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Abstract

Systematic experiments have been performed to characterize defect structures in deformed Gum Metal, a special titanium alloy with
high strength, low Young’s modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. Results
from high-resolution transmission electron microscopy characterization reveal nanodisturbances (planar nanoscopic areas of local shear)
as typical elements of defect structures in deformed Gum Metal. A theoretical model is suggested describing nanodisturbances as nano-
scale dipoles of non-conventional partial dislocations with arbitrary, non-quantized Burgers vectors. It is shown theoretically that the
homogeneous generation of nanodisturbances is energetically favorable in Gum Metal, where they effectively carry plastic flow.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, Saito et al. developed a new multi-functional
b-titanium alloy with high strength, low Young’s modulus
and excellent cold workability [1,2]. This alloy, Gum
Metal, is composed of group Va additional elements, such
as Ta, Nb and V, group IVa additional elements, such as
Zr and Hf, a small amount of oxygen, and the balance
Ti. Further, the chemical composition is characterized by
three electronic magic numbers: (i) a valence electron num-
ber (e/a) of 4.24; (ii) a bond order (Bo value) based on the
DV-Xa method of 2.87; (iii) an electron orbital energy level
(Md value) of 2.45. Typical compositions of Gum Metal
which fulfill the above conditions are described as follows:
Ti–12Ta–9Nb–3V–6Zr–1.2O, Ti–23Nb–0.7Ta–2Zr–1.2O
and Ti–20Nb–3.5Ta–3.4Zr–1.2O (at.%). It is important
that the unique properties of the alloy appear after sub-
stantial cold working; indeed, one of the remarkable prop-
erties of Gum Metal is its excellent cold workability. The
alloy shows much less work hardening than ordinary
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metals even up to a reduction in area of 90%. Such cold
workability can be related to the unique deformation
mechanism of the alloy [3].

Saito et al. observed the lattice image after cold swaging
by 90%, obtained using high-resolution transmission elec-
tron microscopy (HRTEM) with an electron beam direc-
tion parallel to Æ110æ [1,2]. It was shown that
concentrated lattice disturbances of a nanometer scale were
distributed along Æ111æ{112}, while there were few mobile
dislocations. These nanodisturbances were different from
the usual dislocations because their slip displacement along
Æ1 11æ{112} was much smaller than the lattice spacing of
{111}. It was also observed at the macroscale that unique
faults were formed in Gum Metal during plastic deforma-
tion. The deformation structure exhibited giant planar
faults after tensile deformation by 10% [1,2]. It was con-
firmed by crystal orientation analysis that these giant faults
were formed almost along a plane in a direction orientated
45� from the tensile direction, but were not completely par-
allel to each other. It was also confirmed that there was a
vast amount of strain accumulation in the vicinity of the
giant faults, which was characterized by a crystallographic
rotation of 20–30� from the neighboring area.
rights reserved.
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It has been noted that the ideal shear stress of the alloy
can be estimated as approximately equal to the actual
strength [1–3]. Usually, the ideal strength for most metals
is several tens of times larger than the actual strength,
and it is considered that dislocation activity plays an
important role in plastic deformation with a much lower
stress than the ideal shear stress. In contrast, it has been
implied that the deformation process from the ideal shear
can proceed due to the much lower ideal strength in the
case of Gum Metal [3]. Previous results indicated the exis-
tence of nanodisturbances and the formation of giant faults
in Gum Metal. It is considered that nanodisturbances can
be formed under the specific condition that plastic defor-
mation proceeds by ideal shear. Therefore, the deformation
process with nanodisturbances is an interesting focus for
revealing this unique deformation mechanism, but an expli-
cit explanation of the deformation process remains to be
elucidated. In the present paper these nanodisturbances
are investigated using HRTEM to examine the deforma-
tion mechanism. The validity of the presence of nanodis-
turbances is examined by theoretical analysis and the
reason why the generation of nanodisturbances prevails
over usual dislocations is discussed. Also, in the concluding
section, the notion of nanodisturbances is briefly consid-
ered as useful in a description of enhanced intergrain
sliding in nanocrystalline materials showing ductility and
superplasticity.

2. Elastically softened directions and low ideal strengths

expected from calculations

In a previous paper, calculation analysis based on first
principles with the ultrasoft pseudo-potential method indi-
cated that Gum Metal has a unique elastic anomaly with
several elastically softened directions [4]. According to
the analysis of elastic constants of body-centered cubic
(bcc) Ti–X (X = Nb, Ta, V, Mo) binary alloys with varying
valence electron number e/a, the subtraction of two elastic
constants, c11–c12, is nearly equal to 0 around an e/a of
Table 1
Young’s and shear moduli of each direction for bcc metals

Young’s moduli

Monocrystal Æ001æ Tension

E001 ¼ ðc11�c12Þðc11þ2c12Þ
c11þc12

Æ011æ Tension

E011 ¼ c11þc12

ðc11þ2c12Þðc11�c12Þ þ
1
4

1
c44
� c11

�n

Æ111æ Tension

E111 ¼ c11þc12

ðc11þ2c12Þðc11�c12Þ þ
1
3

1
c44
� c11

�n

Polycrystal E ¼ ðc11�c12þ3c44Þðc11þ2c12Þ
2c11þ3c12þc44
4.24. The same elastic anomaly occurs in Gum Metal
because its e/a is approximately 4.24.

Young’s moduli and shear moduli along some orienta-
tions in monocrystals and polycrystals can be estimated
from the elastic constants c11, c12 and c44 using the formula
in Table 1. If c11–c12 is nearly equal to 0, a tensile elastic
modulus of Æ1 00æ(E100) and shear elastic moduli of
Æ11 0æ{110} and Æ111æ{11 0}, {112} or {123} (G110 and
G111) of the alloy would be nearly equal to 0 simulta-
neously. Ideal strengths can also be estimated to be very
small from elastic constants. In the case of bcc metals,
the ideal strengths for tensile separation of {001}, rmax,
and for shear along Æ1 11æ{110}, {112} or {12 3}, smax,
are given by the following approximations [5]: rmax � 0.083
E100 and smax � 0.11G111. Therefore, Gum Metal can attain
very small ideal strengths from the elastic anomaly.

3. Experimental observations of nanodisturbances

3.1. Experimental

To investigate nanodisturbances, we employed the
following specimens: Gum Metal specimen (Ti–20Nb–
3.5Ta–3.4Zr–1.2O) swaged by 90%, Gum Metal specimens
rolled by 1% and 10%, and a b-Ti alloy specimen (Ti–14V–
5.4Al–2.8Cr–1.2Sn) rolled by 1% which is a reference for
comparison of phase stability between Gum Metal and
a conventional b-Ti alloy. The valence electron numbers
e/a of the Gum Metal specimens and the b-Ti alloy speci-
men are 4.24 and 4.14, respectively. Every specimen was
cold worked after solution heat treatment for 30 min at
900 �C. The swaged specimen was used to investigate
details in the deformation structure after severe cold work-
ing, while the rolled specimens were used to study the
deformation structure at an early stage of plastic
deformation.

The specimens for TEM observation were prepared
using the focused ion beam (FIB) method. HRTEM obser-
vation was carried out on the swaged Gum Metal specimen
Shear moduli

Along Æ001æ on {010}

G001 = c44

Along Æ011æ on {011}

2
�c12

�o�1
G011 ¼ c11�c12

2

Along Æ111æ on {011}{112}{123}

2
�c12

�o�1
G111 ¼ 3c44ðc11�c12Þ

c11�c12þ4c44

G ¼ c11�c12þ3c44

5
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using a JEM-ARM1250 instrument (JEOL) with an accel-
eration voltage of 1250 kV. To compare deformation struc-
tures between the rolled Gum Metal and the b-Ti alloy
specimens, lattice images were obtained using a H-
9000NAR instrument (Hitachi) with an acceleration volt-
age of 300 kV. Observations around giant faults in the
Gum Metal specimen rolled by 10% were also carried out
using a JEM 2010FEF instrument (JEOL) with an acceler-
ation voltage of 200 kV for a detailed characterization of
nanosize faults near giant faults.

3.2. Results

Fig. 1 shows lattice images of the Gum Metal specimen
swaged by 90%. Several lattice images were taken to reveal
differences in lattice structures among the observation
areas. While the outline of a defect structure after severe
plastic deformation has been introduced in previous papers
[1,2], detailed features of faults can be explained by these
Fig. 1. High-resolution lattice images of the Gum Metal specimen swaged by
differences among the observation areas.

Fig. 2. TEM images of the cross-sectional observations for the b-Ti alloy spec
10% (c). The rectangular regions marked in each image indicate the observati
new images. It is obvious that there are differences in the
amount of local structural change depending on the obser-
vation area. There is no distorted lattice arrangement in
image (a), which signifies very little strain localization in
this observation area, while other images show clear local-
ized distortion in the lattice arrangements compared to
image (a). Images (b) and (c) show local disarrangement
in (110) planes that is made by the shear along
Æ1 11æ{112}, one of the elastically softened directions of
Gum Metal. Images (d) and (e) show more significantly dis-
torted areas with larger local strains than those of images
(b) and (c); here the shear direction is also Æ11 1æ{112}.
It can also be seen that the sizes of the local shears in these
images are restricted to the nanoscale.

Cross-sectional observations for the b-Ti alloy specimen
rolled by 1% and the Gum Metal specimens rolled by 1%
and 10% were made to investigate structures around giant
faults. These images are shown in Fig. 2. Figs. 2(b) and (c)
indicate that there are some giant faults that divide the
90% with an electron beam direction parallel to Æ110æ. The images reveal

imen rolled by 1% (a) and the Gum Metal specimens rolled by 1% (b) and
on place for the lattice image taken at low resolution in Fig. 3.
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initial grain into subgrains. Fig. 3 shows comparisons of
low-resolution images of the rolled specimens; images
taken at designated rectangular regions in Fig. 2. It can
be seen that the Gum Metal specimens show areas with dis-
torted lattice arrangements compared with the b-Ti alloy;
local changes in black and white contrast are more fre-
quently observed in the Gum Metal specimens. Because
the contrast changes correspond to local changes in crystal
orientation, the deformation structure in Gum Metal has a
very inhomogeneous distribution of strain even after the
1% deformation. The inhomogeneous distribution of strain
becomes more localized by the progress of plastic deforma-
tion, as shown for the 10% rolled specimen.

We compared the lattice arrangement of the b-Ti alloy
specimen rolled by 1% with those of the Gum Metal spec-
imens rolled by 1% and 10% from high-resolution lattice
images as shown in Fig. 4. The image of the b-Ti alloy spec-
imen (Fig. 4(a)) includes no local disarrangement after roll-
ing by 1%, while that of the Gum Metal specimen
Fig. 3. Comparisons of low-resolution lattice images of a b-Ti alloy specimen
Each image was taken at the rectangular region designated in Fig. 2 with an

Fig. 4. High-resolution lattice images of the b-Ti alloy specimen rolled by 1%
images were taken at the same regions of the images in Fig. 3 with an electro
(Fig. 4(b)) includes distortion of the lattice arrangement
at the same amount of deformation. Similar distortions
of the lattice arrangement are also seen in the images of
the Gum Metal specimen rolled by 10%, as shown in Figs.
4(c)–(e). There are also significant differences in the magni-
tudes of the distortion of the lattice arrangements among
the images in Figs. 4(c)–(e). This feature is the same as that
for the deformed structure shown in Fig. 1, which revealed
inhomogeneous distributions of distortions depending on
the observation area. Since the direction of the electron
beam is parallel to Æ1 11æ, the images show local disarrange-
ment in (110) planes. They look similar to the images con-
taining nanodisturbances in the swaged specimen, in which
the nanodisturbances were formed along the elastically
softened directions.

Fig. 5 shows the observation area for a giant fault in the
Gum Metal specimen rolled by 10%. The image shows an
area in the vicinity of the giant fault, which was thinned
by a FIB to obtain a lattice image. The lattice image of
rolled by 1% (a) and Gum Metal specimens rolled by 1% (b) and 10% (c).
electron beam direction parallel to Æ111æ.

(a) and the Gum Metal specimens rolled by 1% (b) and 10% (c–e). These
n beam direction parallel to Æ111æ.



Fig. 5. TEM images of a cross-sectional observation of the Gum Metal
specimen rolled by 10%. The image shows the thinned area in the vicinity
of the giant fault by FIB in order to obtain a lattice image. The lattice
image close to the giant fault was taken at the observation area. It is
shown in Fig. 6.
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the Gum Metal specimen rolled by 10% in Fig. 6 was taken
at the area designated in Fig. 5. In this lattice image, a lar-
ger accumulation of local strain is found in the area close to
the giant fault than in the images in Fig. 4. There are also
many inhomogeneously distorted areas seen in Fig. 6(a)
that are similar to those observed in Fig. 4. There is
another feature: dipoles of partial dislocations can be
observed as shown in the extended images in Figs. 6(b)
and (c). These dipoles of partial dislocations can be formed
by shears along Æ110æ{110}. It is most remarkable that the
formation of not only nanodisturbances but also dipoles of
partial dislocations were observed. It is thought, from the
first-principles calculations, that nanodisturbances can be
formed in several directions, such as Æ110æ{110} and
Æ111æ{110}, {112} or {123}, because they can be gener-
ated along elastically softened directions. We speculate that
Fig. 6. High-resolution lattice images in the vicinity of the giant fault in the Gu
area designated and shown in Fig. 5 with an electron beam direction parallel
images (b) and (c) show dipoles of partial dislocations.
the nanodisturbances observed in the rolled Gum Metal
specimens in Fig. 4 might be on Æ1 10æ{110}. In the follow-
ing sections, we examine theoretically the possibility of
nanodisturbance generation along the elastically softened
directions.

Finally, we note that the unique deformation behavior of
Gum Metal at room temperature is hardly related to phase
transformations. In particular, following experimental data
[1–3,6], Gum Metal represents the ‘pure’ b-phase stable
with respect to the omega phase. Furuta et al. [6] reported
the b-phase stability of Gum Metal with the X-ray diffrac-
tion profile having only the b-phase peaks. Kuramoto
et al. [3] observed the Gum Metal structure (after tensile
deformation of about 10%) with only the b-phase in the
giant fault vicinity. In this case, the diffraction patterns indi-
cated only the presence of b-phase. Also, in Ref. [7] it was
shown that an increase of the oxygen content in the b-phase
of Ti–25V–1.0O alloy suppresses the formation of the
omega phase. Because of the similarity between the compo-
sitions of this alloy and Gum Metal, the oxygen is expected
to cause a similar ‘stabilizing’ effect in Gum Metal.

4. Nanodisturbances as dipoles of non-conventional partial

dislocations

As has been well documented from HRTEM observa-
tions (see Section 3 and Refs. [1–3]), Gum Metal contains
nanodisturbances that are planar nanoscopic areas of local
shear. It is thought that such nanoscale imperfections play a
crucial role in the formation of the unique mechanical prop-
erties of Gum Metal. In fact, they may be considered as car-
riers of the plastic deformation in Gum Metal, like the usual
dislocations in conventional crystalline solids. Moreover,
they look like partial dislocation dipoles in HRTEM images
(see Figs. 1 and 6). The main differences between the nano-
disturbances and ‘normal’ dislocation dipoles (dipoles of
either perfect or partial lattice dislocations) are in their
m Metal specimen rolled by 10%. This image was taken at the observation
to Æ111æ. The extended image (a) indicates a nanodisturbance, while the
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characteristic Burgers vector magnitudes and their genera-
tion processes. We now discuss these differences.

The Burgers vector of a perfect lattice dislocation is the
crystal lattice vector [8]. The Burgers vector of a partial lat-
tice dislocation is a certain portion of the crystal lattice vec-
tor; it is strictly quantized by the crystallography of a
material [8]. Nanodisturbances – planar nanoscopic areas
of local plastic shear – are effectively modeled as dipoles
of ‘non-crystallographic’ partial dislocations, i.e., disloca-
tions with Burgers vectors having arbitrary, non-quantized
magnitudes. In the most cases, the magnitudes of Burgers
vectors of ‘non-crystallographic’ partial dislocations com-
posing the nanodisturbances are smaller than the quantized
magnitude of a Burgers vector of either a perfect or partial
dislocation. Sometimes the magnitude of the Burgers vec-
tor of such ‘non-crystallographic’ partial dislocations
becomes equal to that characterizing either a perfect or
partial lattice dislocation. In these situations, the nanodis-
turbance transforms into a ‘normal’ dipole of (perfect or
partial) lattice dislocations.

The differences in the generation of ‘normal’ dipoles of
partial dislocations and that of nanodisturbances are sche-
matically illustrated in Fig. 7. At the beginning of the
homogeneous generation of a ‘normal’ dislocation dipole
(Fig. 7(b)), the dislocations are located in close proximity
to each other. The distance between them is around one
crystal lattice parameter. Also, when a ‘normal’ dislocation
dipole is generated (Figs. 7(b)–(d)), the dislocation Burgers
vectors ±b are constant during the nucleation process.
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Fig. 7. Schematic representation of (a–d) homogeneous generation and
extension of a dipole of partial edge dislocations with Burgers vectors ±b,
and (e–h) homogeneous generation of an extended nanodisturbance in the
form of a dipole of partial edge dislocations with a finite arm 2a and small
Burgers vectors ±s (0 < s < b). When s increases and achieves the
magnitude b, the nanodisturbance is transformed into a normal dipole
of partial edge dislocations with Burgers vectors ±b, which can further
extend under an external shear stress s.
That is, the generation of a ‘normal’ dislocation dipole
(Figs. 7(a)–(d)) occurs through the gradual increase (from
0) of the dipole arm 2a (the interdislocation spacing) at
the constant Burgers vectors ±b of the dislocations. Gener-
ation and evolution of a nanodisturbance are supposed to
pass through two key stages (Figs. 7(e)–(h)). In the first
stage, a nanodisturbance is generated as a result of a local
momentary ideal shear (Figs. 7(e) and (f)) at a nanoscale
area. That is, the momentary ideal shear produces a planar
nanodisturbance with a finite nanoscopic length 2a equal to
some (from about 5 to 20) crystal lattice parameters. At the
beginning of its generation (Figs. 7(e) and (f)), the nanodis-
turbance represents a dipole of ‘non-crystallographic’ par-
tial dislocations distanced by a finite nanoscopic length 2a
and characterized by the non-quantized (‘non-crystallo-
graphic’) Burgers vectors ±s with quite small magnitude
s� b, where s = |s| and b = |b|. The Burgers vector magni-
tude s increases under a shear stress s (occurring due to
external and/or internal sources) and finally becomes equal
to b; see Fig. 7(g). (The nanodisturbance length may be
constant or not during this process.) In the second stage,
when s = b, the nanodisturbance is transformed into a
‘normal’ dipole of partial dislocations that may extend fur-
ther under the action of s (Figs. 7(g) and (h)).

With the experimental data reported in Section 3 and
Refs. [1–3], nanodisturbances represent typical structural
elements of deformed Gum Metal and so are expected to
contribute to its plastic flow. In this case, the homogeneous
generation of nanodisturbances (Figs. 7(e)–(h)) in mechan-
ically loaded Gum Metal should effectively compete with
both the homogeneous generation of normal dislocation
dipoles (Figs. 7(a)–(d)) and the conventional deformation
mechanism by the movement of pre-existing lattice disloca-
tions. Experiments [1,2] show that conventional dislocation
activity is not essential in Gum Metal. Movement of pre-
existing lattice dislocations can be effectively suppressed
by atmospheres (like Cottrell ones) of inhomogeneously
distributed solutes in Gum Metal. According to the theory
of point defects in strained alloys [9,10], such atmospheres
are formed (after some time interval depending on the dif-
fusivity of solutes) near dislocations, because of the interac-
tion between solutes and elastic stresses created by
dislocations. Also, there can be local interactions between
solute atoms and lattice dislocation cores, the dislocation
lines where the ideal crystal lattice is violated. There may
be special sites in the dislocation core that more easily
accommodate solutes, leading to a binding energy of sol-
utes to the core. These effects limit the lattice dislocation
mobility.

Thus, the pre-existing lattice dislocations are immobile
in Gum Metal and do not contribute to plastic flow,
because solute atmospheres limit the dislocation mobility.
In contrast, the mobility of as-generated lattice dislocation
dipoles and nanodisturbances (Fig. 7) is not suppressed by
the atmospheres whose formation is a slow process con-
trolled by diffusion of solutes. Therefore, the as-generated
lattice dislocation dipoles and nanodisturbances are mobile
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enough (in contrast to the pre-existing lattice dislocations)
to effectively carry plastic flow in Gum Metal. In the con-
text discussed, it is important to investigate which scenario,
as shown in Figs. 7(a)–(d) or 7(e)–(h), is more realistic in
deformed Gum Metal. In Sections 5 and 6, we do this by
estimating and comparing the conditions for homogeneous
generation of nanodisturbances and that of dipoles of con-
ventional partial dislocations.

5. Generation of dipoles of conventional partial dislocations:

Energy characteristics

First, consider the homogeneous generation of a dipole
of conventional partial edge dislocations with Burgers
vectors ±b in an infinite elastically isotropic solid under
the action of an external shear stress s. The total energy
of the system (per unit dislocation length) is changed by
the value DWdip:

DW dip ¼ W e
dip þ W c

dip þ W c
dip � Adip ð1Þ

where W e
dip is the strain energy of the dipole, W c

dip is its core
energy, W c

dip is the energy of the stacking fault strip be-
tween the partial dislocations of the dipole, and Adip is
the work spent by the shear stress s to generate the dipole.
All of these terms are well known (see, for instance, Refs.
[8,11]) and are determined by the following equations:

W e
dip ¼ Db2 ln

2a� rc

rc

; W c
dip ¼ Db2Z;

W c
dip ¼ 2ac; Adip ¼ 2abs ð2Þ

where D = G/[2p(1 � m)] (where G is the shear modulus and
m the Poisson ratio), b is the magnitude of the Burgers vec-
tor of a partial dislocation, 2a is the dipole arm, rc is the
cut-off radius of the dislocation elastic fields at the disloca-
tion core, Z is a parameter characterizing the dislocation
core energy and c is the stacking fault energy (per unit
square). For simplicity we take rc � b and Z � 1. We also
introduce the dimensionless normalized dipole arm
x = 2a/b. Taking this into account, the energy change
(Eq. (1)) is written as

DW dip ¼ Db2 lnðx� 1Þ þ 1þ x
c� sb

Db

� �
ð3Þ

When c/b P s, the function DWdip(x), x > 1, is always po-
sitive and grows monotonically. In this case, the homoge-
neous generation of the dipole is impossible, which is
illustrated by curve 1 in Fig. 8, where the function DWdip(x)
is plotted for various values of s, with the standard approx-
imation c � DBj. Here, B (�2b) is the Burgers vector mag-
nitude of a perfect dislocation and j (�1) is a
dimensionless parameter. The plots in Fig. 8 are given at
j = 0.01.

If c/b < s and s is not very large, the function DWdip(x)
is first positive and achieves its maximum, and then mono-
tonically decreases (curves 2–4 in Fig. 8). The maximum
value DW max

dip ¼ DW dipðx ¼ xcÞ is the energy barrier for the
dipole generation, and the normalized dipole arm x takes
its critical value xc for the given stress s. The physical
meaning of the critical dipole arm xc is that the dipole with
a smaller arm, if it appears, cannot exist and must annihi-
late, while that with a larger arm, if it appears, can exist
and must increase its arm. As follows from Fig. 8, the
energy barrier DW max

dip =ðDb2Þ takes values of about 2.5, 1
and 0.3 for stress values s/D = 0.1, 0.3 and 0.5, respec-
tively. With the characteristic values of G � 9 GPa [3],
m = 0.3 and b = 0.145 nm, which are close to typical data
for Gum Metal, we obtain DW max

dip � 0:67, 0.27 and
0.08 eV/nm at s = 0.2, 0.6 and 1 GPa, respectively. Let us
compare these values of DW max

dip with typical values of a
thermal fluctuation nkBT (where n � 4 is the number of
atoms per nanometer, kB is the Boltzmann constant and
T is the absolute temperature). For T = 300 K, we have
nkBT � 0.1 eV/nm. The probability P of a thermal fluctua-
tion equal to the value of DW max

dip is determined by the stan-
dard formula: P ¼ expð�DW max

dip =nkBT Þ. Therefore, the
probabilities of thermal fluctuations equal to energies of
0.67, 0.27 and 0.08 eV/nm are estimated by the values of
about 0.001, 0.1 and 0.46. The last two values are high
enough to expect the homogeneous nucleation of partial
dislocation dipoles at room temperature under the stress
values of s P 0.6 GPa.

When c/b < s and s is very large, the function DWdip(x),
x > 1, is always negative and decreasing (curve 6 in Fig. 8).
This case corresponds to barrierless generation of the dislo-
cation dipole. However, it is characterized by unrealisti-
cally high values of s � D � G/4. Therefore, below we
consider only the case of barrier generation and find the
dependence of the critical arm xc on the stress s. Taking
the partial derivative and putting it equal to zero

oDW dip

ox
¼ Db2 1

x� 1
þ c� sb

Db

� �
¼ 0 ð4Þ



2496 M.Yu. Gutkin et al. / Acta Materialia 54 (2006) 2489–2499
we find the critical dipole arm

xc ¼ 1þ Db
sb� c

ð5Þ

With the approximation c � DBj, this equation may be
rewritten in the following form:

xc ¼ 1þ 1

s=D� jB=b
ð6Þ
6. Generation of nanodisturbances, dipoles of non-

conventional partial dislocations: Energy characteristics

Consider now a similar situation with homogeneous
generation of a two-dimensional nanodisturbance (Figs.
7(e)–(h)). To calculate the energy characteristics of its gen-
eration, we describe the nanodisturbance as a dipole of
non-conventional partial dislocations; that is, edge partial
dislocations with small Burgers vectors ±s, whose non-
quantized magnitude lies within the interval 0 < s < B.

When such a model imperfection is generated under an
external shear stress s, the total energy of the system (per
unit dislocation length) is changed by the value DWnd:

DW nd ¼ W e
nd þ W c

nd � And ð7Þ
where W e

nd is the strain energy of the nanodisturbance, W c
nd

is the energy of the stacking fault strip between its edges
and And is the work spent by the shear stress s to generate
the nanodisturbance. The first term in Eq. (7) is similar to
that in Eq. (1), with replacement of b and rc by s:

W e
nd ¼ Ds2 ln

2a� s
s

ð8Þ

where 2a is now the size of the nanodisturbance.
In the situation under discussion, the stacking fault

energy W c
nd consists of two terms. The first term corre-

sponds to the energy of the stacking fault fragment of
length (2a � s), while the second term describes the energy
of the stacking faults at the two edge fragments each hav-
ing the length s. When the nanodisturbance is transformed
into a dipole of perfect dislocations, the first term becomes
equal to zero, while the second term transforms into the
energy of two cores of the perfect lattice dislocations com-
posing the dipole. In the framework of the model sug-
gested, these two terms are approximated by periodic
functions of s in the range from 0 to B. In this approxima-
tion, the first function reaches its maximum at s = B/2; that
is, when the displacement mismatch between the atomic
layers adjacent to the stacking fault reaches its maximum.
The second function reaches its maximum at s = B; that
is, when the dipole of perfect dislocations is completely
generated. In these circumstances, the stacking fault energy
W c

nd is effectively approximated by

W c
nd ¼ cð2a� sÞ sin

ps
B
þ Ds2 sin

ps
2B

ð9Þ

The work And is given by

And ¼ 2ass ð10Þ
As a result, Eq. (7) may be rewritten as follows:

DW nd ¼ Db2 p2 ln
x� p

p
þ ðx� pÞ c

Db
sin

pp
B=b

�

þ p2 sin
pp

2B=b
� xp

s
D

�
ð11Þ

where p = s/b. Qualitatively, the behavior of the function
DWnd(x) is similar to that of the function DWdip(x). Plots
of DWnd(x) are shown in Fig. 9 for three values of the ratio
p = 0.1 (Fig. 9(a)), 0.5 (Fig. 9(b)) and 0.9 (Fig. 9(c)), and
different values of the stress s. As follows from Fig. 9, when
s is very small (curve 1), DWnd(x) is always positive and
increasing. In this case, we cannot expect homogeneous
generation of such nanodisturbances.

For larger levels of s (curve 2 in Fig. 9(a), curves 2–4 in
Figs. 9(b) and (c)), there exist energy barriers DW max

nd whose
heights strongly depend on p and s. For example, the same
levels of s (s/D = 0.1, 0.3 and 0.5, or s = 0.2, 0.6 and
1 GPa, respectively), which we considered in Section 5,
here give (for x P 2) DW max

nd =ðDb2Þ � 0:5, 0.1 and 0 at
p = 0.5, and 1.7, 0.5 and 0.05 at p = 0.9, respectively. These
values are notably smaller than those characterizing homo-
geneous generation of a ‘normal’ dipole of partial disloca-
tions (about 2.5, 1 and 0.3, respectively, see Section 5).
With the characteristic values G � 9 GPa [3], m = 0.3 and
b = 0.145 nm, close to the typical parameters of Gum
Metal, for s = 0.2, 0.6 and 1 GPa, we obtain the following
estimates: DW max

nd � 0:135, 0.027 and 0 eV/nm at p = 0.5,
and 0.459, 0.135 and 0.0135 eV/nm at p = 0.9, respectively.
At room temperature, T = 300 K, the probabilities of ther-
mal fluctuations (see Section 5) equal to these energy values
are approximately 0.26, 0.76 and 1 at p = 0.5, and 0.01,
0.26 and 0.87 at p = 0.9, respectively. These estimates are
much higher than those (0.001, 0.1 and 0.46, respectively)
obtained in Section 5 for dislocation dipoles.

Note that the above estimates are done for the interval
x P 2 just to compare the energy barriers for generation of
dislocation dipoles and nanodisturbances. However, as we
have previously detailed, nanodisturbances are generated
by a nanoscale ideal shear. In this case, as-generated nano-
disturbances have nanoscopic length values (Fig. 7(f)),
essentially exceeding the lattice parameter. Therefore,
one needs to analyze the interval x� 2, where the energy
barriers are small or even absent (Fig. 9). Thus, the above
estimates for the energy barriers may be viewed as the
upper limits, while those for the probabilities are the lower
ones.

When s is very large, the function DWnd(x), x > 1, is
always negative and decreasing (curves 3–6 in Fig. 9(a),
curves 5 and 6 in Figs. 9(b) and (c)). This case corresponds
to barrierless generation of the nanodisturbance, and the
value of s needed depends on the ratio p (s � 0.3D � G/13
at p = 0.1 and s � 0.7D � G/6 at p = 0.5, . . . , 0.9). These
levels of s are also smaller than those for barrierless gener-
ation of dislocation dipoles (see Section 5).

We return to the case of barrier generation and ascertain
the dependence of the critical length xc of the nanodis-
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turbance (which corresponds to the energy barrier
DW ndðx ¼ xcÞ ¼ DW max

nd ) on the stress s. The partial deriva-
tive of DWnd(x) with respect to x is given by

oDW nd

ox
¼ Db2 p2

x� p
þ c

Db
sin

pp
B=b
� p

s
D

� �
ð12Þ

The critical size xc of the nanodisturbance is then deter-
mined from the equation

oDW nd

ox

����
x¼xc

¼ 0 ð13Þ
which finally gives

xc ¼ p 1þ p
s
D p � Bj

b sin pp
B=b

 !
ð14Þ

where the approximation c � DBj has been used. For
p� 1, this formula results in

xc ¼ p 1þ 1

s=D� jp

� �
ð15Þ

In comparing Eqs. (6) and (15), one can see that they
differ mainly by the factor p� 1 (the ratio B/b � 2 is of
the same order as p). Therefore, the critical size of a weak
(with a small p) nanodisturbance is much smaller than the
critical arm of a partial dislocation dipole for the same level
of the external shear stress s. When p = 1 (i.e., the nanodis-
turbance is transformed into a dipole of partial disloca-
tions), Eq. (14) is reduced to Eq. (6). The case of
arbitrary p is illustrated in Fig. 10.

One can conclude that for a given level of the external
shear stress s, the critical size of a nanodisturbance is sig-
nificantly smaller than the critical arm of a dipole of partial
dislocations. Weak nanodisturbances can easily be gener-
ated at relatively small values of s. Thus, if homogeneous
generation of nanodisturbances occurs in Gum Metal, it
must prevail over the generation of ‘unfavored’ dipoles of
partial dislocations. The principal factor causing nanodis-
turbances to be predominant over ordinary dislocations
in Gum Metal is related to the intrinsic elastic anomaly.
Gum Metal can attain a very small ideal strength and
thereby contain nanodisturbances, because the elastic
anomaly makes the shear moduli of Æ110æ{11 0} and
Æ1 11æ{110}, {112} or {123} very small, i.e., the values
of s and D are of the same order of magnitude.

Note that nanodisturbances may appear in non-crystal-
lographic planes where ‘normal’ dislocation dipoles are not
generated due to their large Burgers vector magnitudes (b)
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and corresponding low probability �exp(�ab2) of disloca-
tion generation. The presence of such nanodisturbances
lying in ‘abnormal’ planes is supported by direct HRTEM
observations (see Section 3). This is explained by the fact
that they appear, as there are no limitations on their
strength s, which may be very small. In this situation, the
homogeneous generation of nanodisturbances, the increase
of their strength and their further extension represent a spe-
cific and very effective mechanism for plastic deformation
in Gum Metal.

7. Discussion and concluding remarks

Our experimental HRTEM analysis (see Section 3) has
shown that nanodisturbances – planar nanoscopic areas
of local shear – are typical elements of the defect structure
in deformed Gum Metal. Nanodisturbances are effectively
modeled as dipoles of non-conventional partial dislocations
with arbitrary, non-quantized Burgers vectors (see Sections
4 and 6). These nanoscale defects are different from dipoles
of conventional perfect or partial dislocations in crystal
lattices, and their occurrence is due to the low resistance
to shear in certain crystallographic planes of Gum Metal.
In the context discussed, the nanodisturbances represent a
new type of defects in solids. Following the results of the
theoretical analysis given in Section 6, the homogeneous
generation of nanodisturbances is energetically favorable
in Gum Metal where they serve as effective carriers of
plastic flow. The homogeneous generation of nanodistur-
bances, the increase of their strength (Burgers vector
magnitude) and their further extension (Figs. 7(e)–(h)) rep-
resent a specific and very effective mechanism for plastic
deformation in Gum Metal.

The deformation mechanism with nanodisturbances car-
rying plastic flow is in competition with the conventional
dislocation slip that is dominant in most crystalline metals.
However, conventional dislocation slip can be effectively
suppressed in Gum Metal due to both the effects of solute
atmospheres on the mobility of pre-existing conventional
dislocations in Gum Metal (for details, see the discussion
in Section 4) and the large energetic barriers for the homo-
geneous generation of conventional dislocation dipoles
(see Section 5).

Besides nanodisturbances, giant faults – planar macro-
scopic areas in which very large plastic strain is localized
– have been experimentally observed in Gum Metal (see
Section 3 and Refs. [1–3]). From the results of our experi-
mental and theoretical studies reported in this paper, the
formation of giant faults can be related to the evolution
of nanodisturbances in deformed Gum Metal as follows.
Nanodisturbances are intensively generated in Gum Metal
at the first stage of deformation. When their density
becomes high, the elastic interaction between the nanodis-
turbances becomes relevant and provides for the softening
of Gum Metal where they carry plastic flow. The softening
causes plastic strain instability in Gum Metal with very
large plastic flow being localized in giant faults. This, how-
ever, is just a qualitative scenario whose detailed analysis is
to be published elsewhere.

Thus, with the results of both our experimental data
and theoretical analysis, Gum Metal with a low resistance
to shear in certain crystallographic planes is found to be
deformed by the specific deformation mechanism with
nanodisturbances carrying plastic flow. We have demon-
strated that this deformation mechanism is intrinsic to
Gum Metal. In general, the deformation mechanism asso-
ciated with nanodisturbances can operate in materials
other than Gum Metal. In particular, we think that nano-
disturbances can contribute to superplastic deformation in
nanocrystalline materials in which grain boundaries are
commonly characterized by low resistance to shear [12–17].
For instance, intergrain sliding – a relative shear of neigh-
boring grains that is localized in the boundary between
grains – is the dominant deformation mode in nanocrystal-
line materials showing superplasticity [12,13] and essen-
tially contributes to plastic deformation of ductile
nanocrystalline metals [14,15]. Intergrain sliding in high-
angle grain boundaries occurs through either local shear
events [18–21] or movements of grain boundary disloca-
tions [11,18,22,23]. In particular, basic carriers of the inter-
grain sliding in disordered grain boundaries are treated to
be free-volume defects, nanometer-size spheroidal regions
where, due to the presence of an extra free volume, the
shear resistance is less than in the rest of the grain bound-
ary [18–21]. Ensembles of such free-volume defects homo-
geneously distributed in the grain boundary phase provide
local shear events as elementary acts of intergrain sliding.
Though a reported approach [18–21] has shed light on
deformation conducted by grain boundaries, it gives no
clear interpretation of local shear events in terms of
defects (as the stress sources in solids) which is highly
desirable for an adequate description of the intergrain slid-
ing and its contribution to plastic flow. In the spirit of the
approach developed in this paper, the local shear events in
grain boundaries can be effectively modeled as the events
involving the generation of three-dimensional nanodis-
turbances (that is, nanoscale loops of non-conventional
partial dislocations with non-quantized Burgers vectors).
The role of nanodisturbances in plastic deformation pro-
cesses in nanocrystalline materials, and the unique proper-
ties of Gum Metal will be the subject of further
investigations by us.
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