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DISSIPATIVE AND HAMILTONIAN SYSTEMS WITH

CHAOTIC BEHAVIOR: AN ANALYTIC APPROACH

A. K. Abramyan1 and S. A. Vakulenko1

Some classes of dissipative and Hamiltonian distributed systems are described. The dynamics of these

systems is effectively reduced to finite-dimensional dynamics which can be “unboundedly complex” in

a sense. Yarying the parameters of these systems, we can obtain an arbitrary (to within the orbital

topological equivalence) structurally stable attractor in the dissipative case and an arbitrary polynomial

weakly integrable Hamiltonian in the conservative case. As examples, we consider Hopfield neural networks

and some reaction–diffusion systems in the dissipative case and a nonlinear string in the Hamiltonian case.

1. Introduction

We consider the problem of chaotic behavior for dissipative and Hamiltonian systems described by
systems of coupled oscillators and systems of nonlinear partial differential equations. Our objective is to
describe some physical and mechanical models in which the appearance of various types of structurally
stable periodic and chaotic behavior and the formation of space–time structures are observed. We consider
the dependence of this behavior on the system parameters. The suggested approach is purely analytic, and
the related investigation results cannot be obtained using computers, even in principle.

We begin by presenting the physical idea of our approach and then consider examples of fundamental
dissipative systems with chaotic behavior constructed in [1], [2]. We note that these results are analytic
and do not use computer calculations. The main new results are given in the two concluding sections of the
paper. They describe the example of a Hamiltonian system with versatile, complex behavior. We hope that
some other simpler and more fundamental examples will also be considered in further publications. Our
main hypothesis is that infinite-dimensional Hamiltonian systems that are close to completely integrable
ones must, in a sense, manifest “unboundedly complex” finite-dimensional Hamiltonian behavior depending
on their parameters (by analogy with the dissipative systems found in [1], [2] that can have “unboundedly
complex” dissipative behavior). This behavior results from the interaction between localized modes. We
note that the abovementioned notions of “complexity,” “unbounded complexity,” and chaos, of course,
require rigorous mathematical statements, which are given below.

2. An analytic approach to the problem of chaos for distributed
dissipative systems

Dissipative dynamic systems such as reaction–diffusion systems and systems of coupled oscillators
describe many interesting and important effects in physics, chemistry, and biology (see, e.g., [3]–[5]), but
no explicit analytic description, as a rule, is known for the solutions of these systems. There are some
results showing that under certain conditions, a so-called global attractor exists and its fractal or Hausdorff
dimension is finite.
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For these basic notions, we recall some definitions that are used in what follows [6]–[9]. A dynamic
system in a Banach space H is a semigroup St of operators acting from H into H . Many equations in
mathematical physics define semigroups for an appropriately chosen H [6], [7]. A dynamic system is said
to be dissipative if there is a bounded set B ⊂ H such that any trajectory Stu, u ∈ H , eventually enters
B and stays there, i.e., Stu ∈ B for t > T0(B, u). Such a set is said to be absorbing. A set A is said
to be attracting with the attraction basin B(A) if for any neighborhood V (A), the image StB0 of any
bounded set lying in B, B0 ⊂ B, belongs to this neighborhood at sufficiently large times, i.e., StB0 ⊂ V (A)
for t > T0

(
B0, V (A)

)
. A set is said to be globally attractive if its attraction basin is so extensive that it

coincides with the entire space H . A set I is said to be invariant if the semiflow St does not change it, i.e.,
StI = I, t ≥ 0. There are various possible definitions of an attractor. It seems that up to now, there is
no fully satisfactory definition from both the physical and the mathematical standpoints [10]. We use the
definition of the so-called global attractor that is most widespread in mathematical physics: a set A ⊂ H

is the global attractor of a semigroup St in H if it is the smallest closed invariant globally attracting set.
In a sense, an attractor thus defines the system behavior at large times t. The existence of an attractor
can be proved for a wide class of dissipative systems. Because of the invariance, the semigroup St can be
restricted to the attractor A to obtain the reduced dynamics St|A. Unfortunately, an attractor is usually
a nonsmooth set and often not even a finite union of smooth submanifolds. Therefore, generally speaking,
the dynamics St restricted to the attractor cannot be described by a system of differential equations.

In some cases, it is possible to find a global attracting invariant set M ⊂ H that is a smooth manifold.
It received the name inertial surface [9]. This surface is not the minimal attracting set, although both an
attractor and even an arbitrary invariant set must lie in M . At the same time, the reduced dynamics St|M
restricted to M can be found using a system of differential equations. This reduced dynamics received
the name inertial dynamics. We note the physical interpretation of this dynamics. Even in an infinite-
dimensional system, if it is dissipative, there can exist finitely many “hidden modes” determining the
system behavior as t → ∞. In most cases, of course, it is impossible to find these variables explicitly. In
this paper, we give some examples where this can be done.

The notion of an invariant surface makes sense for Hamiltonian systems as well. In particular, the
n-soliton solutions of the Korteweg–de Vries (KdV) equation is an example of an inertial surface. The
differential equations describing the evolution of soliton parameters give an example of reduced dynamics.

The structure of the global attractor or of the inertial dynamics can be investigated only under some
essential constraints on the dynamic system in question. The attractor and the trajectory behavior at large
times were described for systems with a Lyapunov function (gradient-like systems) and for the so-called
strictly monotonic systems [6], [9], [11], [12].

We present two examples important in what follows. The first is the famous basic model by Hopfield [13]
in the theory of neural networks,

dxi

dt
=

N∑
j=1

Kij tanhxj − xi + θi, (2.1)

where xi is the state of the ith neuron, N is the number of neurons, Kij is the connection matrix describing
the action of the jth neuron on the ith neuron, and θi are parameters called “thresholds.” The set of
the parameters K, N , and θ is denoted by P . If K is a symmetric matrix, then the system is gradient-
like, i.e., there is a function L(x) depending on the system state x = (x1, . . . , xN ) and not increasing on
trajectories (2.1). We have dL/dt ≤ 0, where the equality occurs if and only if x is an equilibrium point
xeq (the right-hand side of (2.1) vanishes for all i at x = xeq). Attractor (2.1) can be described in the case
of the “general position.” All trajectories x(t) tend to the equilibriums, x(t) → xeq as t → ∞. Generally,
the number of equilibriums increases as the number N of neurons increases. We note that the function L
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has the physical meaning of system energy and that the most significant contribution to L has the form∑
ij Kij tanh(xi) tanh(xj).

We recall the meaning of the expression “in the case of the general position.” For every N , the set of
parameters K and θ for which the above description of the behavior of trajectories (2.1) may be incorrect
is of measure zero in the parameter space. This can be proved using the Sard theorem.

The second example is the dynamic systems generated by initial boundary problems for second-order
parabolic equations, e.g.,

ut = ε2∆u+ f(x, u,∇u),

u(x, 0) = u0(x), x ∈ Ω,

∂u

∂t
(x, t) = 0, x ∈ ∂Ω,

(2.2)

where f ∈ C2. Such a problem generates a dynamic system in the Banach space Lp(Ω), where the choice of
p depends on f and n. If the solutions are a priori bounded in some weak norm, then the classical results
show [6] that the system is dissipative and has a finite-dimensional global attractor. If f does not depend
on ∇u or if the spatial dimension n of the problem is one, then system (2.2) is gradient-like, and all that has
been said about the Hopfield system consequently relates to it (i.e., all trajectories are convergent in the
case of the general position [7], [12].) If f depends on ∇u and n > 1, then the system belongs to the class
of strictly monotonic systems, and it can be asserted that almost all trajectories are convergent, i.e., they
converge to the equilibriums ueq(x). The number of equilibriums and the “complexity” (dimension) of the
attractor increase as ε decreases. In this case, chaotic regimes are possible, which, however, are realizable
for equations of a very special form and some special initial data (see [11], [12] for details).

As can be seen from these examples, to obtain “complex” behavior that is stable with respect to small
perturbations of the system, it is necessary to consider neural networks (2.1) with nonsymmetric matrices
K and at least two-component systems of equations of type (2.2). We note that the matrices K for real
biological networks are nonsymmetric and that periodic and chaotic oscillations of xi(t) can actually be
observed in them [14]. A method that permits constructing examples of dissipative systems with complex
behavior essentially uses the ideas of structural stability (robustness) and is called the method of realization

of vector fields [11].
We consider an abstract evolution equation in a Hilbert (Banach) space H ,

dw

dt
= Aw + F (w,P), w ∈ H, (2.3)

where A is a negative-definite self-adjoint (possibly unbounded) operator, the nonlinear operator F satisfies
some conditions ensuring the existence of a semigroup St, and P are the parameters on which F depends.
Regarding the existence of parameters, we can say that Eq. (2.3) defines a family of semigroups St

P . For
any of the parameters, we assume that it can be physical, i.e., it can belong to another Banach space Bp

as well.
Along with (2.3), we consider the system of differential equations

dp

dt
= Q(p), Q ∈ C1(Bn), (2.4)

where Bn is a unit ball in Rn. If the vector field Q is directed inside the sphere ∂Bn for |p| = 1, then
Eq. (2.4) defines a dynamic system in the ball.

Following [2], [11], and [12], we state the following definitions.
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Definition 1. We say that prescribed dynamics (2.4) can be almost realized by system (2.3) if for
any positive number δ, there are parameters P = P(n,Q, δ) such that

1. there is an inertial surface MP ⊂ H of the form

w = WP(p), (2.5)

where p→WP (p) is a C1 map from the ball Bn into H , and
2. the reduced dynamics St

P |MP on MP is determined by the equation

dp

dt
= Q̃(p,P), Q̃ ∈ C1(Bn), (2.6)

and the inequality

|Q− Q̃|C1(Bn) < δ (2.7)

holds.

Definition 2. We say that a family of semigroups in (2.3) depending on a parameter realizes everything

and has maximal dynamic complexity if every dynamics (2.4) for each dimension n can be almost realized
by this family of semigroups. In other words, dynamics (2.6) on MP can be determined with an arbitrary
accuracy using the parameters P .

We now mention some consequences. If system (2.3) realizes everything, then it can be shown that
its dynamics is, in a sense, unboundedly complex. Namely, to within a homomorphism, all classes of
topologically equivalent structurally stable attractors can be realized by these systems. We recall that
structural stability of system (2.4) means that (for sufficiently small δ) a δ-small perturbation of the
right-hand side of system (2.4) in the C1 norm does not change the topological structure of the system
trajectories [10]. This means that the attractor Aδ of perturbed system (2.4) is topologically equivalent to
the original attractor A in system (2.4). Consequently, attractor (2.3) lies on the inertial surface, and the
dynamics on (2.3) is topologically equivalent to dynamics (2.4) in A.

Hence, systems that realize everything generate all topological classes of structurally stable types of
dynamics. In this sense, we can say that these systems have maximal dynamic complexity. Moreover,
this dynamics is controllable using the system parameters. We note that, to some extent, the suggested
approach permits avoiding the difficulties related to the existence of very many different definitions of chaos
in the literature. Irrespective of the chosen definition, if chaos is structurally stable (and, as is known, this
is quite possible [10]), then the type of chaos under consideration arises in the system in question.

3. The Hopfield neural network as a system with dynamic behavior
of maximal complexity

It turns out that Hopfield model (2.1) is the simplest example of a system that realizes everything [2].
We first note that system (2.1) is actually dissipative. Indeed, the set ‖x‖ < R, where R depends on the
parameters P = {N,K, θ}, can be taken as a dissipating set.

To prove that system (2.1) realizes everything, we fix an arbitrary n in (2.4) and show that (2.1)
generates all n-dimensional types of dynamics (2.4). We substitute Kij =

∑n
s=1 AisBsj , where A and B are

new unknown matrices, A being chosen such that Ais = δis for i ≤ n. This substitution permits introducing
“hidden” variables qi determining the dynamics at large times. To show this, we change the variables as
x→ (q, z), where qi = xi, i = 1, 2, . . . , n, and zi = qi−

∑
sAisqs, i = n+1, . . . , N . After simple calculations,

we obtain
dzi
dt

= −zi + θi,
dq

dt
= ΦP(q, z), q = (q1, . . . , qn), (3.1)
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where the subscript P denotes the dependence of the vector field Φ on the parameters A, B, N , and θ.
The first equation in (3.1) shows that the inertial surface is specified by the relations zi = θi. The inertial
dynamics is therefore determined by the other equation in (3.1), into which z = θ must be substituted. It
can be shown [2] that the set of the n-dimensional vector fields ΦP(q, θ) on the ball Bn is everywhere dense
in the set of all C1-smooth vector fields on Bn. This precisely proves that the Hopfield system realizes
everything (see [2] for details).

4. A system of partial differential equations that has maximal
dynamic complexity

We consider the following initial-boundary problem in the two-dimensional rectangle Ω = [0, 1]× [0, 1]:

ut = ∆u+ w(x)u + f0(x, y) + f1(x, y)v, u(x, y, 0) = u0(x, y), (4.1)

vt = ∆v − a2v + g(x, y) tanhu, v(x, y, 0) = v0(x, y), (x, y) ∈ Ω, (4.2)

∂u

∂t
(x, y, t) = 0,

∂v

∂t
(x, y, t) = 0, (x, y) ∈ ∂Ω, (4.3)

where the coefficient functions fi, g, and w belong to C2(Ω) and a > 0. These coefficients are regarded as
the problem parameters, P = {fi, g, w, a}.

It can be shown that problem (4.1)–(4.3) is well posed and that it defines a dissipative semigroup
St [2] in Sobolev spaces. Systems of this type can appear in the theory of structure formation and in phase
transition theory. It turns out that the dissipative system in question has an inertial surface and inertial
dynamics and that it realizes everything [2].

For the further extension of the suggested approach to Hamiltonian systems, it is important to discuss
the physical ideas underlying the construction of the above system (see [2] for detailed proofs). We choose
the parameters of problem (4.1)–(4.3) such that the inertial dynamics is described explicitly and is reducible
to the Hopfield system.

The main idea consists in introducing a small parameter ε and choosing a special potential w =
W (x, ε) such that the operator Lεu = ∆u + Wu has well-localized potential wells and accordingly N
almost eigenfunctions ψi(x − xi, ε). These functions are localized in the vicinity of the points xi in the
sense that ψi(x − xi, ε) < C exp

(
−cε−1|x − xi|

)
, and they satisfy the relation Aεψi = hε, where hε <

C exp
(
−cε−1|x − xi|

)
. The eigenfunctions Aε orthogonal to all ψi have eigenvalues separated from the

imaginary axis by an interval of length O(1).
The structure of the solution is as follows. If the coefficients g and fi are of the order of smallness of

O(εκ) with a finite exponent κ > 0, then

u =
m∑

i=1

qi(t)ψi(x, ε) + ũ = U
(
x, q(t), ε

)
+ ũ (4.4)

for small ε, where q = (q1, q2, . . . , qn), ũ is a small correction, ‖ũ‖ < cεκ1 , and κ1 > 0. The function v is
equal to V + ṽ, where V (x, y, q) is the solution of the boundary problem

∆V − a2V + g(x, y, ε)Φ
(
U(x, q, ε)

)
= 0,

∂V

∂ν
= 0, (4.5)

and ṽ is a small correction, ‖ṽ‖ < cεκ2 , κ2 > 0. The functions qi(t) satisfy the system of equations

dqi
dt

= 〈f0 + f1v, ψi〉, (4.6)
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where 〈f, g〉 is the inner product in L2(Ω).
It turns out that if the coefficients fi and g are taken in the form of well-localized Gaussian peaks, then

to within small corrections, system (4.6) can be reduced to Hopfield equation (2.1) [2]. This mathematical
construction has a simple physical interpretation. The constructed solution describes the slow temporal
evolution of the amplitudes qi(t) of localized modes. The interaction between these modes arises as follows.
The term gΦ(u) specifies small localized inhomogeneities in the nonlinear medium. These inhomogeneities
result in the interaction between the localized modes ψi via the intermediate field v. This is a strongly
nonlocal interaction similar to the neuron interaction in the Hopfield network.

A remarkable property of systems (2.1) and (4.1)–(4.3) is that their parameters can be used to prescribe
the topological structure of their dynamics.

5. Complex motion of localized modes for a nonlinear string

5.1. General ideas of the approach. The central question that we answer in what follows is
whether there are infinite-dimensional Hamiltonian systems with complex dynamics controllable using the
system parameters. We recall that many classical equations of mathematical physics can be regarded as
infinite-dimensional Hamiltonian systems (e.g., the KdV equation, the nonlinear Schrödinger equation, etc.,
are of this type). The theory of nearly integrable systems (in both the finite- and the infinite-dimensional
cases) has now been primarily developed.

Our plan is to consider weakly perturbed integrable infinite-dimensional Hamiltonian systems. In this
case, it can be expected that the dynamics of localized modes, e.g., solitons or linear modes, is defined in
the first approximation by some reduced Hamiltonians with finitely many degrees of freedom. Below, we
present the simplest system of the type of a weakly nonlinear string in which the reduced Hamiltonian has
the following form depending on the chosen coefficients and small perturbations:

H(p, q) =
m∑

j=1

p2j + ω2q2j + εH̃(q), (5.1)

where p and q are conjugate variables, q = (q1, . . . , qm), and H̃(q) is a polynomial in qi. Hamiltonian (5.1)
describes the dynamics of weak interaction between localized modes on a large time interval of the order
O(ε−1). The small parameter ε characterizes the magnitude of the nonlinear perturbation in the string.

Systems of the type (5.1) have been intensively studied in recent decades. The Kolmogorov–Arnold–
Moser (KAM) theory permits describing the solution behavior for them. Here, for a finite number m > 1
of degrees of freedom, some nontrivial effects such as homoclinic trajectories, separatrix splitting, Arnold’s
diffusion, and formation of a stochastic web [15] have been studied. It is believed that these effects lead to
chaos.

We prove that a wide class of perturbed Hamiltonians of form (5.1) can appear in the dynamics of a
nonlinear string. Namely, depending on the string parameters, all possible polynomial perturbations H̃(q)
of the form

H̃(q) =
p∑

n=3

∑
i

Ci1,i2,...,in,nqi1qi2 · · · qin (5.2)

can appear here, where the multi-index i = (i1, i2, . . . , in) in the inner sum is such that i1 ≤ i2 ≤ · · · ≤ in.
This means that the dynamics of Hamiltonian interaction between localized modes can be varied in a
rather wide range by changing the system parameters. (The role of the parameters here is played by Wδ

and F (x, u); see formula (5.3).) We suggest that this property of the given class of Hamiltonian systems
should be regarded as an analogue of the property of maximal complexity for the dynamics of dissipative
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systems. We note that some important results on complex solution behavior for the perturbed KdV equation
were already obtained in [16], but the perturbations considered there were dissipative and were determined
by complicated nonlinear functionals. In contrast to [16], we consider Hamiltonian systems with polynomial
nonlinearities.

5.2. The model. We consider the following model of a string with linear and nonlinear defects:

utt − c2uxx +Wδ(x)u = εF (x, u), (5.3)

where x ∈ R and the potential Wδ(x) ∈ C∞ depends on the second small parameter δ. The construction of
Wδ is given below. The terms Wδu and F describe linear and nonlinear defects in the string, F (x, u) is a
polynomial in u having rapidly decreasing coefficients with respect to x and containing no linear terms, and
F (x, u) = O(u2) as u→ 0. Equation (5.3) describes a Hamiltonian system with infinitely many degrees of
freedom.

We first describe the asymptotic behavior (as ε → 0 for a fixed small δ) of solutions of Eq. (5.3). We
note that nonlinear hyperbolic equations have been thoroughly studied [17].

5.3. Constructing a solution. Let L denote the Schrödinger operator

Lu = −c2uxx +Wδ(x)u. (5.4)

We assume that Wδ−δ−2 is a function of the Schwartz class S(R). Moreover, we assume that operator (5.4)
has finitely many localized “principal” eigenfunctions Ψi(x) ∈ L2(R), where i = 1, 2, . . . , N , with eigenvalues
ω2

i = O(1) > 0, whereas the entire (discrete and continuous) remainder of the spectrum lies in the interval
(cδ−2,∞), where c > 0, and c does not depend on δ for small δ. Without loss of generality, it can also
be assumed that the Ψj are orthonormal. The functions Ψi decrease exponentially with respect to x as
exp

(
−κi|x|

)
as x → ∞, where c2κ2

i = δ−2 − ω2
i . Such a potential Wδ with given ω1, . . . , ωN can be easily

constructed as a sum of well-separated potential wells. In essence, the same idea was used in [2]. A simple
example of a singular potential with similar properties arises in mechanics [18].

To construct Wδ, we first consider a potential W (x) such that W −1 ∈ S(R) and W has a minimum at
x = 0. This potential, which does not depend on δ, can be constructed such that the smallest eigenvalue of
the corresponding operator L is zero and the entire remainder of the spectrum lies in the interval (2λ1,∞),
λ1 > 0. Furthermore, W can be supplemented with a small order-O(δ2) Schwartz-class perturbation such
that the smallest eigenvalue of the perturbed operator L becomes equal to δ2ω2 and the entire remainder of
the spectrum belongs to the interval (λ1,∞). Let the perturbed potential W thus constructed be denoted
by W̃ω. We then take arbitrary points x1, x2, . . . , xN and construct Wδ in the neighborhood of each of these
points in the form δ−2W̃ωi

(
(x − xi)/δ

)
. These potentials are then glued together to obtain the resulting

potential, which is constant to within O
(
exp(−cdδ−1)

)
for the values of x such that mini |x−xi| > d > 0 [2].

It can be shown that this leads to an operator L with the abovementioned properties for a small δ.
We seek the solution of (5.3) for small ε� δ in the form

u(x, t) = U0

(
x, q(t)

)
+ εũ(x, t), (5.5)

where

U0(x, q) =
N∑

j=1

qjΨj(x) (5.6)
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is the contribution from the principal localized modes with amplitudes qj and ũ is a small correction such
that

Pũ = 0. (5.7)

Here, P =
∑N

j=1 Pj is the orthogonal projection onto the “principal” discrete spectrum, and the operators
Pj are defined using the relations Pju = 〈u,Ψj〉Ψj . We set Q = I − P. Then the operator Q is the
projection onto the orthogonal complement of Ψj. Substituting (5.5) in (5.3) and applying the projections
Pj and Q to the two sides of the resulting equation, we obtain the system of equations

d2qj
dt2

+ ω2
j qj =

〈
F

(
x, U0(x, q) + ũ

)
,Ψj

〉
, j = 1, 2, . . . , N, (5.8)

ũtt + Lũ = QF
(
x, U0

(
x, q(t)

)
+ ũ

)
. (5.9)

The first step in solving system (5.8), (5.9) is to exclude ũ from (5.8) on a large time interval with
length of the order ε−1. As is shown below, this can be done quite rigorously.

To describe the solutions of (5.9), we introduce the Banach space Bs of functions u(x), x ∈ R, with a
bounded norm

|u|s = max
{

sup
k∈R

(
1 + |k|

)s|ûk|,max
l

|ûl|
}
, (5.10)

where ûk and ûl are the Fourier coefficients in the expansion of ũ with respect to the eigenfunctions of
the operator L. Here, the index l ranges the discrete set corresponding to the discrete eigenfunctions that
do not enter the set of the principal modes Ψj selected above. The parameter k varies throughout the
real axis (−∞,∞) and corresponds to the functions in the continuous spectrum. As the phase space for
problem (5.8), (5.9), we take the space Hs,T containing the pairs

(
q(t), ũ(t)

)
of continuous functions of t,

where t ∈ [0, T ], ũ(t) ∈ Bs, and Qũ = 0 with the norm

∥∥(q, u)
∥∥

s
= sup

t∈[0,T ]

∣∣ũ(t)
∣∣
s

+ sup
t∈[0,T ]

∣∣q(t)∣∣. (5.11)

Proposition 5.1. For a sufficiently small T , there is a classical solution of (5.8), (5.9) bounded in the

C2,2 norm.

Proof. We write (5.8), (5.9) in the form of integral equations for the Fourier coefficients. For example,
ûk satisfies the equation

ûk(t) = bk cos
(
ω(k)t+ βk

)
+ εω−1(k)

∫ t

0

sin
(
ω(k)(t− t1)

) ̂̃
F k(t1) dt1,

ω2(k) = δ−2 + c2k2,

(5.12)

where bk are determined by the initial data and F̃ = QF . It is easy to show that the space Bs with the norm
| · |s for s > 5 forms a Banach algebra with respect to multiplication and that it can be embedded in C2(R).
Because Bs is an algebra, the Fourier coefficients under the above assumptions satisfy the inequalities for F

∣∣ ̂̃F k(t1)
∣∣ < Cs

(
1 + |k|

)−s(∣∣F̂0k
(t1)

∣∣ + P
(
|ũ|s

))
, (5.13)

where F0 = QF
(
x, U0(q)

)
and P (z) is a polynomial such that P = O(z) as z → 0. Similar inequalities hold

for ũl (without the factor
(
1 + |k|

)−s
). We can now take a sufficiently large R and use (5.13) to show that
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for sufficiently small T , the integral operator K defined by the right-hand side in (5.12) is contracting and
maps a ball of radius R in Hs,T into itself. Consequently, the generalized solution (q, ũ) = K(q, ũ) exists
(it satisfies an integral equation with respect to time instead of a differential equation). In fact, we have
t → q(t) ∈ C2, and the map t → ũ(t) ∈ Bs is also twice differentiable with respect to time. Embedding
theorems can be used to show that these time derivatives belong to C2 for s > 5. The classical solution
of the problem under consideration therefore exists on a sufficiently small time interval. Proposition 5.1 is
proved.

5.4. Derivation of simplified Hamiltonian equations for qj. The above assumptions about the
decomposition of the spectrum of L into principal modes with the remainder of the spectrum separated
from the imaginary axis play the key role in the proof of the following assertion.

Proposition 5.2. For a sufficiently small ε and under the conditions
∣∣ũ(·, 0)

∣∣
s
< cε and

∣∣ũt(·, 0)
∣∣
s
< cε,

the inequalities

sup
x

∣∣ũ(x, t)
∣∣ ≤ Cs

∣∣ũ(·, t)
∣∣
s
< C(F, s,Wδ)ε (5.14)

hold for 0 < t < cε−1.

Proof. The first inequality in (5.14) expresses a simple embedding theorem. We writeX(t) =
∣∣ũ(·, t)

∣∣
s
.

Following the procedure in the proof of Proposition (5.1), we can show that there is an open interval
I = (0, T0) such that

∣∣X(t)
∣∣ ≤ 1 for t ∈ I. Consequently, the inequality

∣∣ ̂̃F k(t) − F̂0k
(t))

∣∣ < C̃s

(
1 + |k|

)−s
X(t) (5.15)

holds on the interval I, where F0 = QF
(
x, U0

(
q(t)

))
. The main problem reduces to estimating the terms

Sk = ω−1(k)
∫ t

0

sin
(
ω(k)(t− t1)

)
F̂0k

(t1) dt1. (5.16)

We first pass to the action–angle coordinates Jj and φj in Eqs. (5.8) for qj . We set

qj = J1/2(t) cos(ωjt+ φj(t)), pj = ωjJ
1/2(t) cos(ωjt+ φj(t)). (5.17)

Then

dJ
1/2
j

dt
= cjεFj sin(ωjt+ φj(t)),

dφj

dt
= c̃jJ

−1/2
j εFj cos(ωjt+ φj(t)), (5.18)

where Fj = 〈F,Ψj〉, and hence

|Fj | < c2 sup
x

∣∣F0

(
x, U0(x, q)

)∣∣ + c3|X | < c4
(

sup
x

∣∣F0

(
x, U0(x, q)

)∣∣ + 1
)

(5.19)

on the interval I. Formula (5.19) shows that F0(x, t) has the form

F0(x, t) =
∑

n

fn(x)Pn(t, τ), τ = εt, (5.20)

where each fn belongs to the Schwartz class and Pn is a polynomial in cosωjt and sinωjt with coefficients
depending on the slow time τ . We now use the above assumptions about the form of the spectrum of L to
estimate the integral of F0 with respect to t1 in (5.16). If δ is small and

T0 < c5ε
−1, (5.21)
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then this integral is of the order O(1) (as ε→ 0). This means that

X(t) ≤ εCF + εC1

∫ t

0

X(t1) dt1 (5.22)

for t ∈
[
0,min{T0, c5ε

−1}
]

and the positive function X(t). Integral inequality (5.22) implies that

X(t) ≤ εC̃F < 1 (5.23)

for t ∈
[
0,min{T0, c5ε

−1}
]
. Inequalities (5.23) show that T0 = c5ε

−1 for small ε, which completes the proof
of Proposition 5.2.

The above result permits setting ũ = 0 in (5.8) for t = O(ε−1). Therefore, introducing the potential
Φ(x, u) by means of the relation Φu(x, u) = F (x, u) and taking

H̃F (q) =
∫ ∞

−∞
Φ

(
x, U0(x, q)

)
dx, (5.24)

we conclude that Eqs. (5.8) have a Hamiltonian structure with a Hamiltonian of form (5.1).

5.5. Constructing a nonlinear string with prescribed Hamiltonian dynamics.

Proposition 5.3. If the frequencies ωi are “generic,” then whatever the polynomial perturbation H̃(q)
of form (5.2), there is a polynomial perturbation F in (5.3) with respect to u such that H̃F (q) = H̃(q).

Proof. The proof is based on a special choice of Φ =
∑p

n=0 fn(x)un+2. We set

fn(x) =
Mn∑
k=1

Yknδ1ρ

(
x− x̄kn

δ1

)
, (5.25)

where ρ(z) is a positive smooth function supported in (−1, 1) such that the integral of ρ(z) is equal to 1,
δ1 is a small parameter, and Ykn are the unknown coefficients to be found. Here, Mn is the number of
multi-indices i of length n (see formula (5.2)). We select the points x̄kn > 0 such that the eigenfunction Ψj

can be replaced with its exponential asymptotic expression. We now note that

Ci1,i2,...,in =
∫ ∞

−∞
fn(x)Ψi1 (x)Ψi2 (x) · · ·Ψin(x) dx.

It follows that the coefficient Ykn can be found for each n using the linear algebraic system of Mn equations
with Mn unknowns Ykn. For the chosen points x̄kn and a small δ1, this system of equations becomes

Mn∑
k

e−θiYkn = Bi,n, (5.26)

where, as in (5.2), the summation extends over the Mn multi-indices of length n, the right-hand sides Bi,n

are proportional to the given coefficients Ci,n, and the exponents θi are determined by the relations

c2θ2i =
n∑

k=1

δ−2 − ω2
ik
. (5.27)

According to the KAM theory, all exponents θi are distinct for different multi-indices i if the frequencies
ωik

are “generic.” (We recall that i1 ≤ i2 ≤ · · · ≤ in.) These frequencies can be selected arbitrarily at the
expense of the choice of the potentialWδ. In this case, the determinant of system (5.26) is the Vandermonde
determinant and is nonzero. This means that the unknown coefficients Ykn can be found, which completes
the proof of Proposition 5.3.
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6. Conclusion

The above results show that the interaction between localized modes can be very complex in both
dissipative and conservative nonlinear distributed systems. Selecting the inhomogeneity of the medium
appropriately, we can obtain any structurally stable dynamics in the case of dissipative systems and an
arbitrary polynomial Hamiltonian in the conservative case. Thus, for some classes of nonlinear distributed
systems, the dynamics can be unboundedly complex and, moreover, controllable using the system parame-
ters.
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