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Abstract

A theoretical model is suggested which describes cooperative action of grain boundary (GB) sliding and rotational
deformation in mechanically loaded nanocrystalline materials. Focuses are placed on the crossover from GB sliding to
rotational deformation occurring at triple junctions of GBs. In the framework of the model, gliding GB dislocations at
triple junctions of GBs split into dislocations that climb along the adjacent boundaries. The splitting processes repeatedly
occurring at triple junctions give rise to climb of GB dislocation walls that carry rotational deformation accompanied
by crystal lattice rotation in grains of nanocrystalline materials. The role of GB sliding, rotational deformation and
conventional dislocation slip in high-strain-rate superplastic flow in nanocrystalline materials is discussed.
 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Nanocrystalline materials exhibit outstanding
mechanical properties opening a range of new
applications in high technologies[1–3]. The unique
deformation behavior of nanocrystalline materials
is treated to be caused by suppression of conven-
tional lattice dislocation slip (which dominates in
coarse-grained materials) and effective action of
alternative deformation mechanisms occurring
through motion of grain boundary (GB) defects
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(see[4–12]). These mechanisms are GB sliding[4–
7], GB diffusional creep[8–10] and triple junction
diffusional creep[11] (for a review, see[12]).
Recently, rotational deformation mode occurring
through motion of GB disclination dipoles has
been considered as the deformation mechanism
effectively contributing to plastic flow in nanocrys-
talline materials[13–16]. The idea on rotational
deformation is confirmed by experimental obser-
vations of disclination dipoles and grain rotations
in mechanically loaded nanocrystalline materials
[13,17].

Theoretical models[14–16] of rotational defor-
mation mode in nanocrystalline materials com-
monly deal with the only movement of GB disclin-
ation dipoles along parallel GB facets,
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accompanied by crystal lattice rotation between
these facets. In coarse-grained materials, the dis-
clination dipoles are also supposed to move along
parallel planes, thus forming the so-called mis-
orientation bands [18–20]. However, this view is
oversimplified in the case of nanocrystalline
materials where GBs are short, curved and form
triple junctions whose volume fraction is extremely
high. Also, theoretical models of the rotational
deformation mechanism and other deformation
mechanisms operating in nanocrystalline solids,
describe these mechanisms at the atomic level in
terms of defects of atomic structures, with sub-
sequent extrapolation to a description of their con-
tributions to the macroscopic deformation behavior
of a nanocrystalline specimen as a whole. In doing
so, it is commonly assumed that either one mech-
anism is dominant or several mechanisms simul-
taneously contribute to plastic flow which act inde-
pendently from each other. In the former case, if
GB sliding dominates, accommodation mech-
anisms (like local GB migration [4,5]) are con-
sidered. In the second case, a grain size distribution
in a nanocrystalline specimen is taken into account
in calculation of the yield stress as the averaged
(over grain sizes) value with different deformation
mechanisms independently acting in grains with
sizes being in different ranges [8,9,11]. However,
nanocrystalline materials are aggregates of nano-
sized grains in which different deformation mech-
anisms, in general, strongly influence each other.
That is, there is a kind of effective interaction
between deformation modes in nanocrystalline
materials, which definitely should be taken into
consideration. In particular, it is of crucial impor-
tance in high-strain-rate superplasticity of nanocry-
stalline materials, which, according to experi-
mental data [1,17,21–23], involves GB sliding,
grain rotations and lattice dislocation slip as the
key deformation modes strongly influence each
other.

The main aim of this paper is to elaborate a
theoretical model describing the combined action
of GB sliding and rotational deformation mode in
nanocrystalline materials, with focuses placed on
the crossover from GB sliding to rotation defor-
mation occurring at triple junctions of GBs. With
results of the model, the role of the combined

action of these deformation mechanisms and lattice
dislocation slip in high-strain-rate superplastic
deformation of nanocrystalline materials is dis-
cussed.

2. Splitting of gliding grain boundary
dislocations at triple junction into climbing
dislocations (small-scale view)

GB sliding which is treated to be the dominant
mode of superplasticity in nano- and microcrystal-
line materials occurs via motion of gliding GB dis-
locations. They have Burgers vectors that are par-
allel with corresponding GB planes along which
these dislocations glide. Triple junctions of GBs,
where GB planes change their orientations, serve
as obstacles for the GB dislocation motion. In these
circumstances, splitting of gliding GB dislocations
can occur at triple junctions, resulting in the forma-
tion of sessile dislocations and gliding dislocations
providing the further GB sliding along the adjacent
GBs [7]. However, in general, GB dislocations
stopped at a triple junction are also capable of
being split into climbing GB dislocations (Fig. 1).
When this process repeatedly occurs at a triple
junction, it results in the formation of two walls of
dislocations climbing along the GBs adjacent to the
triple junction (Fig. 1). The climbing dislocation
walls cause the rotational deformation, in which
case the repeatedly occurring splitting of gliding
GB dislocations at the triple junction provides the
crossover from the GB sliding to the rotational
deformation mode.

Thus, the crossover occurs through the splitting
of a pile-up of gliding GB dislocations into climb-
ing dislocation walls that provide crystal lattice
rotation in a nanograin as a whole. In doing so,
the crossover is sensitive to small- and large-scale
transformations of the defect structure which occur
in the vicinity of the triple junction and the nanog-
rain as a whole, respectively. In this context, we
will theoretically examine the defect structure
transformations at both the small- and large-scale
levels. First, we will consider at a small-scale level,
in terms of GB dislocations, an elementary act of
the crossover from the GB sliding to the rotational
deformation. The act is the splitting of a gliding
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Fig. 1. Combined action of GB sliding and rotational defor-
mation mode. (a) Nanocrystalline specimen in a non-deformed
state. (b) GB sliding occurs via motion of gliding GB dislo-
cations under shear stress action. (c) Gliding dislocations split
at triple junction O of GBs into climbing dislocations. (d) The
splitting of gliding GB dislocations repeatedly occurs causing
the formation of walls of GB dislocations whose climb is
accompanied by crystal lattice rotation in a grain. (e) Climbing
dislocations reach triple junction O� where they converge into
gliding dislocations causing further GB sliding.

GB dislocation into two climbing GB dislocations
at a triple junction; for details, see the rest of this
section. Then, we will consider the crossover from
the GB sliding to the rotational deformation at a
large-scale level in terms of GB dislocation groups
involved in the crossover. More precisely, in the
framework of large-scale analysis (Section 3), we
will consider disclinations serving as models of
ragged walls of climbing GB dislocations, and
superdislocations serving as models of the pile-ups
of GB dislocations stopped at triple junctions.

In the rest of this section, we will theoretically
examine the crossover from the GB sliding to the
rotational deformation at a small-scale level. Let

us consider a two-dimensional model of GB dislo-
cation configurations whose transformations rep-
resent elementary acts of the crossover in question.
Such an elementary act is the splitting of a head
GB dislocation at a triple junction into two GB
dislocations which climb along the GBs adjacent
to the triple junction. Let us analyze the energy
characteristics of the splitting which occurs under
the action of a shear stress t. The splitting of the
head GB dislocation of the pile-up into the two
climbing GB dislocations (Fig. 2) is characterized
by the difference �W = W2�W1 between the ener-
gies of the final (W2) and initial (W1) states of the
defect configuration under consideration. The split-
ting is energetically favorable (unfavorable), if
�W � 0 (�W � 0, respectively). The equation
�W = 0 gives a set of critical values of parameters
for the defect configuration, at which the splitting
becomes energetically favorable.

In calculating the energy characteristics of the
splitting, for definiteness and simplicity, we make
the following model assumptions: (i) Magnitudes
of the Burgers vectors of all GB dislocations
belonging to the dislocation pile-up are the same.
(ii) The plane of the shear stress t action is parallel
with the plane of the GB where the pile-up is
located. (iii) After the splitting of the head dislo-

Fig. 2. Splitting of the (a) head dislocation of a GB dislocation
pile-up at a triple junction into (b) two dislocations that climb
along the adjacent GBs. Coordinate systems Oxy, Ox�y� and
O�x�y� are shown which are used in calculations (see text).



4062 M.Yu. Gutkin et al. / Acta Materialia 51 (2003) 4059–4071

cation of the pile-up, the residual GB dislocations
composing the pile-up do not move from their
initial positions. These assumptions do not influ-
ence essentially the quantitative results of our con-
sideration and, at the same time, allow us to find
analytical expressions for the energy characteristics
of defects involved in the splitting.

The initial defect configuration represents a pile-
up of nc gliding GB dislocations near a triple junc-
tion (Fig. 2(a)). Its energy W1 consists of two terms

W1 � Epile-up
1 � Eb–b

S , (1)

where Epile-up
1 is the sum of the proper energies of

GB dislocations composing the pile-up, and Eb–b
Σ is

the energy that characterizes pair interactions
between all these dislocations.

We will describe the first term in Eq. (1),
Epile-up

1 , a bit later, while describing the correspond-
ing term of the energy W2.

In order to find the energy Eb–b
Σ , let us calculate

the energy Eb–b
ij that characterizes elastic interaction

between the ith and jth GB dislocations belonging
to the pile-up. The energy that characterizes elastic
interaction between two defects can be calculated
as the work spent to transfer one defect from a free
surface of a solid to its current position in the stress
field created by another defect [24]. Therefore the
energy Eb–b

ij can be calculated using the formula

Eb–b
ij � �b ��(xj�xi)

�R

si
xy(x,y � 0) dx, (2)

where xi and xj are the positions of GB dislocations
within the pile-up (they are calculated as the roots
of the first derivative of the Laguerre polynomial
[25]), si

xy is the ith dislocation-induced shear stress
acting on the jth dislocation. This stress is written
in coordinate system Oxy (Fig. 2 (a)) as follows

si
xy � Dbx

x2�y2

(x2 � y2)2, (3)

where D = G /2π(1�n). With Eq. (3) substituted
to formula (2), we have

Eb–b
ij � Db2 ln

R
xi�xj

, (4)

where R denotes the screening length of the dislo-
cation stress field.

The energy Eb–b
Σ that characterizes pair interac-

tions between all GB dislocations belonging to the
pile-up (Fig. 2(a)) is the sum of energies Eij over
the GB dislocation indices i and j (i 	 j)

Eb–b
S � �nc�1

i�1

�nc

j�i�1

Eb–b
ij (5)

� Db2 �nc�1

i�1

�nc

j�i�1

ln
R

xi�xj

.

The energy of the defect configuration (Fig. 2(b))
resulted from the splitting of the head dislocation
belonging to the GB dislocation pile-up consists of
seven terms

W2 � Epile-up
2 � 2Eself

disl � E�b–b
S � Eb1–b


 (6)

� Eb2–b

 � Eb1–b2 � 2Et.

Here Epile-up
2 denotes the sum of proper energies of

the GB dislocations belonging to the pile-up after
the splitting, 2Eself

disl the sum of proper energies of
the two GB dislocations resulted from the splitting
of the head dislocation, E�b–b

Σ the energy of pair
interactions between all GB dislocations compos-
ing the pile-up, Eb1–b


 (Eb2–b

 , respectively) the

energy that characterizes interaction between GB
dislocations of the pile-up and the GB dislocation
resulted from the slitting and characterized by Bur-
gers vector b1 (b2, respectively), Eb1–b2 the energy
of interaction between the two dislocations formed
due to the splitting, and Et the effective work of
the shear stress t, spent to transfer these two GB
dislocations along the GBs adjacent to the triple
junction.

The pile-up after the splitting of its head dislo-
cation (Fig. 2(b)) contains nc�1 GB dislocations.
To simplify our calculations of the energy charac-
teristics of these dislocations, we assume that their
positions remain unchanged during the splitting of
the head dislocation. This assumption is reasonable
in at least the situation where the GB dislocations
resulted from the splitting are close to the triple
junction (Fig. 2(b)). In the situation discussed, the
energy E�b–b

Σ that characterizes interaction between
all GB dislocations composing the pile-up rep-
resents the sum of the energies Eb–b

ij over indices
of nc�1 dislocations. That is
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E�b–b

 � �nc�1

i�2

�nc

j�i�1

Eb–b
ij (7)

� Db2 �nc�1

i�2

�nc

j�i�1

ln
R

xi�xj

.

The energy Eb–b1

 figuring on the r.h.s. of formula

(6) is the sum of energies Eb–b1i characterizing inter-
action between the ith GB dislocation of the pile-
up and the resultant dislocation with the Burgers
vector b1 which, for brevity, hereinafter will be
denoted as b1-dislocation. The energy Eb1–b

i can be
calculated as the work spent to the generation of
the ith dislocation in the shear stress tb1

created by
the b1-dislocation [24]. The b1-dislocation distant
by p from the triple junction O creates the stress
field having the following components in the Oxy
coordinate system (Fig. 2(b)) [26]

sb1xx � �Db1(y�p)
3x2 � (y�p)2

[x2 � (y�p)2]2,

sb1yy � Db1(y�p)
x2�(y�p)2

[x2 � (y�p)2]2,

sb1xy � Db1x
x2�(y�p)2

[x2 � (y�p)2]2.

(8)

Let us introduce a new coordinate system Ox�y�
(Fig. 2(b)) in which the shear stress tb1

acting in
the plane y� = 0, is expressed through the stress
field components (8) as follows

tb1
� sb1xxa1a2 � sb1yyb1b2 � sb1zzg1g2

� sb1xy(a1b2 � a2b1) � sb1yz(b1g2 � b2g1) (9)

� sb1zx(g1a2 � g2a1),

where a1 = cos(x�,x) = cos(π/2�f) = sin f, b1 =
cos(x�,y) = cos f, g1 = cos(x�,z) = 0, a2 =
cos(y�,x) = cos(π + f) = �cos f, b2 = cos(y�,y)
= cos(π/2�f) = sin f, g2 = cos(y�,z) = 0. With
these formulas substituted to (9), we get

tb1
�

1
2

(sb1yy�sb1xx) sin 2f�sb1xy cos 2f. (10)

Using the following relationships (written with
account for y� = 0)

x � x� cos�π
2

�f� � x� sin f;

y � x� sin�π
2

�f� � x� cos f,

(11)

Eq. (10) can be rewritten through x� as follows

tb1
� (12)

Db1

x�(x�2�2x�p cos f � p2 cos 2f) sin f
(x�2�2x�p cos f � p2)2 .

The energy Eb1–b
i that characterizes interaction

between the ith dislocation of the pile-up and the
b1-dislocation is given by the following general
formula

Eb1–b
i � �b��xi

�R

tb1
(x�,y� � 0) dx�, (13)

where xi denotes the coordinate (along x�-axis) of
the ith dislocation. With Eq. (12) substituted to for-
mula (13), after integration, we have

Eb1–b
i � Db1b�(p2 � Rp cos f) sin f

R2 � 2Rp cos f � p2

�
(p2 � xip cos f) sin f
x2

i � 2xip cos f � p2 (14)

�
1
2

sin f ln
R2 � 2Rp cos f � p2

x2
i � 2xip cos f � p2�.

The energy Eb1–b
Σ that characterizes interaction of

the b1-dislocation with all GB dislocations com-
posing the pile-up is calculated as the sum of ener-
gies Eb1–b

i given by formula (14). In the framework
of our model, there is a mirror symmetry (with the
plane y� = 0 being the mirror plane) of the positions
and Burgers vectors of the b1-dislocation and the
resultant dislocation with Burgers vector b2, which,
for brevity, hereinafter will be denoted as b2-dislo-
cation. As a corollary, the energy Eb2–b

Σ that charac-
terizes interaction between all GBs of the pile-up
and the b2-dislocation is the same as Eb1–b

Σ . There-
fore, the total energy that characterizes interaction
of the b1- and b2-dislocations with GB dislocations
of the pile-up is given as

Eb1–b

 � Eb2–b


 � �nc

i � 1

(Eb1–b
i � Eb2–b

i ). (15)
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Now let us calculate the energy Eb1–b2 that
characterizes interaction between the b1- and b2-
dislocations. The coordinate systems associated
with these dislocations are presented in Fig. 2(b)
which describes the situation where b1- and b2-dis-
locations are distant from the triple junction. In the
coordinate system Oxy, the shear stress field which
is created by the b1-dislocation and acts in the
plane y� = 0 (the gliding plane for the b2-
dislocation) can be written through the stress field
components in the following form

tb1
� sb1xxa1a2 � sb1yyb1b2 � sb1zzg1g2

� sb1xy(a1b2 � a2b1) � sb1yz(b1g2 � b2g1) (16)

� sb1zx(g1a2 � g2a1),

where a1 = cos(x�,x) = cos(π�2f) = �cos 2f, b1

= cos(x�,y) = cos(π/2�2f) = sin 2f, g1 =
cos(x�,z) = 0, a2 = cos(y�,x) = cos(π/ 2 + 2f) =
�sin 2f, b2 = cos(y�,y) = cos(π�2f) = �cos 2f,
g2 = cos(y�,z) = 0. With these cosines substituted
to formula (16), we find

tb1
�

1
2

(sb1xx�sb1yy)sin 4f � sb1xy cos 4f. (17)

Let us rewrite tb1
in coordinates x� and y� associa-

ted with the b2-dislocation and given by the follow-
ing relationships (with account for y� = 0)

x � �x� cos 2f � p sin 2f;

y � x� sin 2f � p cos 2f.
(18)

In doing so, we get

tb1
� (19)

Db1

(p sin 2f�x� cos 2f)(x�2�2x�p sin 2f � 4p2 cos 2f sin2 f)
(x�2�2x�p sin 2f � 4p2 sin2 f)2 .

Then the interaction energy Eb1–b2 is given by the
general formula [24]

Eb1–b2 � b2�R

0

tb1
(x�,y� � 0) dx�. (20)

With Eq. (19) substituted to formula (20), inte-
gration gives

Eb1–b2 �

�
Db1b2

2 � 2R2

R2 cosec2 f�4Rp ctg f � 4p2 (21)

� cos 2f ln
R2�2Rp sin 2f � 4p2 sin2 f

4p2 sin2 f �.

The sum of proper energies of GB dislocations
composing the pile-up is [26]

Epile-up
1 � nc

Db2

2 �ln
R
b

� 1� (22)

before the splitting (Fig. 2(a)), and

Epile-up
2 � (nc�1)

Db2

2 �ln
R
b

� 1� (23)

after the splitting (Fig. 2(b)).
The b1- and b2-dislocations have the same pro-

per energies

Ebiself �
Db2

i

2 �ln
R
bi

� 1�, (24)

where bi = b/(2 sin f) (i = 1,2). The work spent to
transfer the b1-dislocation by distance p under the
shear stress t is the same as that for the b2-dislo-
cation and equal to

Et � �b1pt sin 2f. (25)

Thus, we have all terms figuring in the energy
difference �W = W2�W1 that characterizes the
splitting (Fig. 2) being an elementary act of the
crossover from the GB sliding to the rotational
deformation mode in nanocrystalline materials.
The equation �W = 0 gives a set of critical values
of parameters of the defect configuration, at which
the splitting becomes energetically favorable.

With formulas (1), (5)–(7), (14), (15), (21)–(25)
for the energy characteristics, we have calculated
the dependences of �W on the distance p moved by
the two GB dislocations (b1- and b2- dislocations)
resulted from the splitting, at various values of the
angle 2f that characterizes geometry of the triple
junction. The following values for the system para-
meters have been used in calculations: nc = 5, R
= 107b and t = 0.005G. These dependences
presented in Fig. 3 show that the splitting—an
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Fig. 3. Dependences of �W (in units of Gb2) on distance p
(in units of b) moved by climbing b1- and b2-dislocations, for
2f = 40, 60, 80 and 120° (from top to bottom).

elementary act of the crossover from the GB slid-
ing to the rotational mode—is energetically favor-
able at large values (80–100°) of the angle 2f. In
the study by Fedorov et al. [7] it has been demon-
strated that the splitting of the head GB dislocation
of a pile-up stopped at a triple junction into two,
gliding and sessile, GB dislocations are energeti-
cally favorable at low values of the angle 2f. That
version of the splitting serves as an elementary act
of the GB sliding at triple junctions [7]. Thus, the
crossover from the GB sliding to the rotational
deformation (Figs. 1 and 2) occurs effectively at
triple junctions with large values of the angle 2f,
while the GB sliding itself occurs effectively at tri-
ple junctions with comparatively low values of the
angle 2f.

3. Cooperative action of grain boundary
sliding and rotational deformation mode in
nanocrystalline materials (large-scale view)

After the head GB dislocation has split into the
b1- and b2-dislocations (Fig. 2(b)), their stress
fields prevent movement of the second GB dislo-
cation of the pile-up towards the triple junction
where the splitting has occurred. When the climb-
ing b1- and b2-dislocations move far from the triple
junction, their effect on the second GB dislocation
of the pile-up becomes weak. In this case the
second dislocation of the pile-up moves to the tri-
ple junction where it splits into two GB dislo-

cations climbing along the adjacent GBs. Such a
splitting process repeatedly occurs transforming
GB dislocations of the pile-up into the climbing
GB dislocations (Fig. 1). These climbing dislo-
cations form dislocation walls of finite extent at the
two GBs adjacent to the triple junction.

Let us calculate the energy characteristics of the
discussed evolution of the GB dislocation ensem-
ble in the framework of a large-scale model. In
doing so, the GB dislocation pile-up consisting of
nc dislocations in its initial state is represented as
a superdislocation with the Burgers vector sncb

xy

(Fig. 4(a)). In order to describe a grain rotation
accompanying the evolution of the GB dislocation
ensemble, we assume that similar splitting pro-
cesses occur at two opposite triple junctions of
GBs surrounding a nano-sized grain. The GB dis-
location pile-ups located near the opposite triple
junctions consist of dislocations with the Burgers
vectors of opposite signs, which tend to move

Fig. 4. Large-scale model of crossover from GB sliding to
rotational deformation mode. (a) Two superdislocations
(models of pile-ups of GB dislocations) are stopped at the
opposite triple junctions. (b) Four disclination dipoles (models
of climbing dislocation walls) are located at the GBs adjacent
to the triple junctions.



4066 M.Yu. Gutkin et al. / Acta Materialia 51 (2003) 4059–4071

under the shear stress action towards each other
and are stopped by the triple junctions. Four GB
dislocation walls of finite extent, following the
general theory of disclinations in solids [18,19], are
effectively represented as four dipoles of disclina-
tions (Fig. 4(b)).

In calculating the energy characteristics of evol-
ution of the GB dislocation ensemble, causing
grain rotation, for definiteness and simplicity, we
make the following model assumptions: (i) The
grain is a hexagon with the angles 2f characteriz-
ing the splitting processes at the opposite triple
junctions being the same. (ii) Magnitudes of the
Burgers vectors of all GB dislocations belonging
to the dislocation pile-ups are the same. (iii) The
plane of the shear stress t action is parallel with
planes of GBs where the GB dislocation pile-ups
are located. (iv) All the disclinations modeling the
walls of the climbing GB dislocations have the
same strength magnitude w.

The transformation of the GB dislocation
ensemble (Fig. 4) is characterized by the differ-
ence �W̃ = W̃2�W̃1 between the energies of the
final (W̃2) and initial (W̃1) states of the ensemble.
The transformation is energetically favorable
(unfavorable), if �W̃ � 0 (�W̃ � 0, respectively).
In the framework of the model discussed, the
energy of the dislocation ensemble in its initial
state (Fig. 4(a)) consists of the three terms

W̃1 � 2Epile-up
1 � 2Eb–b

S � Encb–ncb
int , (26)

where Epile-up
1 denotes the sum of the proper ener-

gies of GB dislocations composing a pile-up,
Eb–b

Σ the energy that characterizes pair interactions
between all GB dislocations composing one pile-
up, and Encb–ncb

int denotes the energy that charac-
terizes pair interactions between GB dislocations
belonging to the different pile-ups. Eb–b

Σ and
Epile-up

1 have been calculated in Section 2 (see for-
mulas (5) and (22), respectively).

Let us calculate Encb–ncb
int in the approximation

where the GB dislocation pile-ups are modeled as
superdislocations (Fig. 4(a)). The shear stress
sncb

xy which is created by the superdislocation with
the Burgers vector ncb and acts on the superdislo-
cation with the Burger vector �ncb is as follows

sncb
xy � Dncb

x(x2�y2)
(x2 � y2)2. (27)

The energy of interaction between the two super-
dislocations then reads

Encb–ncb
int � �ncb�R

P

sncb
xy (x,y � 0) dx, (28)

where P is the distance between the opposite triple
junctions (Fig. 4(a)). With Eq. (27) substituted to
formula (28), integration gives

Encb–ncb
int � �Dn2

cb2 ln
R
P

. (29)

Thus, the energy (26) of the system in its initial
state is approximated by the sum of three terms.
The two first terms strictly take into account the
fine structure of the dislocation pile-ups (i.e. the
specific distributions of dislocations within the
pile-ups), while the third one is approximated by
Eq. (29), which does not account for this fine struc-
ture. However, this approximation (when a pile-up
is treated as a superdislocation) gives rather good
results if the distance P (Fig. 4) is much larger than
the pile-up length [26]. The latter must be smaller
than S/2, and S is assumed to be always smaller
(two or more times, see below) than P in the
model. Therefore, the pile-up length must be four
or more times smaller than P, and the approxi-
mation of superdislocations in calculating the term
(29) is thus proved.

The energy of the GB dislocation ensemble in
its final state (Fig. 4(b)) consists of the six terms

W̃2 � 4E�
self � 4E�

t � 2Epile-up
t � 2E�1��2int (30)

� 2E�1��3int � 2E�1��4
int ,

where E�
self denotes the self-energy of a disclination

dipole, E�
t the work spent to transfer the GB dislo-

cations resulted from the splitting under the shear
stress t, Epile-up

t the work spent to transfer all GB
dislocations (from their initial positions) belonging
to the pile-ups, under the shear stress t, E�i��jint the
energy of interaction between the ith and jth dis-
clination dipoles (i 	 j, i = 1,2,3, j = 2,3,4).

Let us consider the self-energies of the disclin-
ation dipoles. In the framework of our model, the
strength magnitude w of the disclinations compos-
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ing all the dipoles is the same, and the distance
(L�p) between two disclinations composing one
dipole is the same for all the disclination dipoles.
Therefore, each of the dipoles is characterized by
the same energy [18]

E�
self �

Dw2(L�p)2

2 �ln
R

L�p
�

1
2� � nd

Db2
1

2
, (31)

where the second term on r.h.s. represents the sum
core energy of all dislocations modeled through the
disclination dipoles.

The shear stress t acts on the climbing GB dislo-
cations which compose the disclination dipoles.
The work spent to climb nd dislocations within one
disclination dipole is

E�
t � �tb1 sin 2f�p �

b1

w�
nd

i � 1

(i�1)� � (32)

�tb1 sin 2f�p �
b1nd(nd�1)

2w �.

This work is the same for all the disclination
dipoles under consideration (Fig. 4(b)).

The GB dislocations of each pile-up conse-
quently move under the shear stress t action from
their initial positions x = xi, to the new positions
at the triple junctions (x = 0). The work spent to
the transfer of all the GB dislocations of a pile-
up is

Epile-up
t � �tb�nc

i � 1

�xi�. (33)

Now let us consider the energy of interaction
between the disclination dipoles. In doing so, first,
for definiteness, we calculate the energy E�1��3int

that characterizes interaction between the first and
third disclination dipoles. The component s�1xy of
the stress field of the first dipole in the coordinate
system Ox�y� (Fig. 4(b)) is as follows

s�1x�y� � Dw� (x��x01)(y��y01)
(x��x01)2 � (y��y01)2 (34)

�
(x��x02)(y��y02)

(x��x02)2 � (y��y02)2�,

where L denotes the length of the GB facet where

the first dipole is located, p = L�(1 /w)(nd�1)b1 is
the interspacing between the positive disclination
of the first dipole and the triple junction, x01 = S
sin f, y01 = L+S sin f, x02 = T�p sin 2f, y02 =
T��p cos 2f, and T = P sin f, T� = P cos 2f. The
energy of the interaction between the first disclin-
ation dipole and a dislocation being a structural
element of the third dipole reads

E��1��3int � �b1�0

�R

s�1x�y�(x�,y�) dx�, (35)

with R being the screening length for stress fields
of the disclination dipoles. The energy of the inter-
action between the disclination dipoles is given as

E�1��3
int �

1
l�y�2

y�1

E��1��3
int

(y�) dy�, (36)

where y�1 = p, y�2 = L and l = (b1 /w) is the distance
between the neighboring GB dislocations being
structural elements of a disclination dipole.

With Eq. (34) substituted to formula (35), inte-
gration in formulas (35) and (36) gives the interac-
tion energy E�1��3

int to be

E�1��3
int � E�2��4

int �
Dw2

4
{�+(R,L,T,T�,y�,f)

��+(R,p,T,T�,y�,f)��+(0,L,T,T�,y�,f) (37)

� �+(0,p,T,T�,y�,f)}|y�2y�1
,

where

�±(s,l,t,t�,y�,f) � ((s � t)2 � l2 � (y��t�)2

� 2l(y��t�) cos 2f
2l(s � t) sin 2f) ln((s � t)2

� l2 � (y��t�)2 � 2l(y��t�) cos 2f
2l(s

� t) sin 2f).

Geometry of the system composed of the second
and fourth disclination dipoles is the same as with
the system of the first and third dipoles. Therefore,
the energy that characterizes pair interaction
between the second and fourth disclination dipoles
is also given by formula (37).

After some algebra similar to calculations of the
energy E�1��3

int , we find formulas for other energies
that characterize pair interactions between the dis-
clination dipoles. These energies are as follows
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E�1��2
int � E�3��4

int �
Dw2

4
{��(R,L,0,0,y�,f)

���(R,p,0,0,y�,f)���(0,L,0,0,y�,f)

� ��(0,p,0,0,y�,f)}|y�2y�1
, (38)

E�1��4
int � E�2��3

int �
Dw2

4
{�+(R,T�,T,L,y�,0)

��+(R,T�,T,p,y�,0)��+(0,T�,T,L,y�,0)

� �+(0,T�,T,p,y�,0)}|y�2y�1
. (39)

Thus, we have calculated all terms figuring in
the characteristic difference �W̃ = W̃2�W̃1

between the energies of the final and initial states
of the defect configuration (Fig. 4). If �W̃ is nega-
tive (positive), the transformation of the defect
configuration is energetically favorable
(unfavorable, respectively). The dependence of
�W̃ on parameters of the system can be found from
formulas (5), (22), (26), (29)–(33), (37)–(39). With
these formulas, for nc = 5, L = 200b, P = 400b,
R = 107b and t = 0.005G, we have calculated the
dependences of �W̃ on disclination strength w at
different values of the angle f that characterizes
geometry of the triple junction (see Fig. 5). Follow-
ing these dependences, the transformation is most
favorable in the range of 2f from 100 to 160°.
Also, the magnitude of �W̃ (that is, the energy gain
due to the transformation when �W̃ � 0) decreases
with an increase of the disclination strength w
(ranging from 0.05 to 0.1).

Fig. 5. Dependences of �W̃ (in units of Gb2) on disclination
strength w in the range of values of the triple junction angle
2f = 60, 80, 100, 120 and 160° (from top to bottom).

4. Critical stress of crossover from grain
boundary sliding to rotational deformation

The equation �W̃ = W̃2�W̃1 = 0 allows one to
calculate the critical shear stress tc at which the
crossover from GB sliding to rotational defor-
mation (Fig. 4) occurs. This equation may be writ-
ten as follows

tc � (40)

W̃�2�W̃1(tc)

2b�nc

i � 1

|xi(tc)| � 4b1 sin 2f�p �
b1nd(nd�1)

2w �
,

where W̃�2 is given by formula (30) for W̃2 with
terms 4E�

t and 2Epile-up
t removed.

In our numerical calculations of the critical shear
stress tc given by formula (40), we will use the
following characteristic values of parameters of
nanocrystalline material and defect configuration
under consideration. The Poisson ratio n is equal
to 0.3. Moduli of the GB dislocation Burgers vec-
tors and disclination strength are taken as: b =
0.1 nm and w = 0.1(�5.7°). The number nc is
varied from 3 to 20 together with the distance L
to keep the disclination strength w constant. The
distance p is also assumed to be constant and equal
to l. These assumptions are considered reasonable
based on the information available. As we will see
later, actual form of the curves is not too sensitive
on the values.

Now let us express the distance L through S and
P, whose ratio q = S /P � 1. In doing so, we have

L �
P(1�q)
2 cos f

. (41)

With formulas under discussion, for the above
characteristic values of parameters, we have calcu-
lated the dependences of the critical shear stress tc
on the grain size (diameter) P. These dependences
are shown for q = 0.5 (Fig. 6(a)) and q = 0.1 (Fig.
6(b)), for different values of the triple junction
angle 2f. The curves tc (P) lie, in general, in differ-
ent ranges of P because we have fixed w. There-
fore, increase in P leads to increase in both L and
nc, and this relation depends on the angle 2f. For
the sake of convenience, we attach the points cor-
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Fig. 6. Dependence of the critical stress tc on grain size P, (a)
for q = 0.5 and (b) for q = 0.1, for different values of the triple
junction angle 2f given by figures at the curves. The numbers
of GB dislocations nc are shown by the triangles (nc = 3), penta-
gons (nc = 5) and circles (nc = 15).

responding to nc = 3 (triangles), 5 (pentagons) and
15 (circles) to every curve. The upper ends of the
curves correspond to nc = 20. As a result, we can
additionally trace how tc depends on the angle 2f
when both the L and nc keep constant.

From Fig. 6 it follows that tc decreases with the
decrease of P (grain refinement). This is the main
result of this section. It demonstrates that the
smaller grains are rotated easier (they are rotated
under the action of smaller critical stress tc) than
the larger ones. Moreover, tc strongly depends on
the grain shape (i.e. on q and 2f). Increase in q
leads to decrease in tc because larger q (for the
fixed values of P and 2f) needs smaller number nc

of GB dislocations to spread along the GB (or
smaller dipole arm L�p). The dependence of tc on

the angle 2f is more complicated. For the fixed L
and nc, in the range of relatively small angles, 2f
� 100°, the critical stress tc decreases with
increasing 2f and achieves its minimum at 2f�
100°. In the range of relatively large angles, 2f
� 100°, the critical stress tc increases with rising
2f.

Thus, we can conclude that the smaller grains
that are characterized by the larger q and 2f�
100°, need the smaller critical stress tc to rotate.

5. Discussion and concluding remarks

In this paper, it has been theoretically revealed
that the crossover from the GB sliding to the
rotational mode of plastic flow in nanocrystalline
materials can effectively occur via the splitting of
gliding GB dislocations into climbing GB dislo-
cations at triple junctions (Figs. 1, 2 and 4). The
climbing GB dislocations form walls that move
along GBs adjacent to the triple junction and cause
crystal lattice rotation in the grain interior. Our
theoretical analysis of the energy characteristics of
the splitting has indicated that the splitting (Fig.
2) is energetically favorable in certain ranges of
parameters of the system. More precisely, in con-
trast to the previously considered one in Ref. [7]
situation with GB sliding which effectively occurs
(changing its direction) at triple junctions with low
values of the triple junction angle (2f), the splitting
(Fig. 2) effectively occurs at triple junctions with
large values of the triple junction angle 2f. That is,
GB sliding and rotational mode act as alternative
deformation mechanisms at triple junctions with
different geometric parameters (f). The exper-
imentally detected [17,27–29] grain rotations in
superplastically deformed nano- and microcrystal-
line materials where GB sliding is the dominant
deformation mechanism, support the theoretical
model developed here.

In general, superplasticity also involves the con-
ventional lattice dislocation slip which is com-
monly viewed to provide accommodation for GB
sliding [28,29] and supply lattice dislocations to
GBs where the lattice dislocations split into GB
dislocations being carriers of GB sliding [29]. In
the context of our model describing the combined
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action of the GB sliding and the rotational mode,
we think that the lattice dislocations absorbed by
GBs also enhance a climb of GB dislocations
resulted from the splitting of gliding GB dislo-
cations at triple junctions (Fig. 7). Actually, lattice
dislocations absorbed by GBs commonly split into
GB dislocations of the two types: gliding and
climbing GB dislocations; see Fig. 7(a) and (b)
where only the climbing dislocations are shown for
simplicity. The climbing dislocations absorbed by
one GB have the sum Burgers vector close to 0,
because of a random character of absorption of lat-
tice dislocations by GBs (Fig. 7(b)). At the same
time, the mechanical stress causes a directional
climb of GB dislocations, in which case after some
time interval the dislocations with opposite Burg-
ers vectors move towards each other, annihilate or
form dipole configurations (Fig. 7(b)). The climb-
ing GB dislocations resulted from the splitting of
gliding dislocations at a triple junction break the
balance between the Burgers vectors of GB dislo-
cations generated due to absorption of lattice dislo-
cations (Fig. 7(c)). The new dislocations that
resulted from the splitting of gliding GB dislo-
cations attract the corresponding dislocations
resulted from the splitting of absorbed lattice dislo-
cations and, then, they annihilate (Fig. 7(d)). In
these circumstances, “an effective enhanced climb”
of the Burgers vector is realized along the bound-
ary due to annihilation of climbing GB dislo-
cations, occurring simultaneously along the bound-
ary (Fig. 7(d)).

The enhanced GB dislocation climb stimulated
by conventional dislocation slip causes the two fol-
lowing effects crucially important for superplas-
ticity in nanocrystalline materials: (i) plastic defor-

Fig. 7. Enhancement of climb of GB dislocations due to
absorption of lattice dislocations by GBs. (a) Lattice dislo-
cations (large open dislocation signs) and gliding boundary dis-
locations (small full dislocation signs) move under the shear
stress action. (b) Climbing dislocations (small open dislocation
signs) resulted from splitting of absorbed lattice dislocations
form dipole configurations at GBs. (c) Head GB dislocations
of pile-up split into climbing dislocations (full dislocation signs)
at triple junctions O and O�. (d) Annihilation of climbing dislo-
cations forming dipole configurations results in the formation
of isolated climbing dislocations highly distant from triple junc-
tions O and O�.
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mation is spread in the direction perpendicular to
the direction of the maximum shear stress action;
(ii) triple junctions with large abutting angles, that
do not conduct GB sliding [7], effectively conduct
the crossover from the GB sliding to the rotational
mode and, therefore, do not serve as stress concen-
trators enhancing the nucleation of microcracks. As
a result of the effects (i) and (ii), neither plastic
flow localization nor failure processes occur in a
nanocrystalline material which, therefore, is cap-
able of sustaining large plastic deformations.

The suggested representations on the combined
action of GB sliding and rotational mode enhanced
by conventional dislocation slip are indirectly sup-
ported by the experimentally detected [23] sup-
pression of high-strain-rate superplasticity in heat-
treated nanocrystalline materials. Actually, heat
treatment results in annihilation of the GB dislo-
cations generated due to conventional dislocation
slip in nanocrystalline materials prepared by severe
plastic deformation. Therefore, enhanced climb of
GB dislocations from triple junctions does not
occur causing suppression of the crossover from
the GB sliding to the rotational mode. As a result,
a nanocrystalline specimen after heat treatment
does not exhibit high-strain-rate superplasticity.
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