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Abstract

Theoretical models are suggested which describe transformations of grain boundaries in nanocrystalline materials under plastic

deformation. We consider such transformations as decay of low-angle grain boundaries, bowing of high-angle grain boundaries, and

emission of partial dislocations by grain boundaries in deformed nanocrystalline materials. In the framework of the suggested model

description, lattice dislocations that form a low-angle tilt boundary glide under the action of the forces owing to external (applied)

and internal stresses. The balance of the forces causes the critical shear stress at which the low-angle boundary decays. Such decay

processes result in the formation of high-density ensembles of mobile lattice dislocations that are capable of inducing plastic flow

localization (shear banding) in mechanically loaded nanocrystalline materials. High-angle grain boundaries are modeled as those

containing grain boundary dislocations with small Burgers vectors. The movement of grain boundary dislocations under the shear

stress action gives rise to bowing of high-angle boundaries. In certain ranges of parameters, grain boundary dislocations undergo

splitting transformations followed by emission of partial dislocations from high-angle boundaries into adjacent grain interiors. The

models account for experimental data reported in the literature.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Transformations of grain boundaries (GBs) often

strongly influence both the structure and the properties

of nanocrystalline and polycrystalline materials, e.g.,

[1–29]. Thus, plastic deformation processes in nano-

crystalline materials (NCMs) are associated with trans-

formations of GBs and GB defect ensembles, that

crucially affect the structure and outstanding mechanical

characteristics of such materials; see, e.g., experimental
data [1–10], theoretical models [11–20] and molecular

dynamics simulations [21–25]. Among the most impor-

tant issues for the mechanical behavior (in particular,

ductility and superplasticity) of NCMs is their ability to

suppress plastic flow localization in shear bands, nuclei

of the necking [2,30,31]. This has generated interest in
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the identification of the role of GBs and their transfor-

mations in the formation and evolution of shear bands
in NCMs, which potentially will allow one to influence

the processes of plastic flow localization. In particular,

in ductile NCMs with comparatively large grains with

size dP 30 nm, where the lattice dislocation slip is

dominant, GBs can serve as effective sources of perfect

lattice dislocations and partial lattice dislocations pro-

viding deformation twinning [1,32–35]. (Molecular dy-

namics simulations [21–24] have predicted deformation
twinning. However, this approach allows one to pre-

dict the deformation mode, but not to describe its

characteristics.)

In previous theoretical models [15,36,37] of emission

of perfect lattice dislocations by high-angle GBs in

nano- and fine-grained materials, intensity of the emis-

sion events was assumed to be controlled by movement

and transformations of GB dislocations and disclina-
tions. These processes are too slow to cause the forma-

tion of high-density ensembles of mobile lattice
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Fig. 1. Decay of a low-angle tilt boundary represented as a periodic
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dislocations that would carry large plastic strains in

shear bands. At the same time, NCMs contain low-angle

boundaries consisting of lattice dislocations [38].

Such low-angle boundaries undergo structural trans-

formations under the action of internal stresses in
coarse-grained polycrystalline materials (see [26–29] and

references therein), in which case it is natural to think

that low-angle boundaries can undergo dramatic trans-

formations under the action of applied stresses in me-

chanically loaded NCMs, too.

The main aim of this paper is to describe in detail the

decays of low-angle tilt boundaries (briefly discussed

earlier in [18]) under the shear stress action as processes
that produce high-density ensembles of mobile lattice

dislocations in local regions of NCMs (see Sections 2–4).

Also, a theoretical model (see Section 5) is suggested to

investigate very similar transformations of high-angle

GBs, which are bowing of GBs and emission of partial

dislocations (associated with deformation twinning)

from high-angle GBs under the shear stress action.

These models account for experimental observations
[1,32–35] of the transformations of GB structures, which

are capable of playing an essential role in the deforma-

tion behavior of NCMs.

dislocation wall terminated at triple junctions A and B. (a) Dislocation

wall in its initial state (in the absence of mechanical load). (b) Shear

stress s causes bowing of the dislocation wall. (c) One of the disloca-

tions releases from the dislocation wall. (d) Dislocation wall com-

pletely decays resulting in formation of a dipole of uncompensated

disclinations with the strengths �x and þx at triple junctions A and

B, respectively.
2. Decay of low-angle tilt boundaries in nanocrystalline

materials: model

Consider a model low-angle tilt boundary terminated

at triple junctions of GBs in a nanocrystalline sample

(Fig. 1(a)). The low-angle boundary in its initial state (in

the absence of mechanical load) is represented as a

straight wall of periodically arranged edge dislocations

with Burgers vector b. The low-angle boundary is

characterized by the tilt misorientation angle h being in

the Frank relationship, sinðh=2Þ ¼ b=ð2hÞ [25], with
parameters (the period h and the Burgers vector mag-

nitude b) of the dislocation arrangement in the bound-

ary. Also, for definiteness, the tilt misorientation h is

assumed to be in compensating relationships,

hþ h1 þ h2 ¼ 0 and �hþ h01 þ h02 ¼ 0, with the tilt

misorientation parameters, (h1; h2) and (h01; h
0
2), of the

GBs adjacent to the upper and bottom triple junctions,

respectively, shown in Fig. 1(a). In other words, the fi-
nite dislocation wall in its initial state (Fig. 1(a)) is ter-

minated by disclinations that completely compensate for

the disclination defects (shown as triangles in Fig. 1) at

the upper and bottom junctions of its adjacent GBs

characterized by the tilt misorientation parameters,

(h1; h2) and (h01; h
0
2), respectively.

The action of a shear stress s on the edge dislocations

composing the low-angle tilt boundary in a mechanically
loaded nanocrystalline sample causes displacements of

these dislocations (Fig. 1(b)) from their initial positions

shown in Fig. 1(a). In other words, the shear stress ac-
tion causes bowing of the low-angle tilt boundary. At

some critical value sc of the shear stress, one of the edge
lattice dislocations composing the low-angle boundary

releases and starts moving far from the initial boundary

plane (Fig. 1(c)). As is evident (and proved by further
analysis in this paper), the release of the first dislocation

from the low-angle boundary (Fig. 1(c)) is immediately

followed by decay of the boundary (dislocation wall) as

a whole (Fig. 1(d)). As a result, a group of lattice dis-

locations released from the decayed low-angle boundary

move, causing local plastic deformation and the for-

mation of an elongated grain. Following experimental

data [2,39], such elongated grains are characteristic
structural elements of shear bands in nanocrystalline Fe.

Notice that the decay of the low-angle boundary re-

moves it from the triple junctions which thereby trans-

form into uncompensated double junctions (Fig. 1(d)).

The upper and lower junctions become uncompensated

stress sources of the disclination type, characterized by

disclination strength �x ¼ �h and x ¼ h, respectively.
The stress field of the disclination dipole serves as the
hampering force for movement (release) of the lattice

dislocations from the low-angle tilt boundary and its

decay. It is taken into account in our calculations of the

critical shear stress sc (at which the decay occurs) in the



S.V. Bobylev et al. / Acta Materialia 52 (2004) 3793–3805 3795
next section. Also, notice that there is an increase in the

rms internal stresses when low-angle boundaries break

and the stress fields of diclination dipoles come into

play. This increase may be detected in experiments.
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Fig. 2. Dependences of coordinate x on time t for the 8th dislocation in

a low-angle boundary characterized by the misorientation h ¼ 0:1 and

composed of N ¼ 15 dislocations, for the shear stress s ¼ 0:5, 1.0, 1.4,

1.52, 1.53 and 1.54 GPa (curves 1, 2, 3, 4, 5 and 6, respectively).
3. Critical shear stress for decay of low-angle tilt

boundaries in deformed nanocrystalline materials

Let us calculate the critical shear stress sc by methods

of two-dimensional dislocation dynamics. The two-di-

mensional approach allows us to catch the principal

peculiarities of the decay process and estimate the sc in
the first approximation. At the same time, the two-di-

mensional approach can serve as an effective basis for

further investigations with using methods of the three-

dimensional dislocation dynamics.

Each dislocation in the low-angle boundary in a

mechanically loaded NCM (Fig. 1(b)) is under com-

bined action of the forces caused by the shear stress,

other dislocations belonging to the boundary, and the
disclination dipole. Let us calculate these forces and

write the corresponding equations for dislocation

movement. In doing so, we assume that dislocations can

move along one slip plane (along x-axis in the coordi-

nate system shown in Fig. 1(a)), in which case the only

x-projections of the forces play the role. Solution of the

system of equations, describing one-dimensional move-

ment of dislocations, will be expressed as dependences
xiðtÞ, where xi is the coordinate of the ith dislocation

(i ¼ 1; 2; . . . ;N ), and t is time.

In the framework of the approach discussed, the force

acting on the ith dislocation belonging to the low-angle

boundary may be written as follows:

Fi ¼ b s

2
664 þ Db

XN
k¼1
k 6¼i

ðxi � xkÞfðxi � xkÞ2 � ðyi � ykÞ2g
fðxi � xkÞ2 þ ðyi � ykÞ2g2

� Dx
xiyi

x2i þ y2i

 
� xiðyi � dÞ
x2i þ ðyi � dÞ2

!3775; ð1Þ

where D ¼ G=½2pð1� mÞ�, G is the shear modulus, m is

the Poisson ratio, xi and yi ¼ ih are the coordinates of

the ith dislocation, and d denotes the tilt boundary

length (the distance between the triple junction discli-

nations that form the dipole; see Fig. 1). The first term

of formula (1) describes the force due to the shear

stress s, the second one the force of interaction with

the other dislocations of the boundary [40], and the
third one the force of interaction with the disclination

dipole [41].

With the forces given by formula (1), equations for

movement of the dislocations composing the low-angle

tilt boundary (Fig. 1(a)) read
m
d2xi
dt2

þ b
dxi
dt

¼ Fi; i ¼ 1; 2; . . . ;N : ð2Þ

First derivatives dxi=dt in these equations take into ac-

count the dislocation movement friction (associated

with the dynamic retardation of the crystalline lattice to

dislocation movement), and b is the viscosity coefficient.

The dislocation mass m is given by the standard ap-
proximation [42], m ¼ qb2=2, where q is the material

density.

To solve numerically the system of equations (2), we

have used the conventional software Mathematica 4.

The following characteristic values of parameters have

been chosen for the exemplary case of nanocrystalline

Fe (whose deformation behavior had been experimen-

tally studied in papers [2,39]): G ¼ 82 GPa, m ¼ 0:29,
lattice parameter a ¼ 0:287 nm, b ¼ 1

2
ah111i ¼ 0:25 nm,

q ¼ 7800 kg m�3, dislocation mass (per unit length of

dislocation line) m ¼ 2:4� 10�16 kg m�1, and

b � 5� 10�5 Pa s [42]. For these values of parameters,

we have considered the behavior of a low-angle tilt

boundary composed of N ¼ 15 dislocations and char-

acterized by tilt misorientation angle h ¼ 0:1 (�5.7�), in
which case x ¼ 0:1 and h ¼ 10b.

Some typical plots xðtÞ (for the 8th, the central dis-

location), have been calculated at different values of s
ranged from 0.5 to 1.54 GPa (see Fig. 2). For relatively

low stress values (here <1.53 GPa), the dislocation

makes some oscillations and is finally stabilized at some

equilibrium position which is shifted further with the

increasing stress value (curves 1–4 in Fig. 2). When the

stress magnitude becomes larger than a critical value sc
(here sc ¼ 1:53 GPa), the dislocation moves far away

from its initial position (curve 6 in Fig. 2).

Since our model deals with only low-angle bound-

aries, the maximum possible misorientation angle is

about 10�, in which case h � 5:7b. The low-angle

boundary should contain at least three (Nmin ¼ 3)

dislocations. In these circumstances, minimum bound-
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ary length (grain size), below which our model is inap-

plicable, equals dmin ¼ ðNmin þ 1Þh � 22:8b. In the ex-

emplary case of nanocrystalline Fe this gives dmin � 5:7
nm.

As noted earlier, the decay of the boundary begins at
its centre when the 8th (central) dislocation is released

from the boundary (Fig. 1(c)). Following our calcula-

tions, immediately after the central dislocation has

moved far enough from the initial boundary plane

(Fig. 1(c)), the boundary dramatically decays as a whole

(Fig. 1(d)). That is, all the dislocations composing the

boundary move far from its plane during a very short

time interval. In these circumstances, in order to calcu-
late critical parameters at which the low-angle boundary

decays as a whole, it is sufficient to characterize the

behavior of only one (central) dislocation.

In this manner, we have analyzed stability and decay

of low-angle tilt boundaries with different parameters.

This has allowed us to reveal critical values of the shear

stress sc at which the decay (Fig. 1) of low-angle tilt

boundaries with different characteristics occurs. The
dependence of sc on boundary misorientation h is shown
in Fig. 3, for N ¼ 5, 15, and 30. As follows from Fig. 3, s
grows in a tentatively linear way with rising h. It is in-
dicative of the crucial contribution of the boundary

misorientation and thereby the strength of the disclina-

tion dipole to the stability of low-angle tilt boundaries

under the shear stress action. Curves corresponding to

different values of parameter N at a constant value of h
are very close. This means that the dependence of sc on
the number N of dislocations and thereby the boundary

length dð¼ NhÞ at a constant value of h is very weak. In

this context, in particular, very short GBs in very small

grains and comparatively long GBs in large grains de-

cays at close values of the critical stress sc, if they have

the same misorientation parameters. At the same time,

the action of Frank–Read sources of lattice dislocations
is suppressed in very small grains of NCMs [43] in which
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Fig. 3. Dependence of the critical shear stress sc on the misorientation

angle h of a tilt boundary consisting of N ¼ 5, 15 and 30 edge dislo-

cations (from top to bottom).
only the decay of low-angle boundaries provides the

effective generation of mobile lattice dislocations. In this

event, sc represents a very important characteristic of

plastic flow in NCMs. In contrast, in conventional

coarse-grained polycrystalline materials, where Frank–
Read sources are activated at shear stresses lower than

sc, the decay of low-angle boundaries does not play any

essential role in plastic deformation processes.

The decay of a low-angle tilt boundary in a me-

chanically loaded nanocrystalline sample results in the

formation of moving lattice dislocations that carry local

plastic deformation and come to the neighbouring GBs

(Fig. 1(d)). The moving lattice dislocations elastically
interact with other lattice dislocations composing

neighbouring low-angle GBs. This interaction is able of

causing decays of the neighbouring low-angle GBs, ac-

companied by avalanche-like release of new mobile

lattice dislocations.

For illustration, let us briefly discuss the effects of the

lattice dislocations that are released from the decay of

the low-angle tilt boundary AB and move towards its
neighboring low-angle tilt boundary KL (Fig. 4). In

doing so, we distinguish the two cases. In the first case

(Fig. 4(a)), the moving dislocations released from the

decay of the boundary AB and immobile dislocations

composing the boundary KL have Burgers vectors with

opposite signs. The system in its initial state contains the

low-angle tilt boundary KL which is curved due to the

shear stress action. The lattice dislocations, released
from the decay of the neighboring low-angle tilt

boundary AB and shown by the open dislocation signs,

move towards the boundary KL which consists of the

lattice dislocations shown by the solid dislocation signs.

The moving dislocations are elastically attracted by

the immobile dislocations and some of them annihilate.

The annihilation reduces the tilt misorientation of the

boundary KL which thereby becomes able of decaying
at the given level of the shear stress. (We consider the

only case of xl < x, because, in the opposite case, the

critical shear stress for decay of the boundary KL with

misorientation x < xl is lower than that for decay of

the boundary AB. That is, in the case of x < xl, the

boundary KL would decay before the boundary AB.)

Fig. 4(b) illustrates the situation where the mobile

dislocations (released from decay of the low-angle tilt
boundary AB) have the same Burgers vector sign as the

immobile dislocations composing the low-angle tilt

boundary KL. The mobile dislocations elastically in-

teract with the immobile dislocations, providing the

shear stress concentration. In this case the effective value

of the shear stress acting on the immobile dislocations of

the boundary KL is larger than applied shear stress.

This effective shear stress is able of causing the decay of
the boundary KL.

To summarize, in the situations illustrated in Fig. 4,

the decay of a low-angle tilt boundary AB, followed by a



Fig. 4. Movement of lattice dislocations (open dislocation signs) released from decay of low-angle tilt boundary AB towards neighboring boundary

KL in the cases where moving and immobile dislocations have Burgers vectors of (a) the opposite signs and (b) the same sign.
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release of lattice dislocations, enhances the decay of the

neighboring low-angle tilt boundary KL. This effect

occurs due to the interaction between the mobile dislo-

cations released from decay of the low-angle tilt

boundary AB and the immobile dislocations composing

the low-angle tilt boundary KL.
4. Low-angle boundary in the stress field of decayed

neighbouring boundary

After a low-angle tilt boundary has decayed, it has

become a stress source of the disclination dipole type.

More precisely, two wedge disclinations of opposite

strength �xl are formed at the grain boundary junc-
tions after the low-angle boundary dislocations have

moved far from the initial boundary plane (Fig. 5). This

disclination dipole elastically interacts with defects lo-

cated in its vicinity. In particular, the disclination dipole

either attracts or repels lattice dislocations composing

neighboring grain boundaries, depending on geometry

of the defect system. This elastic interaction plays the

role of the key factor initiating decay of the neighboring
boundary KL, if the mobile dislocations released from

decay of the low-angle tilt boundary AB move in the

direction opposite to this boundary (Fig. 5). The two

basic variants of geometry of the two boundaries AB

and KL in the situation under consideration are shown

in Fig. 5. The boundary junction disclinations A and B
(resulted from decay of a low-angle tilt boundary) are

characterized by the disclination strength values �xl

and distant by dl from each other. The neighboring low-

angle tilt boundary KL is characterized by the misori-

entation x and the length d. The distance between the

decayed AB and neighbouring KL boundary planes is l.
The tilt misorientation x of the boundary KL is in the
corresponding compensating relationships with the tilt

misorientation parameters of the GBs adjacent to the

bottom and upper triple junctions K and L (Fig. 5),

respectively. In other words, the finite dislocation wall––

the neighbouring tilt boundary––in its initial state is

terminated by two wedge disclinations that completely

compensate for the disclination defects (shown as tri-

angles in Fig. 5) at the junctions K and L of its adjacent
GBs.

There is a situation (Fig. 5(a)) where the disclination

dipoles AB and KL have the same sign (the disclinations

located at the upper junctions A and K are both nega-

tive or, in equivalent terms, the disclinations located at

the bottom junctions B and L are both positive). In this

case, the stress field of the disclination dipole AB at-

tracts the dislocations, composing the grain boundary
KL, thus causing an enhancement of the decay of the

neighbouring low-angle tilt boundary KL.

The opposite situation (Fig. 5(b)) is realized when the

disclination dipoles AB and KL have opposite signs,

that is, the disclinations located at the upper junctions A

and K have strength values of opposite signs. (The same



Fig. 5. Two low-angle boundaries, boundary KL and decayed boundary AB, under the shear stress action. The disclinations (open and full triangles)

at boundary junctions A and B create the stress fields whose superposition enhances decay of low-angle boundary KL. Two variants of geometry of

boundaries are shown in (a) and (b).
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Fig. 6. Dependences of the critical shear stress sc (for decay of low-

angle tilt boundary KL in the stress field of decayed boundary AB)

on the misorientation angle h of tilt boundary KL, for the disclina-

tion strength values of xl ¼ 0�, 1�, 3�, and 5� (curves 1, 2, 3, and 4,

respectively).
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is true for the disclinations located at the bottom junc-

tions B and L; see Fig. 5(b).) In this case, the stress field

of the disclination dipole AB repels the dislocations,

composing the grain boundary KL, but here the decayed

boundary AB is located on the other side of the
boundary KL (compared to the previous configuration

in Fig. 5(a)). Therefore, the stress field of the disclina-

tion dipole AB causes an enhancement of the decay of

the neighbouring low-angle tilt boundary KL in this

case as well.

Thus, we can conclude that generally the decay of one

low-angle tilt boundary (AB) leads to softening of the

material in a local area in its vicinity.
In this paper, we will analyse in detail the exemplary

case shown in Fig. 5(a). In the case discussed, in order to

describe the behavior of lattice dislocations composing

the neighbouring boundary KL, we will use the same

calculation scheme as with the previously considered

decay of the low-angle tilt boundary AB (see Section 3).

The difference between these cases is in the expression

for the force Fi acting on the ith dislocation in a tilt
boundary. More precisely, in the case of the boundary

KL (Fig. 5(a)), the force Fi is given by formula (1) where

the stress field of the disclination dipole AB is added. In

doing so, we have the following expression for the force:

Fi ¼ b s

2
664 þ Db

XN
k¼1
k 6¼i

ðxi � xkÞfðxi � xkÞ2 � ðyi � ykÞ2g
fðxi � xkÞ2 þ ðyi � ykÞ2g2

� Dx
xiyi

x2i þ y2i

 
� xiðyi � dÞ
x2i þ ðyi � dÞ2

!

� Dxl
ðxi � lÞðyi þ dl=2� d=2Þ

ðxi � lÞ2 þ ðyi þ dl=2� d=2Þ2

 

� ðxi � lÞðyi � dl=2� d=2Þ
ðxi � lÞ2 þ ðyi � dl=2� d=2Þ2

!3775: ð3Þ
For the same values of parameters as with the previous

section, we have solved the system (2) with the right-

hand side given by formula (3), for various values of xl,

dl and l. The results are presented in Fig. 6 for the case

where dl ¼ d and the disclination dipole is distant by
l ¼ 50 nm from the low-angle tilt boundary KL. The

upper curve 1 in Fig. 6 corresponds to the dependence

scðhÞ in the situation when the disclination dipole is

absent (xl ¼ 0). Curves 2, 3 and 4 in Fig. 6 show the

dependences scðhÞ for xl ¼ 1�, 3� and 5�, respectively.
These curves are calculated in the range of xl 6 h6 10�.
The case of h < xl is not considered, because the critical

shear stress for decay of the boundary KL with mis-
orientation h < xl is lower than that for decay of the

boundary AB. As was expected, the critical shear stress

sc decreases with rising xl. This decrease is essential at

certain values of parameters h and xl, as illustrated in

Fig. 6. For instance, for h ¼ 8:5�, the critical stress sc at
xl ¼ 5� is lower by about 40% than that at xl ¼ 0�.



Fig. 7. Evolution of high-angle boundary with dislocations. (a) Ini-

tial state. (b) Bowing of boundary under the shear stress s action.

(c) Shear-stress-induced splitting of a grain boundary dislocation

results in both the formation of an immobile grain boundary dis-

location and emission of a partial Shockley dislocation into the

grain interior. A stacking fault is formed behind the moving

Shockley dislocation.
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It should be noted that the lattice dislocations re-

leased from decay of a low-angle tilt boundary KL in

the stress field of the disclination dipole AB (Fig. 5(a))

can be stopped at the neighboring decayed boundary

AB plane. The dislocations reach the boundary AB
plane where they become immobile due to the elastic

interaction with the disclination dipole AB. In other

words, the dislocations transfer from one low-angle tilt

boundary KL to another (previously decayed) bound-

ary AB. Our calculations show that this phenomenon

comes into play when misorientation values charac-

terizing the boundaries KL and AB are close (x � xl)

and/or the boundaries are closely distant from each
other (l � d).

To summarize, the stress field of a decayed low-angle

tilt boundary, modeled as the stress field of the discli-

nation dipole (Fig. 5), strongly influences the decay of its

neighbouring low-angle boundary. In some cases, this

influence significantly enhances the decay of a low-angle

tilt boundary. The phenomenon in question is able of

causing plastic flow localization (carried by lattice dis-
locations released by low-angle tilt boundaries) in de-

formed NCMs containing high-density ensembles of

low-angle GBs.
5. Evolution of high-angle grain boundaries under the

shear stress action in deformed nanocrystalline materials

Consider now the behavior of high-angle GBs in de-

formed NCMs. As shown experimentally, high-angle

boundaries bow (become curved) [1,33] and emit partial

lattice dislocations [32–35] that can provide deformation

twinning in mechanically loaded NCMs. To account for

these experimental data, here we will extend our theo-

retical model of the stress-induced evolution of low-

angle tilt boundaries (see Sections 2–4) to the case of
high-angle GBs containing GB dislocations.

In general, high-angle GBs contain intrinsic disloca-

tions associated with misorientation mismatch at such

boundaries and characterized by small Burgers vectors

being lattice vectors of displacement-shift-complete lat-

tices characterizing translational symmetries of GBs;

see, e.g., [25]. (In short, a displacement-shift-complete

lattice of a GB is formed by relative displacements of
two crystals adjacent to the boundary, which conserve

GB symmetry; for details, see [25].) Such dislocations in

high-angle GBs cannot glide easily in the grain interior,

in contrast to lattice dislocations composing low-angle

tilt boundaries. Therefore, the decay of high-angle GBs

under the shear stress action is not possible. At the same

time, following experimental data [1,32–35], high-angle

GBs bow (become curved) and emit partial dislocations
into adjacent grain interiors in mechanically loaded

NCMs. In this section, we elaborate a theoretical de-

scription of bowing and dislocation emission (Fig. 7),
using the approach developed in the previous sections to

analyze the behavior of low-angle tilt boundaries.

In the framework of our model, first we will describe

the GB bowing, that is, transformation of a high-angle

GB from its initial straight state (Fig. 7(a)) into the

curved state (Fig. 7(b)) under the shear stress action. In

doing so, we will use dislocation dynamics equations (2),

as with a low-angle tilt boundary. The movement of a
high-angle GB, resulting in its curvature, is a kind of

shear-stress-induced GB migration accompanied by an

increase of the GB length. The increase in the GB length

leads to an increase of the GB energy by amount of

DWgb, which causes the hampering force F gb for the GB

bowing. This is taken into account in formula (5) de-

scribing the force acting on GB dislocations in a high-

angle GB under the shear stress action.
Notice that intrinsic GB dislocations in high-angle

GBs are defined [25] as dislocations associated with

deviation of the boundary tilt misorientation from that

of a low-energy (favorable) GB in the same material. In

the context of this definition, the boundary tilt misori-

entation h is in the following relationship (different from

the standard Frank formula) with the parameters of the

GB dislocation structure [25]:

2 sin
h� h0

2

� �
¼ bgb=h: ð4Þ

Here bgb denotes the Burgers vector magnitude for a GB

dislocation, and h0 is the tilt misorientation of the low-

energy (favorable) boundary treated to be dislocation-
free. Formula (4) looks like the Frank formula, in which

the boundary misorientation h is replaced by a difference

h� h0 in the tilt misorientation between a GB under

consideration and the low-energy boundary (where h0 is
close to h).
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During the bowing of a high-angle GB, the dis-

placements of GB dislocations from their initial (equi-

librium) positions (Fig. 7(a)) to new positions in the

curved state of the GB (Fig. 7(b)) give rise to re-ar-

rangement of the stress field created by these disloca-
tions. This re-arrangement is also strongly affected by

the misorientation balance at the junctions of GBs. As

with low-angle tilt boundaries described in the previous

sections, the triple junctions adjacent to the GB are as-

sumed to be compensated. That is, the junctions A and

B play the role of stress sources compensating for the

stress field of a finite dislocation wall consisting of GB

dislocations with Burgers vectors value bgb. In these
circumstances, the upper and bottom junctions A and B

adjacent to the high-angle tilt boundary with GB dis-

locations carrying tilt h� h0 are described as those

containing disclinations that completely compensate for

the stress field of a finite dislocation wall consisting of

GB dislocations. According to formula (4), the com-

pensating disclinations at junctions A and B are char-

acterized by the strength values x ¼ h� h0 and
�ðh� h0Þ, respectively.

With the above analysis of geometry of a high-angle

GB and its dislocations, we describe bowing of the

boundary as a process related to movement of GB dis-

locations under the shear stress action, using the same

scheme as with movement of lattice dislocations com-

posing a low-angle tilt boundary (see Sections 2–4). In

this case, we use dislocation dynamics equations (2) with
the force Fi (on the right-hand side of Eq. (2)), written in

the following form:

Fi ¼ sbgb

þ Dbgb bgb
XN
k¼1
k 6¼i

ðxi � xkÞfðxi � xkÞ2 � ðyi � ykÞ2g
fðxi � xkÞ2 þ ðyi � ykÞ2g2

2
4

� x
xiyi

x2i þ y2i

 
� xiðyi � dÞ
x2i þ ðyi � dÞ2

!35� F gb
i :

ð5Þ

Here F gb
i is the hampering force that acts on the i th GB

dislocation due to the bowing-induced increase in the

GB length and the corresponding increase DWgb of the

GB energy. The energy increase DWgb is given by
DWgb ¼ cgbDlgb, where cgb is the specific energy (per unit

area) of the GB, and Dlgb ¼ lgb � d is the bowing-in-

duced increase in the GB length from its initial value d
to the value lgb characterizing the curved state of the

boundary. The curved line of the GB (Fig. 7(b)) is

well approximated as that consisting of short

straight segments which join neighboring GB disloca-

tions. In this situation, the length of the curved
boundary is given by the following approximate for-

mula: lgb �
PNþ1

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xk�1Þ2 þ h2

q
, where x0 ¼ xNþ1 ¼
0. With this formula and the above formula for the GB

energy increase DWgb, we find the hampering force F gb
i to

be as

F gb
i ¼ dðDWgbÞ

dxi

¼ cgb
d
dxi

XNþ1

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xk�1Þ2 þ h2

q 
� d

!

¼ cgb
xi � xi�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xi�1Þ2 þ h2
q

0
B@ þ xi � xiþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xiþ1Þ2 þ h2
q

1
CA:

ð6Þ

Solution of the system (2) with the force given by for-
mulas (5) and (6) allows us to find new equilibrium

positions ðx0i; y0iÞ, i ¼ 1; 2; . . . ;N , of GB dislocations

and, as a corollary, an equilibrium configuration of the

high-angle GB in its curved state (Fig. 7(b)). This con-

figuration is characterized by the distance xmax between

the center point of the curved boundary and the initial

straight boundary line. With the solution of dislocation

dynamics Eqs. (2), (5) and (6), we have calculated the
dependences of xmax on the disclination strength x (see

Fig. 8(a)) and the GB length d (see Fig. 8(b)). As follows

from Figs. 8(a) and (b), these dependences are close to

linear ones.

Now let us consider the emission of partial disloca-

tions from a curved high-angle GB under the shear stress

action. For definiteness, we assume that one of the GB

dislocations located at the curved boundary splits into an
immobile GB dislocation and a mobile Shockley dislo-

cation that moves in the adjacent grain interior

(Fig. 7(c)). The partial Shockley dislocation is charac-

terized by its Burgers vector with the edge component be
and screw component bs. Its movement is accompanied

by the stacking fault formation behind it (Fig. 7(c)). The

stacking fault is characterized by the length lp and the

specific energy c (per unit area of the fault). The immo-
bile GB dislocation located at the position of the initial

dislocation is characterized by its Burgers vector with the

edge component bgb � be and screw component �bs.
In our previous consideration of bowing and decay of

low-angle tilt boundaries (see Sections 2–4), we have

neglected the misorientation of dislocation glide planes

relative to the normal to the tilt boundary plane. It was

assumed that lattice dislocations move along their glide
planes which are perpendicular to the boundary plane.

This assumption is correct for the case of low-angle

boundaries, but not for high-angle GBs. Therefore, in

our analysis of the dislocation emission from high-angle

GBs (Fig. 7(c)), we consider movement of the Shockley

dislocation along a glide plane misoriented by h=2 rel-

ative to the normal to the GB plane in its initial state

(Fig. 7(a)). This corresponds to the case of symmetric tilt
boundaries.
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Let us calculate the energy characteristics of the dis-

location emission considered as a transformation of the
system from its initial state (Fig. 7(b)) to the final state

(Fig. 7(c)). The dislocation emission is energetically fa-

vorable, if the energy difference

DW ¼ W2 � W1 � As ð7Þ
is negative (DW < 0). Here W1 and W2 are the energies of

the defect system in its initial (Fig. 7(b)) and final

(Fig. 7(c)) states, respectively, and As is the work spent

to transfer the Shockley dislocation under an external

stress s.
The energy W1 consists of the four terms:

W1 ¼ W x
el þ W gb

el þ W x–gb
int þ NW gb

c ; ð8Þ
where W x

el denotes the elastic energy of the disclination

dipole, W gb
el the sum elastic energy of the GB disloca-

tions, W x–gb
int the energy of interaction between the dis-

clination dipole and the GB dislocations, and NW gb
c the

sum energy of the GB dislocation cores (with N being

the number of dislocations located at the high-angle

boundary).
In order to calculate the energy W2 of the defect

system shown in Fig. 7(c), it is convenient to represent

the formation of the Shockley dislocation as that of two

dislocation dipoles: a dipole of edge dislocations and a

dipole of screw dislocations (Fig. 9). In the framework
of this representation, the energy W2 consists of twelve

terms:

W2 ¼ W x
el þ W gb

el þ W x–gb
int þ W dip–e

el þ W dip–s
el þ W x–e

int

þ W gb–e
int þ ðN � 1ÞW gb

c þ W e
c þ 2W s

c þ W dif
c þ clp:

ð9Þ

Here W dip–e
el and W dip–s

el are the self elastic energies of the

edge and screw dislocation dipoles, respectively; W x–e
int

and W gb–e
int are the energies of elastic interaction of the

edge dislocation dipole with the disclination dipole and

the GB dislocations, respectively; W e
c and W s

c are the

energies of the edge and screw components of the
Shokley dislocation cores, respectively; W dif

c the core

energy of the immobile (difference) GB dislocation re-

sulted from the splitting of the initial GB dislocation.

With formulas (7)–(9), the characteristic energy dif-

ference DW can be written as follows:

DW ¼W dip–e
el þW dip–s

el þW x–e
int þW gb–e

int �W gb
c

þW e
c þ2W s

c þW dif
c þ clp�As: ð10Þ

The self energies and the interaction energies figuring on

the right-hand side of formula (10) are calculated in a

standard way as the works spent to generate the defects

in the stress fields created by the same and other defects,

respectively; see, e.g., [20,44]. The defect core energies

are given by standard approximate formulas which may

be found in [40]. The work As is given by As ¼ sx0y0belp,
where sx0y0 is the component of the external shear stress
tensor written in the Ox0y0 coordinate system (Fig. 9).

After some algebra operating with the above standard

formulas, we find the following expression for DW :

DW ¼ D
2

b2e 2 ln
lp � be
be

��
þ 1

�

þ 2ð1� mÞb2s ln
lp � bs
bs

�
þ 1

�
� b2gb þ b2dif

�

þ be

Z lp

be

rx
x0y0 ðx0; y0

h
¼ 0Þ þ rgb

x0y0 ðx0; y 0 ¼ 0Þ
i
dx0

þ lpðc� sx0y0beÞ: ð11Þ
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Here bdif ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbgb � be cos h=2Þ2 þ b2e sin

2 h=2
q

is the

Burgers vector magnitude that characterizes the immo-

bile (difference) GB dislocation resulted from the split-

ting of the pre-existent GB dislocation (Fig. 9); rx
x0y0 and

rgb
x0y0 are the components of the stress tensors of the

disclination dipole and the GB dislocation wall, re-

spectively. The components are written in the coordinate

system Ox0y0 associated with the pre-existent GB dislo-

cation (Fig. 9). Transformation of the stress tensor

components written in the coordinate system Oxy
(Fig. 7) into those written in the coordinate system Ox0y0

(Fig. 9) is described in the standard way as follows:

rx0y0 ðx0; y0Þ ¼ rxyðx; yÞ cos h�
sin h
2

½ryyðx; yÞ � rxxðx; yÞ�;

ð12Þ
where x ¼ x0 cos h=2� y0 sin h=2þ xd and y ¼ �x0 sin h=
2þ y0 cos h=2þ yd . Here xd and yd are the coordinates of
the pre-existent GB dislocation; they are defined using a

description of the bowing of the high-angle boundary

(see an analysis in the first part of this section). In for-

mula (11), the core radii of dislocations are assumed to

be equal to the Burgers vector magnitudes of these dis-
locations. Calculation of the integral figuring on the

right-hand side of formula (11) is a routine elementary

procedure. It results in a very space-consuming expres-

sion which therefore is not presented here.

With formula (11), we have calculated the character-

istic energy difference DW in the exemplary case of pure

nanocrystalline Cu. In doing so, we have used the fol-

lowing characteristic values of parameters: G ¼ 48 GPa,
m ¼ 0:34, the crystal lattice parameter a ¼ 3:6 �A, the

typical Burgers vector a
2
h110i having the magnitude

b ¼ 2:55 �A, q ¼ 8920 kg m�3, m ¼ 2:9� 10�16 kg m�1,

b ¼ 5� 10�5 Pa s, c ¼ 0:06 J m�2. The Burgers vector

magnitude characterizing an elementary mobile GB

dislocation is assumed to be bgb ¼ b=2. The screw and

edge components of the Burgers vector for a Shockley

dislocation are bs ¼ a=ð2
ffiffiffi
6

p
Þ and be ¼ b=2, respectively.

The specific energy cgb of a high-angle boundary depends
on the tilt misorientation h0 of a low-energy boundary.

Following [45], the R ¼ 5=ð210Þwith h0 ¼ 36:87� in Cu is

characterized by the specific energy cgb ¼ 0:9 J m�2.

Generally speaking, values of cgb in Cu vary in the range

from 0.7 to 1 J m�2.

A typical curve DW ðlpÞ is shown in Fig. 10(a). It has

been calculated for the case when a high-angle boundary
contains 20 GB dislocations, for s ¼ 1 GPa, x ¼ 3� and
the above values of other parameters. It may seem that

the taken value 1 GPa for s is too high for Cu. However,

it has recently been shown by atomic scale simulations

[21,46] that this local stress level is real for nanocrys-

talline Cu with grain size ranging from roughly 5 to

50 nm. In this case, s is treated as the local stress acting

in the area under consideration. Fig. 10(a) characterizes
the splitting of the 5th GB dislocation numerated from
the lower GB junction; it is the most favorable splitting
process compared to those of other GB dislocations.

As follows from Fig. 10(a), an energetic barrier exists

at the beginning of the curve DW ðlpÞ, which hinders the

GB dislocation splitting. Two terms contribute to the

energetic barrier: a term related to the elastic interaction

between the dislocations and disclinations, and a term

describing dramatic change in the dislocation core en-

ergy due to the splitting. The interaction energy contri-
bution to the barrier is relatively low; its typical values

are in the range from 0.01 to 0.2 eV/nm. In addition, its

maximum corresponds to the distance lp � ð1� 2Þa
between the immobile and mobile partial dislocations.

The classic linear elasticity approach used in our cal-

culation of the interaction energy is too approximate at

this length scale. In these circumstances, it is senseless to

make a more detailed analysis of relationship between
the energetic barrier height and the parameters of the

system under consideration. With results of our analysis,

we can just conclude that the interaction energy causes a

small contribution (6 0.2 eV/nm) to the energetic bar-

rier for partial dislocation movement in vicinity of the

immobile GB dislocation. The second (core) contribu-

tion is characterized by a typical value about 0.2 eV/nm

and does not depend on lp and other parameters.
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To summarize, there is an energetic barrier for the

splitting of GB dislocations in high-angle boundaries

under the shear stress action. Its height is about 0.2–0.4

eV/nm. With the closest interatomic distance �0.25 nm,

we find that the energy barrier per one atom is about
0.05–0.1 eV. This value is close to the characteristic

energy �0.025 eV of thermal fluctuations at room tem-

perature. In these circumstances, the energetic barrier

can be easily overcome by GB dislocations.

The dependence DW ðlpÞ shown in Fig. 10(a) has also

a minimum that causes the equilibrium distance between

the partial dislocations resulted from the splitting. In the

case illustrated in Fig. 10(a), the equilibrium distance is
about 23a. Notice, however, that a minimum is inherent

to the dependence DW ðlpÞ in only certain ranges of

parameters of the system, but not always. For illustra-

tion, let us consider the dependence DW ðlpÞ in Fig. 10(b)

which characterizes the splitting of the 1st dislocation

and is calculated for the same values of parameters as

the dependence shown in Fig. 10(a). The energetic bar-

rier for the splitting of the 1st dislocation––a maximum
magnitude of the curve shown in Fig. 10(b)––is larger

that that characterizing the splitting of the 5th disloca-

tion (Fig. 10(a)). In this case, the splitting of the 1st

dislocation is less probable compared to the splitting of

the 5th dislocation. At the same time, there is no mini-
40 60 80 100

42

4

6

8

10

12

∆W, eV/nm

20

1

2

3

lp /a

40 60 80 100

1
5

10

15

20
4 3

20

∆W, eV/nm

2

lp /a

(a)

(b)

Fig. 11. Dependences of the characteristic energy change DW on the

path lp moved by the 5th partial Shockley dislocation in the case of

high-angle boundary containing N ¼ 20 grain boundary dislocations,

for (a) x ¼ 3� and different values of the external shear stress s ¼ 0:4,

0.6, 0.8, and 1.0 GPa (curves 1, 2, 3 and 4, respectively); and (b) s ¼ 1

GPa and different values of the disclination strength x ¼ 3�, 5�, 7�, and
9� (curves 1, 2, 3 and 4, respectively).
mum of the dependence DW ðlpÞ in Fig. 10(b). This

means that the equilibrium splitting distance is absent,

and the partial dislocation resulted from the splitting of

the 1st dislocation moves in the adjacent grain interior

until it reaches some structural obstacle (e.g., another
GB) for its movement.

Now let us examine sensitivity of the dependence

DW ðlpÞ to the external shear stress s. The curves DW ðlpÞ
are presented in Fig. 11(a) for cgb ¼ 0:9 J m�2, x ¼ 3�,
N ¼ 20 and different values of the external shear stress

s ¼ 0:4, 0.6, 0.8 and 1 GPa. As follows from Fig. 11(a),

an increase in s enhances the splitting of a GB disloca-

tion, followed by emission of a Shockley dislocation into
the grain interior. At the same time, the dislocation

emission is energetically unfavorable at low values of s.
The dependence DW ðlpÞ is also very sensitive to the

value of the disclination strength x. The curves DW ðlpÞ
are shown in Fig. 11(b) for s ¼ 1 GPa, N ¼ 20, cgb ¼
0.9 J m�2 and different values of x ¼ 3�, 5�, 7� and 9�.
As follows from Fig. 11(b), the dislocation emission

from high-angle boundary is hampered with rising x.
It is worth noting that our model is applicable at

relatively small s and large x. For higher stresses (s >
1 GPa) and lower disclination strengths (x < 3�), our
model high-angle boundary decays which means that

the model becomes incorrect.
6. Conclusions

In this paper, we have theoretically described trans-

formations of GBs in deformed NCMs. In particular, it

has been shown that the decay of a low-angle tilt

boundary in a mechanically loaded nanocrystalline solid

gives rise to local plastic deformation in the grain where

the low-angle boundary decay has occurred and in its

neighbouring grains. Lattice dislocations released from
the decayed low-angle boundary enhance decay of

neighboring low-angle tilt boundaries (Fig. 4). Also,

decay of a low-angle tilt boundary leads to the forma-

tion of a dipole of disclinations at the grain boundary

junctions adjacent to the decayed boundary (Figs. 1(d),

4 and 5). The disclination dipole elastically interacts

with the lattice dislocations composing neighboring low-

angle tilt boundaries and enhances decay of these
boundaries (Fig. 5). Thus, the shear-stress-induced de-

cay of a low-angle tilt boundary can trigger the forma-

tion of a shear band (thin, sheet-like region where high

plastic strain is localized) in the nanocrystalline solid. In

this event, the critical shear stress sc characterizes the

initial stage of local plastic deformation occurring via

generation and development of shear bands. According

to our calculations (see Fig. 3), the shear stress sc ranges
from 0.5 GPa (for h � 2�) to 2.5 GPa (for h � 10�), that
characterizes the decay of low-angle tilt boundaries with

different misorientation parameters in nanocrystalline
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Fe. Its mean value hsci ¼ 1:5 GPa coincides with the

experimentally measured [39] value of the shear stress at

which shear bands with elongated grain structure are

formed in nanocrystalline Fe. It is worth noting that a

similar process of decay of a low-angle boundary has
recently been observed in molecular dynamics simula-

tions [47] of plastic deformation in nanocrystalline Ni.

Also, in this paper, we have theoretically examined

the bowing of high-angle GBs and emission of partial

dislocations from such boundaries under the shear stress

action (Fig. 7). Both these transformations are found to

be highly sensitive to the shear stress s that acts on a

high-angle grain boundary and the parameter x char-
acterizing the density of GB dislocations at the bound-

ary (Fig. 11). The results of our theoretical model

account for experimental observations of curved GBs

[1,33] and emission of partial dislocations by GBs [32–

35] in deformed nanocrystalline metals. The latter has

also been observed in molecular dynamics simulations

of plasticity processes in nanocrystalline Al [23,24], Cu

[21,22,46–50] and Ni [22,47–52].
Our results are indicative of the important role of the

behavior of intrinsic GB dislocations in the transfor-

mations of high-angle boundaries. In NCMs, where GBs

serve as effective obstacles for movement of lattice dis-

locations, and the action of lattice dislocation sources in

grain interiors is suppressed, the external stress level is

high enough to drive movement and/or splitting of in-

trinsic GB dislocations at high-angle GBs. As a result,
high-angle boundaries undergo the specific transforma-

tions which are capable of essentially modifying the

actions of deformation and fracture mechanisms (highly

sensitive to GB structural geometry [19,20,53]) in

NCMs.
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