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ASYMPTOTIC AND NUMERICAL ANALYSES
OF HIGH-FREQUENCY FREE VIBRATIONS
OF RECTANGULAR PLATES

E. A. Ivanova

(Received 28 September 1995)

Free vibrations of rectangular plates with frequencies belonging to high-frequency spectra are studied.
The results predicted by the exact Reissner theory are compared with those predicted by an approximate
theory of high-frequency free vibrations which takes into account only functions slowly varying with respect
to the spatial coordinates. )

It is well known that in solving some dynamical problems of plates, in particular, problems on forced
vibrations under the action of impact loadings, one cannot ignore high-frequency vibrations which are
associated with the inertia of rotation and the transverse shear deformation. However, so far, high-frequency
vibrations have not been studied sufficiently well and their further investigation is of interest from both
practical and theoretical viewpoints.

In [1], an asymptotic analysis of equations of free vibrations of plates was carried out in which
the inertia of rotation and the transverse shear deformation were taken into account. It was established
that for high-frequency vibrations, the solution contains functions rapidly varying with respect to spatial
coordinates and penetrating into the entire domain of the plate. The presence of such functions makes
the exact equations of the exact Reissner theory practically unsuitable for the numerical analysis of the
problems. In [1], an approximate statement of the problem on high-frequency free vibrations of a plate was
suggested; only functions that vary slowly with respect to the spatial coordinates are taken into account. The
asymptotic accuracy of this statement in O(h) compared with unity in determining natural shapes and O(h*)
in determining natural frequencies (h is the plate thickness). This difference in the accuracy is accounted for
by the fact that the leading terms of asymptotic expansions for all natural frequencies coincide and are known,
whereas the approximate theory defines the first correcting terms in the asymptotic expansions for the natural
frequencies.

Of course, the asymptotic accuracy of a theory is an important characteristic. However, to assess an
asymptotic theory from the viewpoint of its practical significance, the actual accuracy of the theory is of
importance rather than its asymptotic accuracy. (By the actual accuracy we mean the relative difference of
the value of a quantity predicted by the approximate theory and the value of that quantity predicted by the
exact theory for the given value of the small parameter.) The present paper deals with the analysis of the
actual accuracy of the approximate theory of high-frequency vibrations which was suggested in [1]. In this
sense, the current paper is a direct continuation of [1].

] The purpose on this research is (i) to determine the area of applicability of thg theory suggested in [1]
and (ii) to draw attention to problems that may occur in performing computations according to both the
approximate theory and the exact Reissner theory.

The investigation is exemplified by problems having exact analytical solution (rectangular plates two
opposite sides of which are hinged are considered), which allows us to rule out practically any errors of
calculations. Plates of different thicknesses are considered for all types of boundary conditions possible in
the Reissner theory.
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1. SUMMARY OF THE BASIC EQUATIONS
GOVERNING FREE VIBRATIONS OF REISSNER’S PLATE

The equations of motion have the form

. ph3 2 . p2h3
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DAAD + ph T (Hl“(l—u)) +12GI‘ (1.1)
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The transverse deflection w, the vector ¥ of rotation angles, the vector N of transverse forces, and the tensor M of
moments are given by -
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where D = —ﬁElﬂ/(l p2) is the bending stiffness, GhI is the shear stiffness, G' = L 5 E/(1 + p), T is the transverse
shear coefficient, F is Young’s modulus, p is Poisson’s ratio, p is the mass density, h is the plate thickness, n is the
unit normal to the plate plane, a = E — nn, and E is the identity tensor.

The Reissner theory allows one to satisfy three conditions at the contour and, hence, eight different types of
boundary conditions are possible. They are listed below.

1. Clamping:

w| =0, ¥.,| =0, ¥;| =0. (1.4)
2. Sliding fixing:

N,| =0, W, =0, Y| =0. (1.5)
3. Reinforced free edge: :

N,|,=0, M,| =0, ¥.| =0. (1.6)
4. Free edge:

N,|, =0, M,| =0, M =0. (1.7)
5. Weakened clamping:

w] =0, ¥.| =0, M| =0 (1.8)
6. Weakened sliding fixing:

N,|,=0, ¥.| =0, M| =0. (1.9)
7. Constrained hinged support:

w] =0, M,| =0, ¥.| =0 (1.10)
8. Free hinged support:

wl| =0, M,| =0, M| =0. (1.11)

c c c

Here ¥, and ‘P, are the angels of rotation of the tangent and normal to the contour, respectively, N, is the
shearing force, M, is the bending moment, and M, is the torsional moment.
In the Reissner plate theory, there are three spectra of natural frequencies for which the asymptotic estimates

w = hll + K20 + .- ,
wi \/IZGF/(ph2)+w(2) . (1.12)
w?’ = /12GT[(ph®) + W) + -+ -,
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are valid. The first spectrum is a low-frequency bending spectrum (it also exists in the Kirchhoff theory), and the second
and third spectra are high-frequency shear and bending spectra which occur due to taking into account the inertia of
rotation and the transverse shear deformation, respectively (these spectra are absent from the Kirchhoff theory).

In what follows, we discuss only vibrations with frequencies belonging to the second and third spectra of (1.12).
By “high” frequencies we mean frequencies that are high in the asymptotic sense, i.e., belong to high-frequency spectra.
The discussion of low-frequency vibrations with large mode numbers is beyond the scope of the present paper.

2. STATEMENT OF THE PROBLEM ON HIGH-FREQUENCY VIBRATIONS OF
REISSNER’S PLATE WITHOUT REGARD TO RAPIDLY VARYING FUNCTIONS

Consider the basic equations of the approximate theory of high-frequency vibrations suggested in [1}. The
equations of motion have the form .

12T p o
AF—-TF_EF_O’ v 2.1
2 12T p o
r (OB O —P=0. .
( + 1_”>A % G(I) 0 (2.2)

Since this theory has the fourth order in spatial coordinates, it allows one to satisfy only two conditions at the
contour and, hence, there are four types of boundary conditions in this theory. We specify below these boundary
conditions and indicate the corresponding boundary conditions of the exact Reissner theory.

1. Clamping, Eq. (1.4), sliding fixing, Eq. (1.5), and reinforced free edge, Eq. (1.6):

v OF od OF
[8V+8T]C—O, [ar_au]c— @3
2. Free edge, Eq. (1.7), weakened clamping, Eq. (1.8), and weakened sliding ﬁxing, Eq. (1.9):
od OF 8’ 1 OF O°F ph? .
o 5?};0' P - 587+ (73 * )]‘ {T{“G’”F]C =0 e9
3. Constrained hinged support, Eq. (1.10):
O*F 1 00 0% ph? . 8p OF
ba ‘“>[‘a—ua—r‘ (EE* ‘5‘2)]* [—17“”6"“""’};0’ [‘a?"aﬂ;“ 25
4. Free hinged support, Eq. (1.11):
0°F 1 0 0@ phd .
DU-w|=——-| =5+ 55 S =
( #)[61/67 (R v ¥ 612>]c+[ 12<D+Ghl‘<b]c 0 26)
o’ 1 OF O*F phd '
D - —e —_— - "} =
( lt)[8u8r+(R 2 T B )]c [ lzf'i(?hr_F]C 0.

Here v, T is a local coordinate system introduced on the plate contour, and R(7) is the radius of curvature of the
contour at a given point.

The vector ¥ of rotation angles and the vector N of transverse forces are expressed via the potentials ¥ and ® as
P=VP+VFxn N=GhI'(VO+VF xn). 2.7

The deflection and the tensor of moments are asymptotically small compared with the vector of rotation angles and
the vector of transverse forces (w ~ h?®, M ~ h?N) and are not determined within the framework of the approximate
theory in question.
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3. FREE VIBRATIONS OF A RECTANGULAR PLATE HINGED AT TWO OPPOSITE SIDES

Consider a plate occupying a domain—a < z < a, —b < y <b. The constrained hinged support conditions (1.10) are
assumed to be satisfied at the sides y = £b, and the boundary conditions at the sides z = a can be arbitrary. We study
vibrations symmetric with respect to the axes = = 0 and y = 0. The natural shapes satisfying the differential equations
(1.1) and (1.2) and the boundary conditions (1.10) at y = £b have the form

®,.(z,y) = [Cin cos(A1nz) + Con cos(Aznz)] cos(iny),  Fu(z,y) = Cap sin(dnz) sin(uny), 3.1
where
_ - _ _ (@n-Drm _\/pcu,l1 nro
Atn =V An = Bn, A = An + Bn, Hn = 2% , On= G - h? ~Hn
2 2
_ 1 . Py Y - Lh_ _ 1 — pYn
An = [1 + zr(l U)] 2GT P B, D + [l Zr‘(1 'u)] 2GT°

By satisfying the boundary conditions at z = =a, one reduces the problem to solving a system of homogeneous
algebraic equations for the coefficients Cipn, Czn, and Ci,. By equating the determinant of this system to zero, one
obtains an equation for determining natural frequencies. We considered all types of boundary conditions possible in
the Reissner theory and obtained the frequency equations for each of them.

Let us discuss the solution of the problem according to the approximate theory of high-frequency free vibrations [1].
It can be readily shown that the natural shapes satisfying the differential equations (2.1) and (2.2) and the constrained
hinged support conditions (2.5) at y = £b have the form

D (7, y) = Crn cos(A1nz) cOs(Lny),  Fu(z,y) = Can sin(6nz) sin(iny), (3.2)

P Won p , 12GT
A = e 2, n = —_ n 2, = —————
In \/ CTaaja_py Fv OnTygeon iR Wn = g

The asymptotic analysis shows that the frequency equations and the natural shapes predicted by the asymptotic
theory in question follow from the exact frequency equations and the exact natural shapes within an O(h) asymptotic
error for all types of boundary conditions (by exact frequency equations and exact vibrational shapes we mean those
obtained by the Reissner theory).

where

4. FREE VIBRATIONS OF A RECTANGULAR PLATE. COMPARATIVE ANALYSIS
OF NUMERICAL RESULTS OBTAINED BY THE EXACT REISSNER THEORY
AND BY THE APPROXIMATE THEORY OF HIGH-FREQUENCY FREE VIBRATIONS

The numerical analysis was carried out for the problem discussed in Section 3. Computations were performed for
plates of dimensions a = = 1 m and thicknesses h = 0.1 m and h = 0.04 m with the elastic constants E' = 2.1 x 10'! Pa,
p=025T=5/6and p=7.951x 103 kg/m*.

The key results can be summarized as follows.

1. The first 10 natural frequencies of high-frequency spectra are found. The calculations were performed by the
Reissner theory and by the approximate theory for all types of boundary conditions possible in the Reissner theory
(h=0.1mand h = 0.04 m). '

2. The actual errors of the approximate theory are found. The calculations were performed for all types of -
boundary conditions and the plate thicknesses 0.1 m and 0.04 m. )

3. Forthe case in which the free edge conditions were imposed at the sides z = Z-a, more detailed investigation was
carried out. The first 10 natural frequencies for plates of thickness 0.2 m, 0.3m, 0.4 m, and 0.5 m and the corresponding
actual errors are calculated. For plates of thickness 0.1 m, the first 33 natural frequencies and the corresponding actual
errors are found.

4. The natural shapes corresponding to the first 10 natural frequencies are determined. The calculations were
performed by the exact and approximate theories for all types of boundary conditions and the plate thickness 0.1 m. In
the case of the free edge conditions, the natural shapes are found for the plate of thickness 0.04 m as well.

5. For the natural shapes in calculation of which the approximate theory leads to the largest errors, the graphs of
the rotation angles ¥, and ®,, versus the coordinate z are constructed.
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Let us proceed to a detailed discussion of the results obtained.

Tables 1—4 present the first five natural frequencies of high-frequency spectra predicted by the Reissner theory
and the approximate theory for plates of thickness 0.1 m and all types of boundary conditions possible in the Reissner
theory. The tables also show the relative errors § of the approximate theory and the relative errors A due to the
approximation of the natural frequencies by its leading asymptotic term:

- _ J12GT/(ph?
Z Jer=wl00m, A= R GT/®h) 1009,

WR WR

)

Here wy is the frequency predicted by the Reissner theory and w is the frequency predicted by the approximate theory.
The error A is of interest for the following reason. A characteristic feature of high-frequency spectra is the coincidence
of the leading asymptotic terms of all natural frequencies, with the relative deviation of the frequencies from the leading
term of their asymptotic expansions being small (which is confirmed by the data for A presented in Tables 1-4). In
this connection, the fact that the errors § are small says nothing by itself. The errors § must be much smaller than A
rather than merely small. It is in this case that one can state that the approximate theory suggested in [1] possesses a
sufficiently high actual accuracy.

The results presented in Tables 1-4 allow us to conclude that the actual accuracy of calculation of natural
frequencies by the approximate theory is quite high for all types of boundary conditions and h = 0.1 m. (Therefore,
presenting results for thinner plates makes no sense.) The actual accuracy for natural frequencies depends on the type
of boundary conditions at z = =a; the largest errors occur for the case of the free edge conditions. That is why this
type of boundary conditions is chosen for more detailed investigation. Tables 5 and 6 present results for higher natural
frequencies (6th through 25th) for i = 0.1 m and the results for the first five natural frequencies for thicker plates
(h=0.2,03,04,and 0.5m).

Let us point out some general features characteristic of high-frequency spectra S and the approximation of these
spectra by the approximate theory.

1. The frequencies of the bending spectrum b are higher than those of the shear spectrum s. (Calculation show
that for all types of boundary conditions at z = ==a, only two frequencies of the first ten belong to the bending spectrum.)

2. The accuracy for the frequencies belonging to the bending spectrum is, as arule, less than that for the frequencies
belonging to the shear spectrum. This is quite natural, since in the approximate theory, the equation responsible for
the shear vibrations is exact, whereas the equation responsible for the bending vibrations is approximate.

3. While the approximate theories when applied to low-frequency vibrations yield higher values for the natural
frequencies compared with the exact ones, this is not the case for high-frequency vibrations.

4. For high-frequency vibrations, no monotonic increase in the relative error with the mode number is observed
either. Of course, lower frequencies are, on the average, predicted more accurately than higher frequencies. However,
for high-frequency vibrations, the situation in which a frequency with a larger mode number is predicted more accurately
than many frequencies with smaller mode numbers is usual.

5. It was established that in calculation of natural frequencies with large mode numbers, the approximate theory
predicts most frequencies with quite high accuracy; however, there are few frequencies for which the errors are
considerable. For example, in the case of the free edge conditions at the sides z = a for h = 0.1 m (see Table 5), only
three frequencies—14th, 22nd, and 25th—of the first 25 are predicted with insufficiently high accuracy. Currently, we
cannot explain with certainty the fact that some frequencies are calculated with low accuracy. Perhaps, the approximate
theory is unsuitable for calculating so high frequencies (then, however, it is not clear why all other frequencies are
predicted with quite high accuracy). It seems more probable (and the author is inclined to think so) that the 14th,
22nd, and 25th frequencies do not belong to high-frequency spectra but are very high frequencies of the low-frequency
spectrum. Then these frequencies, predicted by the approximate theory, in fact correspond to other, higher frequencies
of high-frequency spectra.

6. When calculating natural frequencies for thicker plates (see Table 6), a similar phenomenon is observed, just
as was the case in the calculation of frequencies with large mode numbers. While most frequencies are predicted
rather well, there are few frequencies for which the errors are too large. The cause of this phenomenon is either in the
fact that the approximate theory fails for so large plate thicknesses or in the fact that frequencies of the low-frequency
spectrum enter the frequency range under consideration. The author believes that the latter is more probable.

Let us briefly dwell on the results of calculation of natural shapes. We carried out the investigation of the accuracy
provided by the approximate theory for natural shapes as follows. For all types of boundary conditions, analytical
expressions for the potentials F(z,y) and ®(z,y) were obtained according to the exact and upproxlmate theorles.
Then the natural shapes represented by F(z,y) were compared with those represented by ®(z,y). As aresult, it was
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Table 1
No ” WR A ” w g H S
Clamping
1 102911.492 0.123 102911.492 0 s
2 103293.758 0.493 103291.188 0.002488 b
3 103919.750 1.092 103919.750 0 s
4 103980.492 1.150 103980.523 0.000030 s
5 104602.156 1.737 104598.508 0.003488 s
Sliding fixing
1 102911.492 0.123 102911.492 0 s
2 103290.617 0.490 103291.188 0.000553 b
3 103919.750 1.092 103919.750 0 s
4 103979.859 1.149 103980.523 0.000639 s
5 104598.352 1.734 104598.508 0.000149 s
Reinforced free edge
1 102911.492 0.123 102911.492 0 s
2 103223.344 0.521 103291.188 0.031122 b
3 103919.750 1.092 103919.750 0 s
4 103987.688 1.157 103980.523 0.006890 s
5 104646.703 1.779 104598.508 0.046050 s
Table 2
No ” wR A “ w é ” S
Free edge
1 102911.492 0.123 102911.492 0 s
2 103230.133 0.431 103227.633 0.002420 b
3 103465.258 1.658 103416.852 0.046780 s
4 103919.750 1.104 103919.750 0 s
5 104544.000 1.712 104420.227 - 0.118390 s
Weakened clamping
1 102911.492 0.123 102911.492 0 S
2 103226.945 0.430 103227.633 0.000660 b
3 103416.859 0.615 103416.852 0.000007 8
4 103919.750 1.104 103919.750 0 s
5 104420.227 1.591 104420.227 0 s
Weakened sliding fixing
1 102911.492 0.123 102911.492 0 s
2 103226.945 0.430 103227.633 0.000660 b
3 103416.852 0.615 103416.852 0 s
4 103919.750 1.104 103919.750 0 s
5 104420.227 1.591 104420.227 0 s
Table 3
No ” WR A ” w é “ S
Constrained hinged support
1 102911.492 0.123 102911.492 0 s
2 103416.852 0.611 103416.852 0 b
3 103665.891 0.850 103668.602 0 s
4 103919.750 1.092 103919.750 0 s
5 104420.227 1.566 104420.227 0 s
Table 4
No o A o 5 [ s
Free hinged support
1 102911.492 0.123 102911.492 0 s
2 103038.063 0.246 103038.063 0 b
3 103294.836 0.494 103291.359 0.003366 s
4 103790.852 0.970 103792.211 0.001309 S
5 103816.555 0.994 103804.844 0.011280 s




ASYMPTOTIC AND NUMERICAL ANALYSES OF HIGH-FREQUENCY FREE VIBRATIONS OF RECTANGULAR PLATES 145

Table 5§

No WR A w é S
6 104923.086 2.080 104918.320 0.004540 s
7 105106.242 2.209 104980.414 0.119710 b
8 105907.477 3.038 105907.477 0 s
9 106005.859 3.134 105907.469 0.092810 s
10 106500.523 3.615 106398.602 0.095690 s
11 106658.109 3.768 106704.406 0.043 b
12 107363.789 4.455 107374.117 0.010 8
13 107963.133 5.038 107858.570 0.097 s
14 108184.828 5.254 113338.445 4.764 b
15 108320.070 ~5.385 108400.984 0.075 b
16 108821.000 5.873 108821.000 0 s
17 109040.453 6.086 110071.414 0.945 b
18 109368.594 6.405 109299.039 0.064 s
19 110018.156 7.037 110248.891 0.210 s
20 110697.523 7.698 110720.766 0.021 s
21 110762.344 7.761 110720.766 0.038 s
22 110879.008 7.875 108340.852 2.289 s
23 112076.461 9.040 111658.523 0.373 S
24 112351.570 9.308 113510.813 1.032 s
25 112368.102 9.324 118069.609 5.074 b

Table 6
No WR A w é S
h=02
1 51645.371 0.12 51645.371 0 s
2 52225.282 0.43 52272.488 0.09 b
3 52390.117 1.65 52645.168 0.49 s
4 53448.188 1.10 55536.676 3.91 s
5 53626.332 1.71 53626.332 0 S
h=03
1 34639914 1.10 34639.914 0 s
2 35504.234 2.63 35568.137 0.38 b
3 35764.320 4.39 36113.617 0.98 S
4 37329.172 8.95 40211.961 7.72 s
5 37529.492 9.54 37529.492 0 s
h=04
1 26198.504 1.95 26198.504 0 s
2 27304.615 6.26 27414.049 - 0.40 b
3 27623.482 7.50 28118.164 1.79 s
4 29526.547 14.91 33218.063 12.50 s
5 29914.891 16.42 29914.891 0 b
h=05
1 21181.492 3.04 21181.492 0 s
2 22643.225 10.15 22667.689 0.11 b
3 23961.994 16.56 23514.361 1.87 s
4 25635.811 24.71 25635.811 0 S
b 27135977 31.86 20644.014 9.24 b




146 ' E. A. Ivanova

2 ¥ (x,0) 2 #(z,0)

7 -2
Fig. 1
2 %(x,0) 2 w,(z,0)
4
2
—9 \ 7 =1 1
-2 -2
Fig. 2
2 %x,0) 2 ¥(x,0)
’ /\
PN Z z
1
_Z . _Z
Fig. 3

established that most of natural shapes predicted by the approximate theory virtually coincide with those predicted by
the exact Reissner theory. The errors turned out to be noticeable only in the case of the free edge conditions at z = +a.
Therefore, the subsequent discussion pertains just to this type of boundary conditions (h = 0.1 m). Figures 1-6 present
the first 10 natural vibrational shapes for the plate free at the sides £ = +a, except for the zero natural shapes and the
natural shapes whose representations in the exact and approximate theories completely coincide. Figures 1-6 depict
the 3rd, 5th, 6th, 7th, 9th, and 10th natural shapes, respectively. The figures show the graphs of the rotation angles
¥z and ¥y versus the coordinate  (the dependences on the y-coordinate are not of interest, since they completely
coincide with those predicted by the exact theory). One can see that the natural shapes predicted by the approximate
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theory (curves /) and by the exact theory (curves 2) are in quite good agreement, which allows us to conclude that the
approximate theory suggested in [ 1] provides high accuracy in predicting natural shapes as well. This statement is valid
for the overwhelming majority of natural shapes. Nevertheless, in exceptional cases, the difference in natural shapes
predicted by the exact and approximate theories can be arbitrarily large. It should be emphasized that such cases are
encountered rather rarely: among all natural shapes found in the course of the present investigation (10 natural shapes
were calculated for each of the eight types of boundary conditions), the exact and approximate theories were established
to disagree only in one case—in predicting the 7th natural shape for the case of the weakened clamping conditions (1.8)
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at the sides = = %a (see the graphs of ¥, and ¥, versus « in Fig. 7). Although the exact and approximate theories
considerably disagree in predicting natural shapes extremely rarely, this phenomenon, apparently, is not accidental
and, therefore, deserves a detailed discussion.

Below we present the results for the 6th and 7th natural shapes corresponding to the Reissner theory (the functions
are marked by superscript R) and those corresponding to the approximate theory (no superscripts). The calculations
were made for h = 0.1 m, assuming that conditions (1.8) were satisfied at z = %a.

For the sixth (shear) shape, we have

wR =104918.313, PX(z,y) =0, FR(z, y)=0.190sin(6.28 z)sin(1.57 y),
w = 104918.320, @(z,y)=0, F(z,y)=0.190sin(6.28 z)sin(1.57 y),

and for the seventh (bending) shape,

wR =105093.930, FR(z,y)=-0.147sin(6.56 ) sin(1.57 y),

®R(z, y) = [0.186 cos(3.26 ) + 0.0005 cos(40.39 z)] cos(1.57 y),
w = 104980414, F(z,y)=0, D(z,y)=0.350cos(3.14z)cos(1.57y).

When discussing what cased the low accuracy in calculating the 7th vibrational shape, one should pay attention
to the following two points.

The error § = 0.108% of calculation of the 7th natural frequency by the approximate theory is not too large in
the sense that there are frequencies for which the approximate theory leads to the same errors, but the corresponding
natural shapes are predicted quite well. Therefore, we can state with certainty that the cause of the so significant
difference of the exact 7th shape from the approximate one bears no relation to the accuracy of the prediction of the
natural frequency.

The 6th and 7th natural frequencies are very close to each other and, which is more important, the values of the
corresponding values A} and 6® are also rather close. The latter means that the functions @R = Cj,, cos(A} . z) cos(p,y)
and FR = Cj, sin(6Rz) sin(u,y) for the Tth vibrational shape differ from the respective functions for the 6th vibrational
shape merely in the values of Cj and C3: in the case of the 6th (shear) shape, C) must be small, whereas in the case of -
the 7th (bending) shape, C'y must be small. Based on the above facts, we can state with high degree of certainty that the
cause of the bad prediction of the 7th vibrational shape is a combination of such factors as the closeness of the 6th and
7th natural frequencies and the likeness of the respective natural shapes. However, it remains unclear what actually
happens, whether the approximate theory fails or the accumulation of errors in computations by the exact Reissner
theory leads to a wrong prediction of the natural shape.

5. CONCLUSION

The approximate theory of high-frequency free vibrations suggested in [1] is convenient from the viewpoint of
the numerical implementation, since this theory does not contain functions rapidly varying in the spatial coordinates.
The approximate theory allows one to calculate natural frequencies and the respective vibrational shapes with high
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accuracy, including those for thick plates. As the frequency number in a spectrum increases, the accuracy of the theory
decreases insignificantly.

Nevertheless, the approximate theory suggested in [1] does not removes all difficulties related to the problem of
high-frequency free vibrations.

First, this theory does not allow one to find the natural frequencies of the low-frequency spectrum which are close
to frequencies of high-frequency spectra.

Second, the question related to possible loss of accuracy of computation of natural shapes in the case where a

shear frequency turns out to be very close to a bending frequency is still a challenge.
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