.61

cumbersome. For the same reason, we compare the frequencies predicted by the Kirchhoff theory with those calculated
by the shear theory rather than by the Reissner theory.)
Sliding fixing. The Kirchhoff theory yields the frequency equation

Ain c0s(A2na) sinh(Aa @) + Azp Sin(Az2na) cosh(A1na) =0, (5.1)
where
_@n-br

/ [ ph /
=A/Wn % + /l%, wn = —/ na b

The frequency equation obtained by the shear theory has the form
} [ p} . .
(1~;L);L,21 [/\ln c0s(Az2n@) sinh(Ajpa)+ Az, sin(Ana) cosh()\lna)] . —;—wn % MnA2n sin(Azpa) sinh(A1a)=0. (5.2)
The relative error of the Kirchhoff theory is approximately given by

4 h T
5. = h n (4
51— a [(AMAM)Z < ¥

a2
;tfl cos“(Azna)
A3, sin?(Azna)

cos(A2n @) )

-1
- } x 100%. (5.3)
/\21).a Sln(AZHG)
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Table 4
No WR w A WK Ok
h =01
1 687.816 692.719 0.71 756.153 9.94
2 2002.924 2027.900 1.25 3780.612 88.75
3 3589.084 3734.339 4.05 3780.612 5.34
4 4870.231 5229.177 5.21 9829.529 97.77
5 5665.708 5966.331 5.31 6805.070 20.11
h=0.04
1 291.858 292.226 0.13 302.461 3.63
2 1083.650 1086.898 0.30 1512.245 39.55
3 1495.818 1505.992 0.68 1512.245 1.10
4 2266.037 2284.607 0.81 3931.812 73.51
5 2583.023 2611.645 1.11 2722.028 5.38
Table 5 Table 6
No 6, (h=0.1) 6. (h=0.04) No 6., (h=0.1) 4, (h=0.04)
1 49.18 19.67 1 8.51 341
2 223.83 89.53 2 76.52 30.61
3 5.49 2.20 3 0.95 0.38
4 32.24 212.21 4 212.54 85.02
5 530.52 12.90 5 8.51 3.40

Reinforced free edge. The frequency cquation given by the Kirchhoff theory reads

/ 2n—1
cos(Aypa) =0, A = A Wy %h- —p, jin = .(—HT)JL (5.4)

The frequency equation given by the shear theory has the form

I /
(1 = i cos(Agna) cosh(Ana) - —(;—wn % [Min cos(Azna) sinh(A1na) + Az sin(Azna) cosh(A1,a)] = 0. (5.5)
The relative error is
— 2 ﬁ A%fl
S N(l-p) a ph

*

% 100%. (5.6)

Tables 5 and 6 present some values of &, calculated by formula (5.3) for the case of sliding fixing and by
formula (5.6) for the case of strengthened free edge, respectively. The comparison of § in Tables 5 and 6 with the
corresponding & in Tables 3 and 4 shows quite good agreement, which rules out any miscalculation.

So why does the Kirchhoff theory turn out to be inapplicable for the two types of boundary conditions? The
physical background of this phenomenon will be discussed in Section 6. From the computational viewpoint, the
cause is seemingly the fact that the boundary layer potential for these types of boundary conditions turns out to be
much greater than for the other types (of course, the real values of the boundary layer potential are meant rather than
its asymptotic order). Below we present expressions for the natural shapes (calculated by the Reissner theory for
h=0.1 m) in the case of free hinged support (for which the Kirchhoff theory provides “normal” results) and in the case
of sliding fixing (for which the Kirchhoff theory is inapplicable).
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Free hinged support:

&, = 0.0349 cos(1.55 x)cos(1.57y),  Fi = 0.0002 [e 1 eo0- e 3166 0+2)) sin(1.57 y),
&, = 0.0327 cos(1.54 z)cos(4.71y), [ =0.0005 [er 12300 — 195020 in(4.71 y),
&, = -0.0331 cos(4.70 ) cos(1.57y),  F3 = 0.0005 [ert ot 161+ 6in(1.57 y),
&, = ~0.0314 cos(4.66 z) cos(4.71y), Fiu=0.0015 [etor =)~ e M9 1)) sin(4.71 y),
@ = 0.0296 cos(1.53 z) cos(7.85y),  Fs =0.0009 [ertza7t-e) 32T 5in(7.85y).

Sliding fixing:

®, = —0.0290 cos(1.62 z) cos(1.57y), Fiy = 0.0008 [er oot — e 1000+ 5in(1.57 y),
B, = 0.0295 cos(3.50 z) cos(1.5Ty),  Fo =0.0019 [ - e 6510 sin(1.57y),
&4 = —0.0320cos(1.53 z)cos(4.71y), F3=0.0014 [e1930-=) — e in(4. 71 y),
B, = 0.0278 cos(d.15z)cos(d.T1y),  Fi=0.0045 [¢720 - 120+ in(4.71 y),
&5 = -0.0311cos(6.34 z) cos(1.57y), Fs=0.0017 [e et e 1+ sin(1.57 y).

One can see from these expressions that in the case of sliding fixing, indeed, the boundary layer potential is three
times as large as that in the case of free hinged support.

Thus, it turns out that in proceeding to the Kirchhoff theory, the terms containing the boundary layer potential
are discarded; in the case of sliding fixing and reinforced free edge, these terms are not small compared with the other
terms. This is why inadmissibly large errors appear in the Kirchhoff theory.

6. DISCUSSION OF THE PHYSICAL MEANING OF THE RESULTS

Consider the types of boundary conditions for which the Kirchhoff theory turns out to be inapplicable, namely,
the sliding fixing conditions
N, =0, ¥, =0 ¥ =0

and the reinforced free edge conditions
N, =0, M, =0, ¥ =0

We see from formulas (2.3) that in both cases, the only condition whose leading term depends on the boundary
layer potential is the vanishing of the shearing force. Therefore, in proceeding to the Kirchhoff theory, this condition
is eliminated and the boundary conditions are stated as follows: for sliding fixing, ¥, | =0 and ¥,| =0, and for
reinforced free edge, M,,lc =0 and \I’TIC =0.

When discussing specific features of stating the conditions of sliding fixing and reinforced free edge in the
Kirchhoff theory, we must pay attention to the following two circumstances.

The angle of rotation about the normal to the plate contour in the Kirchhoff theory is not an independent variable
and is expressed via the deflection by the formula ¥, = —6w/d7. This means that the condition ¥ lc = 0 contradicts,
from the physical viewpoint, the condition N,,lc = 0. Formally, the latter condition can be satisfied by taking into
account the leading asymptotic term of the boundary layer potential, but actually it turns out that both the deflection
and the shearing force are specified on the contour, which, generally speaking, makes no sense from the physical
viewpoint.

Since in the Kirchhoff theory, the condition ¥7 IC = 0 is a consequence of the condition wlc = 0, it turns out that
the sliding fixing conditions are equivalent to the clamping conditions, and the conditions of reinforced free edge are,
in turn, equivalent to the conditions of hinged support. From the physical viewpoint, such a situation is absurduous.

This allows us to draw the following conclusion. Although the transition to the Kirchhoff theory in the case
of sliding fixing conditions on the contour is formally possible, the resulting statements do not reflect the physical
meaning of the problem at all. Therefore, it is not surprising that the Kirchhoff theory is inapplicable for the types of
boundary conditions in question.
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