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ON ONE APPROACH TO SOLVING THE DARBOUX PROBLEM

E. A. Ivanova

(Received 15 June 1998)

The Darboux problem is one of the determination of the quantities characterizing the orientation of a
rigid body by the prescribed time history of the angular velocity vector and the initial orientation of the body.
This problem has been drawing attention of researchers for long. Darboux, who initiated these investigations,
has reduced this problem to the solution of a Riccati equation for a complex variable [1]. Despite the apparent
simplicity and attractiveness, the equation obtained in the work by Darboux virtually is not utilized for
solving specific problems. In practice, preference is usually given to methods based on the direct integration
of Poisson’s kinematic equations. No solution of the Darboux problem for an arbitrary time history of the
angular velocity has been known. However, these are a number of special cases for which the exact analytical
solution of this problem can be constructed. The integrability conditions for the Darboux problem were
investigated, for example, in [2-4].

It is worthwhile to note also the work [5] proving the possibility of solving the Darboux problem in
closed form if the time history of the angular velocity is approximated by a trigonometric series. In the
present paper, an alternative approach to the solution of the Darboux problem is suggested. This approach
is based on the concepts of the tensor of rotation and right and left angular velocities. This approach makes
it possible to identity the Darboux problem with one of the determination of a vector function by known
absolute values of its derivatives. This is of considerable interest, since a number of problems in mechanics
lead to the determination of a vector function by the absolute values of its derivatives.

The approach suggested reduces the Darboux problem to solving a third-order linear differential equation
with respect to a real variable. The classical approach based on the Riccati equation leads to a fourth-order
linear differential equation for a real variable.

This work is a development of the ideas of [6].

1. TENSOR OF ROTATION. LEFT AND RIGHT VECTORS OF ANGULAR VELOCITY

In this section, we briefly outline some familiar results which will be used later in this paper. For more detailed
information about the tensor of rotation and related concepts, see, for example, {7, 8].

DEFINITION. A tensor of rotation is a proper orthogonal tensor which satisfies the relations

P-PT=PT.P=E, detP=+I. (1.1)

The identities
(P-a)-(P-b)=a-b, (P-a)yx(P-b)=P-(axb) (1.2)

are valid for any rotation tensor P and any vectors a and b.

THEOREM (REPRESENTATION OF THE TENSOR OF ROTATION). Let dy, dy, and d be arbitrary linearly independent
vectors and let Dy, Dy, and D5 be the vectors related to the former three vectors by a tensor of rotation P in accordance
with the relation D; = P - d;. Then the tensor of rotation P can represented in the form

P =D,d' +D,d? + D;d’, (1.3)
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where d!, d2, and d* are the unit vectors of the basis which is dual to that defined by the vectors d,, da, and d3. The
vectors @', 42, and d* are defined by

d; X ds dy xd, , d, xd,

e &id=s—m — d=-—. 1.4
d, - (d; % d3) & - (d3 xdy) & - (@ x d7) (14

The proof of this theorem is based on the definition of the dual basis in terms of the relations d; - d7 = 5{ , where
&7 is the Kronecker delta, and the representation of the unit tensor in the form E = D;D' + D,D? + D;D*.

DEFINITION. If P(t) is a rotation tensor, the tensors S(t) and S.(t) defined by the expressions
St =B@) - PT(t), Se(t) = P'(t)- P(t) (1.5)

are called the right and lefi spin tensors corresponding to P(t), respectively.

DEFINITION. The concomitant vectors, w and S, of the left and right spin tensors defined by the relations
S(t)=w()XE, S:(1)=Q@)xE (1.6)

are called the left and right angular velocities, respectively.

The left and right angular velocities are related by
w(t) = P@)- Q), Q) =PT()- wd). (1.7)

As applied to the motion of a rigid body, the left angular velocity w is usually referred to as the true angular
velocity and the right angular velocity €2 as the angular velocity in the body. Given a tensor of rotation P, one can
calculate the left and right angular velocities using the expressions

W)= @ P Q) = TP (1.8)

The inverse problem, i.e., the problem of determining the rotation tensor by a known angular velocity, is
substantially more complicated. This problem is known as the Darboux problem. It can be stated in two forms,
depending on which of the angular velocities (left or right) is given.

The left Darboux problem is the initial value problem of the form

P(t) = w(t)x P(t), P(0)="Po. (1.9)
The right Darboux problem has the form

P(t) = P(t)x Q(t), P(0)=Py. (1.10)

Let the left angular velocity, w, be known. By solving the Darboux problem of (1 .9) one can calculate the rotation
tensor P and then, by using the second relation of (1.8), determine the right angular velocity £2. An alternative approach
to the determination of the tensor P and vector € is also possible. This approach involves the determination of the
right angular velocity £2 by the given left angular velocity w by solving a certain differential equation. Knowing both
the vectors w and €2, one can restore the rotation tensor P without additional integration. This approach applies also
to the case where the right angular velocity is known, while the rotation tensor P and the left angular velocity are to
the determined.

The left and right Darboux problems are equivalent mathematically. For this reason, without loss of generality
one can consider the solution of one of these problems. As a rule, it is the right Darboux problem that is treated in the
literature. We will give below new statements of both problems and consider two example dynamical problems one of
which is reduced to the right Darboux problem and the other to the left one.
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2. REPRESENTATION OF THE ROTATION TENSOR
IN TERMS OF THE LEFT AND RIGHT ANGULAR VELOCITIES

The representation of the rotation tensor in terms of the angular velocities relies on the facts and considerations
listed below.

1. According to the theorem of the representation of a rotation tensor in the form of Eqgs. (1.3) and (1.4), to determine
the rotation tensor P, it suffices to know three pairs of vectors D; and d; related by D; = P - d;. The vectors d;
must be linearly independent.

2. One can take the left and right angular velocities to be the vectors of one of the pairs (D;, d;), since, in accordance
with (1.7), these vectors are related by w = P - §2.

3. If one can find two more pairs of vectors (f;(w), :(§2)) such that (i) the vectors 2, ©,(£2), and p2(£2) are linearly
independent and (ii) the relations f;(w) = P - (0;(£2) are satisfied, then one can represent the rotation tensor in the
form of Egs. (1.3) and (1.4) in terms of these pairs of vectors.

There exist infinitely many relations of the form f;(w) = P - ;(2). We will use the simplest ones,
w=P-Q, wxw=P Ox0N).

The proof of this relations is based on Eqs. (1.7) and (1.10) and the identities of (1.2). We have

d):%(P-Q):P»Q+P~Q:(Pxﬂ)-Q+P~Q=P-Q,
wXw=FP - YxP-2)=P-(2xN).

One can readily show that the vectors £2, §2, and €2 x §2 are linearly independent, with the exception of the trivial
case where the vector €2 is constant in direction. Thus, we have found three pairs of vectors—(w, §2), (w, §2), and
(w X w, 2 x 2)—satisfying the conditions of the theorem of Section 1. The vectors in these pairs are related by

w=P-Q, v=P-w, wxw=P (Q2xN). 2.1)
Hence, the rotation tensor can be represented in the form

P=Did'+Dyd?+D:id’>, Di=w, Dy=w, Di=wxw,

gl - Q- -+ L) £ e Q-1 L@Q@)0 . (@x0) (22)
- (2 x Q)2 ' - (2 x Q)2 ' T X2’

By simple transformations one can reduce expression (2.2) for the rotation tensor to the form symmetric with
respect to the angular velocities w and 2,

P=Aw +B%(wﬂ)+Cd)Q + D(w x d)(w x £2). (2.3)
The scalar coefficients A, B, C, and D in (2.3) are defined by

A=Q-QD=w-oD, B-= _7*(92)13 = ——d—(wz)D,

1 1
Q%02 (wxw)?’

2.4)

C=Q’D=uw?*D, D=

The Darboux problem in the traditional formulation is one of the determination of the rotation tensor by one of the
angular velocities (left or right). To solve this problem one should integrate the corresponding system of differential
equations. We have shown above that if both angular velocities are known, then one can determine the rotation tensor
in accordance with the relations of (2.3) and (2.4), additional integration being not required. In view of this, one can
represent the Darboux problem in the following formulations:

LEFT DARBOUX PROBLEM. Given the left angular velocity, determine the right angular velocity,
RIGHT DARBOUX PROBLEM. Given the right angular velocity, determine the left angular velocity.

These formulations form a basis for the new approach to solving the Darboux problem which is developed in the
present paper.
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3. SCALAR EQUATIONS RELATING THE LEFT AND RIGHT ANGULAR VELOCITIES

This section plays an auxiliary role. Some scalar relations necessary for the subsequent constructions are presented
here. The derivation of these relations is based on Egs. (1.9), (1.10), and (2.1).
Equations (2.1) imply the scalar relations

V=0l ww=0-Q (wxw)?=(E Qx> (3.1

To obtain scalar relations containing the second derivatives of the angular velocities, we differentiate the second

equation of (2.1). By transforming the result of this differentiation with reference to Egs. (1.9) and (1.10) and also the
third equation of (2.1), we arrive at the vector equations

G=P-1+0xQ), d-wxw=P - (3.2)

Equations (2.1) and (3.2) imply the scalar relations

G-o= 1+ 2%, G- (wxw)=0- QXD +HEOQ@XN)Y, 3.3)
Q- D=@-wxw)?, Q- OQAXD =00 (wxw)-(Wxw)?, (3.4)
(WXW) - (WXD) = (Qx) - (xQ). (3.5)

When deriving the relations of (3.1)~(3.5) we used the identities of (1.2).

Remark. The scalar relations obtained permit one to identify the Darboux problem with one of the determination
of a vector function by the absolute values of the function itself and its first and second derivatives.

Let the left angular velocity vector, w, be known. Then, using the first two relations of (3.1) and the first relation
of (3.4), one can determine the absolute values of the derivatives of the right angular velocity vector €2,

1Q=i), 1U=pat), €= ps(d). (3.6)

Hence, the left Darboux problem can be stated as one of the determination of the right angular velocity, given the
absolute values (3.6) of its derivatives.

In a similar way, if the right angular velocity 2 is known, then using the first two relations of (3.1) and the first
relation of (3.3), one can determine the absolute values of the derivatives of the left angular velocity,

lwl=fi(t), [wl= 1), &= fr(D). 3.7

Accordingly, the right Darboux problem can be stated as the problem of determining the left angular velocity w,
given the absolute values (3.7) of its derivatives.

The identification of the Darboux problem with that of the determination of a vector function by the absolute
values of its derivatives is of interest, since a number of problems of mechanics is reduced to the latter problem. For
example, a problem of this sort is one of the determination of the position vector of a particle, R, if the length of this
vector, as well as the magnitude of the particle velocity and acceleration are prescribed as functions of time, i.e.,

CR@I=r@), ROI=@),  [RE) = w(?). (3.8)

4. DETERMINATION OF A VECTOR FUNCTION BY ITS SCALAR CHARACTERISTICS

Consider an arbitrary vector function R(t). We assume that this vector is not constant in direction. In this case,
the vectors

e =R(t), e =R(t), e =R(E)xR(®) (4.1)
are linearly independent and, hence, form a basis. We represent the vector R in the basis of (4.1),
R(t) = —a®)R(t) - b)R(E) + c(t)R(E) X R(2). 4.2)
The functions a, b, and ¢, can be expressed as

(RxR)-(RxR)
(RxR)?

R-(RxR)

Bl .
, et)=R-e (RxR)?

at)=R-e? = _%(m IRxR]), bt)=-R-e'= (4.3)
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If the scalar functions a(t), b(t), and c(t) are known, then Eq. (4.2) is a nonlinear differential equation with variable
coefficients for the vector function R(t). If c(t) = 0, then this equation is linear. If ¢(t) # O, then Eq. (4.2) can be
reduced to a third-order linear equation for the vector R. To this end, one should (i) differentiate Eq. (4.2), (ii) multiply
this equation vectorially by R, and (iii) add the resulting equations and Eq. (4.2) together having first multiplied these
by appropriate scalar coefficients. The resulting equation has the form

R() + A®R() + BOR(®) + COR(®) = 0, (4.4)

where
A@) = 2a(t) - —C—l— Inc(t), B(t)=a(t)+a(t) [a(t) - —;—t In c(t)] +b(t) + cz(t)Rz(t),
4.5)
C(t) = b(t) + b(t) [a(t) _ 4 lnc(t)] - ——cz(t) [Rz(t)]

Thus, if the scalar functions (4.3) for a vector R are known, then this vector can be identified by solving the
second-order nonlinear differential equation (4.2) or the third-order linear differential equation (4.4).

Remark. Equations (4.2) and (4.4) permit one to determine the unknown vector function R(t) by prescribed
absolute values of its derivatives.

To prove this proposition, it suffices to express the scalar coefficients (4.3) in terms of the functions |R|, |R], and
IR|. These expressions have the form

L [ [ L (L))
a(t) =~ dt{ln[Rv—4(dt(R))}},
W) = | BTy L 4ot | { oo L[4 ) 2}—1
4 dt 2 a2 i@ (4.6)

200y __ 2 a4 2 1 2 2,2 i i 2 "
c(t)—{w + a(t) ( )+b(t)[2 dtz(R) ”{Ru - [dt(R )} } ,
¥=R-R, w*=R-R.

5. VECTOR STATEMENTS OF THE DARBOUX PROBLEM

In this section, we treat the Darboux problem as a problem of determining one of the angular velocities, provided
that the other angular velocity is known. We present below two statements for the left Darboux problem and two similar
statements for the right Darboux problem. One of these statements is based on a nonlinear second-order equation of
the type of (4.2), while the other uses a linear third-order equation of the type of (4.4). These statements apply only to
the cases where the angular velocities are not constant in direction.

Left Darboux problem (determination of the right angular velocity by the known left angular velocity).
Statement 1. The initial value problem for determining the right angular velocity has the form
2+ a(W)S2 + bw)N = (W) x £, 5.1
Q0)=PJ -wy, Q(0) =P} - wp. (5.2)

The coefficients a(w), b(w), and ¢(w) are calculated in accordance with relations (4.3) and the scalar relations 3.1,
(3.4), and (3.5) between the angular velocities; we have

_d . (WX d) - (@XD) @ (wxd)
a(w) = 7 (Inlwxw)), bw)= @ x0)? , cw)= T@xXOR (5.3)
Statement 2 follows from Statement 1. The differential equation has the form
Q2+ AW)t + Bw)$2 + C(w)2 = 0. (5.4)

The differential equation (5.1) at ¢ = 0 and the initial conditions (5.2) are used to form the initial conditions for Eq.(5.4).
The coefficients A(w), B(w), and C(w) are related to a(w), b(w), and c(w) by the relations of (4.5).
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Right Darboux problem (determination of the left angular velocity by the right angular velocity).
Statement 1. The initial value problem for the left angular velocity reads

& +a(Q)w + (Qw = c(N)w X w, (5.5)
w(0) =Py, @(0)=Py- Q. (5.6)

The coefficients a(€2), b(€2), and c(£2) are calculated in accordance with relations (4.3) and the scalar relations (3.1),
(3.3), and (3.5) between the angular velocities; we have

d . (2 x0)- (%) €@ QxQ)
Q) =-——>Unj{2xN], b= : , Q)= ————+1 5.7
a(f?) dt(nl D, b OxQ) c(§2) Q= Q) (5.7
Statement 2 follows from Statement 1. The differential equation has the form

W+ A + BQ)w + C(Q)w = 0. (5.8)

The initial conditions are formed by the conditions of (5.6) and Eq. (5.5) at t = 0. The coefficients A(Q2), B(f2), and
C(£2) are expressed in terms of a(£2), b(£2), and c(£2) by relations (4.5).

6. COMPARISON OF THE SUGGESTED AND CLASSICAL
STATEMENTS OF THE DARBOUX PROBLEM

In the classical formulation [9], the Darboux problem is reduced to a Riccati-type equation for a complex unknown.
This equation has the form

Q; —iQd Q) +1i2
2=_2—“_iQ3z+~iiLz2_ (6.1)
2 2
The change of variables u = exp[—% (€ +iQ)z dt] reduces Eq. (6.1) to the second-order linear equation
i+ (a+ib)i+cu=0,
d Q0 -0 Q2 + Q2 (6.2)
=——1In/Q3+Q% b=0Q , =1 z.
a=-g "V VT 0 T 4

The second-order linear equation (6.2) for a complex unknown is equivalent to the following fourth-order system of
equations for real unknowns z and y:

F+ar-by+cx=0, J+ay+bi+cy=0. (6.3)

A statement of the Darboux problem suggested in the present paper leads to a third-order linear equation for an
unknown vector function. In the coordinate notation this vector equation is represented by three independent scalar
equations of the form ’

e + A, + B(Q)w, + C(w; =0,
Wy + AQ)Dy, + BQ)wy + C(Qwy, =0, (6.4)
W, + A(Q), + BQ)w, + C(Q)w, =0.

The equations of system (6.4) differ only in the notation of the unknown variables. Hence, having known the
solution of one of these equation, we thereby know the solution of the entire system.

Conclusion. The approach suggested in the present paper permits one to reduce the Darboux problem to a third-
order linear differential equation, whereas the approach based on the Riccati equation leads to a fourth-order system
of linear differential equations.
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7. ROTATION OF A BALL SUBJECTED TO VISCOUS FRICTION

Consider a rigid body fixed at its center of mass by means of a spherical joint. The tensor of inertia € of the body
at the center of mass is spherical, i.e., @ = §E, where 8 is a positive number and E is the identity matrix. The interaction
of this body with the ambient medium is modeled by the torque due to linear viscous friction acting on the body,

M, =K - w, Ky =kinn+k;3(E-nn), n=P-n,. a.n

The viscous friction tensor Ky is characterized by constant coefficients, kj5 and k3, depending on the properties
of the ambient medium and the surface of the body, and also by the direction of the anisotropy axis, n, fixed in the
body. In Eq. (7.1), P is the tensor of rotation of the body and ng is the initial value of the vector n. In the case in
question, Euler’s equations of motion of the body have the form

Ow = -[ksnn + kj2(E—nn)]-w, n=P-ng. (7.2)

By premultiplying Eq. (7.2) by PT, we obtain (after some transformations) the following equation for the right
angular velocity:
852 = ~[kanong + k12(E — ngno)] - 2. (1.3)

The solution of this equation has the form

k k
Q= (nO . Qo)no exp (__73(") + [Qo - (n() - Qo)n()] exp <_Tj2t> . (74)

After determining the right angular velocity, the dynamic problem is reduced to the Darboux problem. By making
use of Statement 2 for the right Darboux problem and relation (7.4) for the right angular velocity, we obtain the equation
for the left angular velocity in the form

W+

o) kl + k|2 o+ |: k% + 3k3k12 + klzz + 92] o+ [ k3k|2(k3 + klz) _l_ d

—— —(0? =
9 g2 6 7 a )]“’ 0

(7.5)

Q= (no - Q) exp (ﬁz—:it) +[£20 - (ng - o)no}* exp <_ 2];12 t) .

Equation (7.5) has an analytical solution which can be represented by a uniformly convergentseries the coefficients
of which are defined by recurrence relations. For the solution of Eq. (7.5), see, for example, [10], where the problem
in question is considered in a more general formulation for a body with a transversely isotropic tensor of inertia.

8. ROTATION OF A BALL ACTED UPON BY A CONSTANT TORQUE

Consider a ball with the tensor of inertia @ = §E. The center of mass of the body is fixed. The ball is acted upon
by a constant torque M. The equation of motion of the ball has the form

6w =M. 8.1
This equation is easy to integrate to obtain the following expression for the left angular velocity:
w =0"Mt + wy. (8.2)

After that the dynamic problem is reduced to the Darboux problem. Using Statement 2 of the left Darboux problem,
we obtain, with reference to relation (8.2), the following equation for the right angular velocity:

Q+ @M+ 207'M - wot + w2 — (G2M2+67'M - we)S2 = 0. (8.3)

This equation can be solved in closed form in terms of hypergeometric functions. A detailed discussion of this solution
is beyond the scope of the present paper.
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