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Preliminary remarks

Now conferences on the theory of plates and shells are held
regularly and many articles in periodicals are published. It is
not the case with the theory of rods.

The question arises: what is the reason for the lack of interest
in the theory of rods?

It would seem that the theory of rods and the theory of shells
have much in common. They are both moment theories, and
the basic equations are derived by the same methods.

One can assume that a reason for the lack of active research in
the area of rod theory is that the theory of rods is
mathematically much simpler the theory of shells and all
problems in the theory of rods have long been solved.

This is not the case. Further we give examples.
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The basic equations of shell theory and rod theory

Theory of shells H Theory of rods

Equations of motion
V-T+pF=p((v+0O;-w) T +pF=p(v+0O;-w)
V-M+T,+pL=p(v:O14+0O2-w) | M4+R' XT+pL=p(v-O1+0,-w)
Deformations (in the case of linear theory)
e=Vutaxiyp, ¢=Vy | e=u+txyp, ¢=19

Constitutive equations (without thermal effects)
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Effect of curvature

R(xy, X2)

In the case of curvilinear rods and shells the mass centers are offset
towards the convexity.
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Internal energy of shell (linear theory)

In the case of linear theory the internal energy of shell is
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Stiffness tensors A, C are well known, B has the following structure:
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P. A. Zhilin. Applied mechanics. Foundations of the shells theory.
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Internal energy of curvilinear rod
In the case of physically linear theory the internal energy of rod is
polU = %EP-A-PT@ +ePBPT-¢+ %qb.P.c.PT.qb,
Stiffness tensors A, C are the same as those of rectilinear rod:

A = Aidid; + Axdods + Astt, C = Gididy + Godad;, + Gttt

Stiffness tensor B has the following structure:
1
B = E(Bldldl + Bydady + B3tt)—|—
t
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+ R [(Bz3d2t + B32td2) cos o + (Bl3d1t + B31td1) sin Oz]
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P. A. Zhilin. Applied mechanics. Theory of thin elastic rods.
St. Petersburg. 2007. (In Russian)



First example: rod is a half circle in non-deformed state

Variant 1. ‘ﬁ( Variant 2. Jﬁ(

N v

Is it possible to bring the rods into linear state by applying force N
as shown in the Figures?



Solution of the problem without tensor B

The nonlinear strains of a rod are determined as
e=R —P-t, PP=¢pxP
When passing the rod in the rectilinear position:
Ri=(1+¢k, P-t=k = e=ck, ¢:%b
In view of the boundary conditions the solution of static equations is
T=0 = T=Nk M+RxT=0 = M=0

The constitutive equations without tensor B take the form:

C
T=Axk, M=-"b
R
It is easy to see that we have a contradiction. Hence, the solution

does not exist. It is very strange.



Solution of the problem taking into account tensor B
The solution of static equations and the expressions for strains are
T=Nk, M=0, e=c¢k, ¢:%b
The stiffness tensor at the actual configuration is

1
P.B-PT = F(Blg,bk + Bsikb), R.=—R
Cc
In view of the expressions for strains the constitutive equations are
B3 Byie G
T=(Ac——= ]|k, M=(—+—b
( ¥R > ’ < R "R
In view of the solution of static equations we have
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Second example: rod is a cylindrical helical spring

Is it possible to straighten
‘/g‘ the rod by putting force N
on the free end?

The solution of the problem
without taking into account
the tensor B compels
us to conclude that it is
impossible.

Solution of static equations:
R is the radius of spring; T=Nk, M=0

h 'S the p|t(.:h of spring; v N Constitutive equation for M:
B is the helix angle;

h T
t - M=P.C-P' .09
an 8 2TR




Solution of the problem taking into account tensor B

The the expressions for strain vectors are
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The stiffness tensor at the actual configuration is
P.-A-P" = Askk + A;(E—kk), P-.-C-.-PT = Cskk + C;(E —kk)

1 1 . .
5 [Bskk + By (E — kk)] + 7 (Busbk + Baikb)

t c

P.B-P" =
The constitutive equations are
T=P-A-P".c+P-B-P".¢

M=¢-P-B-PT+P-C-PT.¢



Solution of the problem taking into account tensor B

335 B315 B
R:C3 R:.C1

From the equation M = 0 it follows that ¢ = —

Comparing the two obtained expressions for ¢ we have
o G G G
B3y’ By1 B3
From the equation T = Nk it follows that
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Thus, the solution exists if the parameters satisfy the conditions:

Bz =—-B;



Conclusion

e At present the theory of rods is not only applied engineering
sciences. There are many unsolved theoretical problems in the
rod theory.

e The determination of stiffness tensor B is one of unsolved
theoretical problems in the rod theory.

e To solve this problem we can use the methods and approaches
that are well developed in the shell theory.



Thanks for attention!



