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Abstract

A theoretical model is suggested which describes several types of transformations of grain boundary dislocation pile-
ups at triple junctions of grain boundaries in (super) plastically deformed nanocrystalline and polycrystalline materials.
Ranges of parameters of defect configurations are revealed at which the transformations considered are energetically
favourable. The role of transformations of grain boundary dislocation pile-ups at triple junctions of grain boundaries
in plastic deformation processes in nanocrystalline and polycrystalline materials is discussed with special attention
being paid to the influence of such transformations on competition between different deformation mechanisms in nanoc-
rystalline materials.
 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Transformations of grain boundary defects
strongly influence both the structure and the
properties of solids; see, e.g., [1–18]. In particular,
the grain boundary sliding which occurs via motion
of grain boundary dislocations (GBDs) crucially
affects the deformation behavior of polycrystalline
and nanocrystalline materials [1–12]. Thus, it has
been well established that grain boundary sliding
is mainly responsible for superplasticity which is
quite common for fine-grained metals, intermet-
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allics and ceramics at specific temperature and
strain rate conditions; see, e. g., [1,2]. The features
of grain boundary sliding strongly depend on triple
junctions of grain boundaries [19–24]. In parti-
cular, the effects of triple junctions on the defor-
mation behavior are of utmost importance in nan-
ocrystalline materials where the volume fraction of
triple junctions is extremely high. At present, the
role of triple junctions in plastic deformation in
polycrystalline and nanocrystalline materials is not
understood in detail due to difficulties in experi-
mental identification of the effects of triple junc-
tions that often exhibit themselves in combination
with those of “conventional” grain boundaries [19].
In these circumstances, theoretical modelling of
transformations of GBDs, that occur at triple junc-
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Fig. 1. Transformations of grain boundary dislocation pile-ups
at triple junction of grain boundaries. (a) Dislocation pile-up
stops at triple junction. (b) Head dislocation of pile-up splits
into two mobile dislocations that move along adjacent grain
boundaries. (c) Second head dislocation of pile-up splits into
two mobile dislocations that move along adjacent grain bound-
aries. (d) Head dislocation of pile-up splits into immobile grain
boundary dislocation that stays at triple junction and mobile
grain boundary dislocation moving along an adjacent boundary.
(e) Two dislocations converge into a dislocation with Burgers
vector 2b. (f) Dislocation with Burgers vector 2b splits into
immobile grain boundary dislocation that stays at triple junction
and mobile lattice dislocation that moves in grain interior. (g)
Head dislocation of pile-up splits into immobile grain boundary
dislocation that stays at triple junction and mobile partial dislo-
cation which moves in grain interior, with stacking fault
(dashed line) formed behind it. (h) New dislocation joins to the
stopped dislocation pile-up.

tions is of high interest for understanding the
relationships between the microstructure and the
mechanical properties of materials. The main aim
of this paper is to suggest a theoretical model
which describes transformations of GBD pile-ups
at triple junctions of grain boundaries and their
influence on grain boundary sliding in (super) plas-
tically deformed polycrystalline and nanocrystal-
line materials. The results of the model are used
here for a discussion of the non-conventional Hall-
Petch relationship as well as homogeneous and
inhomogeneous regimes of plastic flow in nanocry-
stalline materials.

2. Transformations of grain boundary
dislocation pile-ups at triple junctions.
Energetic characteristics

Let us consider a GBD pile-up generated under
the action of mechanical load in a grain boundary
in a plastically deformed nanocrystalline or
polycrystalline sample. Mechanical-load-induced
motion of the GBD pile-up is stopped by a triple
junction of grain boundaries (Fig. 1a). In these cir-
cumstances, there are five basic ways of evolution
of the GBD pile-up:

I The head dislocation (with Burgers vector b) of
the pile-up splits into the two dislocations (with

Burgers vectors b1 and b2, respectively) that
move along the adjacent grain boundaries (Fig.
1b). This process may repeatedly occur resulting
in the consequent splitting of even all the dislo-
cations that compose the pile-up (Fig. 1c).

II The head dislocation of the pile-up splits into
an immobile GBD with Burgers vector b1,
which stays at the triple junction, and a mobile
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GBD with Burgers vector b2, which moves
along one of adjacent grain boundaries (Fig.
1d).

III Two (or more) GBDs each is characterized by
Burgers vector b converge into a dislocation
with Burgers vector B � 2b having magnitude
close to the crystal lattice parameter (Fig. 1e).
Then the resultant dislocation splits into a
mobile lattice dislocation with Burgers vector
b�2, which moves to the adjacent grain interior,
and an immobile GBD with Burgers vector
b�1, which stays at the triple junction (Fig. 1f).

IV The head dislocation of the pile-up splits into
an immobile GBD (with Burgers vector b1) that
stays at the triple junction and a mobile partial
dislocation (with Burgers vector b2) that moves
in grain interior, in which case a stacking fault
is formed behind the moving patial dislocation
(Fig. 1g).

V The pile-up is immobile. It accumulates new
GBDs generated under the action of mechanical
load (Fig. 1h). This process precedes one of the
processes (I)–(IV).

It is worth noting that the suggested model (Fig.
1) refers to a rather specialized picture. For
example, consideration of accommodating dif-
fusion processes and grain boundary migration is
omitted here, because of mathematical compli-
cations associated with analysis of the combined
effects of grain boundary sliding, migration and
diffusion. However, results of the model are sup-
posed to clarify the key tendencies related to the
role of triple junctions in grain boundary sliding
processes and can serve as a basis for further theor-
etical and experimental investigations of grain
boundary sliding and its contribution to plastic
deformation in nano- and polycrystalline materials.

Now let us compare energetic characteristics of
the processes (I)–(IV), using the model suggested
(Fig. 1). This will allow us to select the most effec-
tive, energetically favourable process(es) occurring
at triple junctions of grain boundaries in plastically
deformed nanocrystalline and polycrystalline
materials. For these purposes, let us model a GBD
pile-up at a triple junction of grain boundaries as
follows. The pile-up consists of n (n � 1) GBDs
each characterized by the Burgers vector b (Fig.

1a). The pile-up is under the action of the shear
stress t. The processes (I)–(IV) result, in particular,
in the splitting of the head dislocation of the pile-
up into the two dislocations. The geometry of the
splitting is characterized by a1 and a2 being the
angles between the Burgers vector b of the pre-
existent head dislocation and the Burgers vectors
of, respectively, the first and second resultant dislo-
cations.

For definiteness, we will start our analysis with
consideration of the process (I). In this process, the
head dislocation of the pile-up (Fig. 1a) splits into
the two dislocations which move along the adjac-
ent grain boundaries, namely the first and second
resultant dislocations with Burgers vectors b1 and
b2, respectively (Fig. 1b). The angles a1 and a2 in
the situation discussed also play the role of the
angles between grain boundary planes.

The splitting of the head dislocation is energeti-
cally favourable, if the energy (per unit of the dis-
location length) E2 of the defect configuration
resulted from the splitting (Fig. 1b) is lower than
the energy E1 of the pre-existent defect configur-
ation (Fig. 1a). That is, the splitting occurs as an
energetically favourable process, provided

�E � E2�E1 � 0. (1)

The energy of the pre-existent defect configur-
ation (Fig. 1a) can be written as follows:

E1 � E�n�1 � Es � Eint, (2)

Here E�n�1 denotes the total energy of (n�1)
GBDs that belong to the pile-up and remain
unchanged during the transformation in question
(here and in the following we shall denote such
GBDs as “unchanged GBDs” , for ease of
reference), Es the self energy of the head GBD, Eint

the energy that characterizes the elastic interaction
of the head dislocation and the unchanged GBDs.
The assumption that the positions of the (n�1)
GBDs in the pile-up remain unchanged may look
too strong. However, during the process of the
transformations of the head GBD, when the “new”
dislocations move within a very small region (say,
some b) near the triple junction, this assumption
seems to be reasonable.

The energy of the defect configuration resulted
from the splitting (Fig. 1b) is given by:
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E2 � E�n�1 � Es
1 � Es

2 � Eint
1 � Eint

2 (3)

� Eint
1�2�A1�A2.

Here Es
1 (Es

2) denotes the self energy of the first
(second) resultant dislocation, Eint

1 (Eint
2 ) the energy

that characterizes the elastic interaction between
the unchanged GBDs and the first (second) result-
ant dislocation, Eint

1�2 the energy that characterizes
the elastic interaction between the first and second
resultant dislocations, A1 (A2) the mechanical work
carried out by the stress t to transfer the first
(second) resultant dislocation to its final position
shown in Fig. 1b. The energy difference �E then
reads:

�E � Es
1 � Es

2�Es � Eint
1 � Eint

2 � Eint
1�2 (4)

�Eint�A1�A2.

The self energies, Es, Es
1 and Es

2, figuring in eq.
(4) can be written in the standard way [25] as fol-
lows:

Es

b2 �
Es

1

b2
1

�
Es

2

b2
2

�
G

4p(1�n)�ln
R
rc

� Z�, (5)

where G denotes the shear modulus, n the Poisson
ratio, R the screening length of dislocation stress
fields, rc the dislocation core radius, and Z the fac-
tor taking into account the contribution of dislo-
cation core to the self energy.

Formulae for A1 and A2 are given in the standard
way [25] by:

A1

b1cos2a1
�

A2

b2cos2a2
� tw, (6)

where w is the distance moved by each of the
resultant dislocations along the corresponding
grain boundary (Fig. 1b). For simplicity, we
assume w to be the same for both the resultant dis-
locations.

Let us consider the energy terms Eint
1�2, Eint

1 and
Eint

2 . According to our calculations presented in
Appendix A, these terms are given by:

Eint
1 � Dbb1 �n

i � 2

�(a1,x1i,y1i), (7)

Eint
2 � Dbb2 �n

i � 2

�(a2,x2i,y2i), (8)

Eint
1�2 � Db1b2�(a1 � a2,x0,y0), (9)

where

�(a,x,y) �
cosa

2
ln

R2

x2 � y2 (10)

�
y(xsina � ycosa)

x2 � y2

Here the denotations D � G / [2p(1�n)], x0 �
w�wcos(a1 � a2), y0 � �wsin(a1 � a2), x1i �
w�xicosa1, y1i � �xisina1, x2i � w�xicosa2,

and y2i � �xisina2 are used, and xi is the spacing
between the ith and “head” dislocations in the
pile-up.

The energy Eint that characterizes the interaction
between the “head” dislocation and the unchanged
GBDs may be obtained from eq. (7) in the limiting
case a1 � 0, x1i=xi, y1i=0, b1 � b, that results in

Eint � Db2 �n

i � 2

ln
R
xi

. (11)

According to [26], xi (i � 2,…,n) are the roots of
the first derivative of the Laguerre polynomial (for
details, see Appendix B). From eqs. (2)–(11) we
have the following formula for the energy differ-
ence �E that characterizes the process (I) shown
in Fig. 1b:

�EI �
D
2

(b2
1 � b2

2�b2)�ln
R
rc

� Z�
�tw(b1cos2a1 � b2cos2a2)

� D�b1b2�(a1 � a2,x0,y0) (12)

� b�n

i � 2

�b1�(a1,x1i,y1i) � b2�(a2,x2iy2i)

�bln
R
xi
��.

If �EI, given by eq. (12) is lower (larger,
respectively) than 0, the process (I) is energetically
favourable (unfavourable, respectively).

Now let us turn to a consideration of the ener-
getic characteristics of the processes (II)–(IV)
occurring at triple junctions of grain boundaries in
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plastically deformed nanocrystalline and polycrys-
talline materials. By analogy to the scheme con-
sidered above for calculating of �EI, we have
found the energy differences �EII, �EIII and �EIV,
characterizing the processes (II), (III) and (IV),
respectively.

Using eq. (12) for �EI, it is possible to simplify
a formula for �EII as follows:

�EII � �EI � Db1{b2[�(a1 � a2,x�0,y�0)

��(a1 � a2,x0,y0)] � b�n

i � 2

[�(a1,x�1i,y�1i) (13)

��(a1,x1i,y1i)]},

where x�0 � w, y�0 � 0, x�1i � xicosa1, y�1i � �
xisina1, x�2i � xicosa2, and y�2i � �xisina2.

By analogy, using eq. (13) for �EII, it is simple
to write a formula for �EIV as:

�EIV � �EII � gw. (14)

The term �EIII may be obtained as follows. In
fact, the process (III) includes two main stages
which are (i) the stage of convergence of the first
and second dislocations of the initial pile-up which
results in a new dislocation with the Burgers vector
2b, that can be characterized by the energy differ-
ence �E(1)

III , and (ii) the stage of splitting of this
new dislocation into two new ones with the Burg-
ers vectors b�1 and b�2, respectively, that can be
characterized by the energy difference �E(2)

III . In
doing so, we obtain the term �EIII as a sum:
�EIII � �E(1)

III � �E(2)
III . After some algebra, it

reads as

�EIII �
D
2

(b�2
1 � b�2

2 � b2)�ln
R
rc

� Z�
�twb2cos2a2 � D�b�1b�2 (15)

�(a1 � a2,x�0,y�0) � b�n

i � 3

�b�1�(a1,x�1i,y�1i)

� b�2�(a2,x�2i,y�2i)�bln
R
xi
��.

It is worth noting that the Burgers vectors b1,
b2, b�1 and b�2 of the resultant dislocations figuring

in eqs. (12) and (15) and characterizing different
dislocation structures (shown in Fig. 1), in general,
are different.

3. Results of model

Results of our model considered in previous sec-
tions are presented here as numerically calculated
dependences of the energy difference �E on the
parameters, n, a1, a2, t/G, of the defect system
which undergoes transformations shown in Fig. 1.
These results for the processes (I)–(IV) are as fol-
lows.

3.1. Process (I) (see Fig. 1b)

For n � 5, and t /G � 0.0002, 0.002 and 0.01,
the dependences �EI(w) given by eq. (12) are
shown in Fig. 2a and b that correspond to a1 �

Fig. 2. The energy difference �EI, via the path w of gliding
dislocations in the case of n � 5 dislocations in the initial pile-
up under the external shear stress t /G � 0.0002, 0.002, and
0.01 (see curves 1, 2, and 3, respectively), for the Burgers vec-
tor orientations a1 � a2 � a � 20° (a) and 50° (b).
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a2 � 20° and a1 � a2 � 50°, respectively. As it
follows from these dependences, the dislocations
behave in rather different manners at small and
large values of angles between the adjacent grain
boundaries. So, barrierless motion of the resultant
dislocations occurs along the grain boundaries at
small values of the angles a1 and a2. In contrast,
for large a1 and a2, there is an energy barrier for
motion of the resultant dislocations, which is
characterized by the barrier height EmI and the criti-
cal distance wcI moved by the dislocations (Fig.
2b). Our analysis based on eq. (12) shows that the
transition from the barrierless type of the dislo-
cation motion to the barrier one takes place at a
critical value of a ( � α1 � α2) � 48°, which is
almost independent on the number n of the grain
boundary dislocations composing a pile-up.

Fig. 3 shows variations of dependences �EI(w)
(corresponding to the barrier motion of the result-
ant dislocations) with n, for a1 � a2 � a � 50°
and t /G � 0.002. It is seen from Fig. 3 that both
the barrier height EmI and critical distance wcI

decrease with rising n.
In Fig. 4, the dependences EmI(t) (Fig. 4a) and

wcI(t) (Fig. 4b) are given for different values of
the angles a1 and a2. The solid curves correspond
here to the condition a1 � a2 � a � (a1 �
a2) /2, while the dashed curves correspond to the

asymmetric case with a1 	 a2. As follows from
Fig. 4, the barrier height EmI in the asymmetric

Fig. 3. The energy difference �EI via the path w of gliding
dislocations in the case of n � 5 (curve 1) and 20 (curve 2)
dislocations in the initial pile-up under the external shear stress
t /G � 0.002, for the Burgers vector orientations a1 � a2 �
a � 50°.

Fig. 4. The energy barrier height EmI (a) and the critical dis-
tance wcI (b) via the external shear stress τ for the mean angle
a � (a1 � a2) /2 � 65° (1), 60° (2), and 55° (3), of the Burg-
ers vector misorientations. The solid lines correspond to the
symmetric case with a1 � a2, while the dashed lines represent
the asymmetric case when a1 	 a2.

case is lower than that in the case with a1 �
a2 � a, while the critical distance wcI is tenta-

tively the same in both the cases. Also, Fig. 4
shows that both EmI and wcI increase with rising
the angles a1 and a2.

3.2. Process (II) (see Fig. 1d)

For n � 5, and t /G � 0.0002, 0.002 and 0.01,
the dependences �EII(w) are presented in Fig. 5a
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and b which correspond to a1 � a2 � a � 20°
and a1 � a2 � a � 50°, respectively. As with the
splitting of the head dislocation into two GBDs
moving along adjacent boundaries (the process (I)),
the splitting of the pre-existent head dislocation
into an immobile GBD and a mobile GBD (Fig.
1d) occurs in the barrierless way at low values of
a1 and a2, while there is an energetic barrier
(characterized by the height EmII and the critical
distance wcII) for motion of the resultant lattice dis-
location in the case with large values of a1 and a2.

Fig. 6 shows variations of the dependences
�EII(w) (corresponding to the barrier motion of the
lattice dislocation) with the number n of the grain
boundary dislocations composing the pile-up, for
a1 � a2 � a � 50° and t /G � 0.002. Both the
barrier height EmII and critical distance wcII

decrease with rising n. Dependences of EmII and

Fig. 5. The energy difference �EII via the path w of gliding
dislocation in the case of n � 5 dislocations in the initial pile-
up under the external shear stress t /G � 0.0002 (1), 0.002 (2),
and 0.01 (3), for the Burgers vector orientations a1 � a2 �
a � 20° (a) and 50° (b).

Fig. 6. The energy difference �EII via the path w of gliding
dislocation in the case of n � 5 (1) and 20 (2) dislocations in
the initial pile-up under the external shear stress t /G � 0.002,
for the Burgers vector orientations a1 � a2 � a � 50°.

wcII on parameters of the system are presented in
Fig. 7. The solid curves correspond to the sym-
metric case with a1 � a2 � a, while the dashed
curves to the asymmetric case with a1 	 a2.
Values of EmII and wcII are lower in the asymmetric
cases as compared to those in the symmetric cases
with the same values of a � (a1 � a2) / 2. Fig. 7
is indicative of the fact that both the EmII and wcII

increase with raising the angles a1 and a2.
The comparison between variants (I) and (II)

allows us to conclude that the variant (I) is more
energetically favourable than variant (II) with the
same values of the characteristic parameters. How-
ever, the parameters a1 and a2 in variant (II) are
more flexible; they characterize the misorientation
between the Burgers vectors b1 and b2, but not
between the fixed grain boundary planes as in the
process (I). As a corollary, in general, both the pro-
cesses (I) and (II) can be realized at triple junctions
in plastically deformed nanocrystalline and
polycrystalline materials.

3.3. Process (III) (see Fig. 1e and f)

For n � 5, and t /G � 0.0002, 0.002 and 0.01,
the dependences �EIII(w) are shown in Fig. 8a and
b that correspond to a1 � a2 � a � 20° and
a1 � a2 � a � 50°, respectively. Here w denotes
the distance moved by the mobile lattice dislo-
cation. These dependences give evidence for the
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Fig. 7. The energy barrier height �EIII (a) and the critical dis-
tance wcII (b) via the external shear stress t for the mean angle
a � (a1 � a2) /2 � 60° (1), 55° (2), and 50° (3), of the Burg-
ers vector misorientations. The solid lines correspond to the
symmetric case with a1 � a2, while the dashed lines represent
the asymmetric case when a1 	 a2.

barrier type of motion of the mobile lattice dislo-
cation. Moreover, the barrier height EmIII is very
high as compared to that in the processes (I) and
(II). This allows us to conclude that the process
(III) is hardly realized in reality.
3.4. Process (IV) (see Fig. 1g)

The characteristic dependences of �EIV on w
(where w is the distance moved by the mobile par-
tial dislocation in the grain interior), given by eq.

Fig. 8. The energy difference �EIII via the path w of gliding
dislocation in the case of n � 5 dislocations in the initial pile-
up under the external shear stress t /G � 0.0002 (1), 0.002 (2),
and 0.01 (3), for the Burgers vector orientations a1 � a2 �
a � 20° (a) and 50° (b).

(14), are presented in Fig. 9 for the case of Ag
characterized by a very low value of the stacking
fault energy (g�15 Erg.cm�2). As follows from
Fig. 9, the drag force associated with g plays the
important role in hampering the motion of the par-
tial dislocation. In fact, the motion under consider-
ation is energetically unfavourable at realistic
values of the parameters of the defect system
shown in Fig. 1g.

4. Discussion and concluding remarks

Thus, according to the results of our theoretical
analysis, GBD pile-ups may effectively split at tri-
ple junctions of grain boundaries in wide ranges of
parameters that characterize these defect configur-
ations. GBD pile-ups serve as stress concentrators
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Fig. 9. The energy difference �EIV via the path w of gliding
dislocation in the case of n � 30 dislocations in the initial pile-
up under the external shear stress t /G � 0.0002 (1), 0.002 (2),
and 0.01 (3), for the Burgers vector orientations a1 � a2 �
a � 20° and the stacking fault energy g � 15 Erg.cm�2.

[25], in which case the processes of their splitting
give rise to a decrease of the stress concentration
and, therefore, hamper fracture. In doing so, the
geometry of the splitting of GBD pile-ups (Fig. 1b,
c and d) strongly influences the grain boundary
sliding as a channel of plastic deformation. The
splitting of GBD pile-ups effectively occurs at a
triple junction of grain boundaries, if its character-
istic abutting angles, a1, and a2, are low enough
(see Section 3). In these circumstances, it is natural
to distinguish the so-called “soft” and “hard” triple
junctions as those where the dislocation pile-up
splitting occurs or does not, respectively, at given
conditions of loading (say, a value of the applied
mechanical stress). In this context, ratio Fs/Fh of
the volume fraction FS of soft triple junctions to
the volume fraction Fh of hard junctions effectively
characterizes the contribution of grain boundary
sliding to plastic deformation and, therefore, is an
important structure-sensitive parameter of the
behavior of fine-grained materials under mechan-
ical loading.

Actually, the crossover from the conventional
dislocation slip to the deformation mechanisms
associated with the active role of grain boundaries
(grain boundary sliding [20,21], grain boundary
diffusional creep (Coble creep) [27,28], triple junc-
tion diffusional creep [29], rotational deformation
occurring via motion of grain boundary disclina-
tions [30,31]) is believed to occur in fine-grained

materials at small values of grain size d (for a
review, see [24]). With results of our theoretical
analysis given here, the competition between grain
boundary sliding and other deformation mech-
anisms is crucially influenced by the ratio Fs/Fh

characterizing triple junction ensemble. Materials
with a high ratio Fs/Fh exhibit enhanced grain
boundary sliding characterized by the yield stress
value being lower than the yield stress values
specifying alternative deformation mechanisms,
say, diffusional creep mechanisms. Plastic flow in
materials with a low ratio Fs/Fh occurs by alterna-
tive deformation mechanism(s), because grain
boundary sliding is suppressed.

The suggested representations on soft and hard
triple junctions qualitatively account for the exper-
imentally detected difference between the mechan-
ical behaviors of heat-treated and as-fabricated
nanocrystalline materials. Thus, a negative slope
of Hall–Petch dependence (microhardness or yield
stress s vs d�1/2) is exhibited by heat-treated nan-
ocrystalline materials, while as-fabricated nanocry-
stalline materials are observed to continually
strengthen to the smallest grain sizes tested; see
[32,33] and references therein. In doing so, heat-
treated samples are stronger than as-fabricated
ones [32,33]. We think that the difference in ques-
tion is related to the difference in ratio Fs/Fh

between heat-treated and as-fabricated samples.
Actually, nanocrystalline materials commonly are
synthesized at highly non-equilibrium conditions
that cause many GBDs and “non-equilibrium” or,
in our terms, soft triple junctions (with dihedral
angles between adjacent grain boundaries highly
deviating from 120° inherent to “equilibrium” or,
in our terms, hard triple junctions) to be generated.
In such materials, grain boundary sliding effec-
tively occurs via motion of numerous GBDs that
overcome soft triple junctions (as shown in Fig.
1a–d). The reduction of grain size d leads to an
increase of the volume fraction of triple junctions
which, even if they are soft, hamper grain bound-
ary sliding. Therefore, the strength of as-fabricated
materials continually increases with decreasing
grain size d. Heat treatment of a nanocrystalline
sample results in annihilation of GBDs and trans-
formations of soft (”non-equilibrium”) triple junc-
tions into hard (”equilibrium”) ones. In our terms,
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heat treatment gives rise to an essential decrease
of ratio Fs/Fh characterizing triple junction ensem-
ble. As a corollary, grain boundary sliding does
not effectively occur in heat treated nanocrystalline
materials characterized by low ratio Fs/Fh, in con-
trast to as-fabricated nanocrystalline materials
characterized by high Fs/Fh. This causes heat-
treated samples to be stronger than their as-fabri-
cated counterparts. In doing so, grain boundary dif-
fusional creep and/or enhanced triple junction dif-
fusional creep come into play in heat-treated
materials, that, according to theoretical models
[27–29] are responsible for a negative slope of the
Hall–Petch dependence experimentally detected in
such materials.

Following experiments [22], the grain boundary
sliding in plastically deformed samples induces
local migration of grain boundaries, which
decreases the characteristic angle a1 (or a2) of tri-
ple junctions. That is, the grain boundary sliding
is capable of transforming hard triple junctions into
soft ones, thus facilitating the sliding itself in plas-
tically deformed nanocrystalline and polycrystal-
line materials. The effects of triple junctions on the
deformation behavior and the migration-assisted
transformations of hard triple junctions into soft
ones account for the plastic flow localization
experimentally observed [34–38] in nanocrystal-
line materials. Actually, in the situation where
grain boundary sliding dominates, the difference
between homogeneous and inhomogeneous
regimes of plastic deformation in as-fabricated
nanocrystalline materials is naturally explained as
that associated with the behavior of GBD pile-ups
at triple junctions. If the mean characteristic ratio
Fs/Fh is intermediate, the grain boundary sliding
occurs in only some local regions where local
value of Fs/Fh is comparatively high. In doing so,
the grain boundary sliding induces transformations
of hard triple junctions into soft ones due to local
migration of grain boundaries in these regions, thus
intensifying localization of plastic flow. In other
terms, the grain boundary sliding occurs as a self-
supporting percolation process in some local
regions, in which case a deformed sample exhibits
the inhomogeneous deformation regime with plas-
tic flow being localized in shear bands. If the mean
ratio Fs/Fh is high, the grain boundary sliding

effectively occurs within the mechanically loaded
sample as a whole, causing homogeneous plastic
deformation.

With the influence of triple junctions on plastic
flow localization, we expect that the ability of an
as-fabricated nanocrystalline material to exhibit
homogeneous or inhomogeneous plastic flow is
sensitive to mode of its preparation. For instance,
nanocrystalline materials prepared by crystalliz-
ation of amorphous solids have more equilibrium
structure as compared to nanocrystalline materials
prepared by highly non-equilibrium methods, say,
severe plastic deformation. Therefore, we expect
“equilibrium” and “non-equilibrium” nanocrystal-
line materials (with intermediate and high ratio
Fs/Fh, respectively) in their as-fabricated states to
exhibit mostly inhomogeneous and homogeneous
plastic deformation, respectively. This statement is
worth being taken into account in analysis of the
experimentally observed [39,40] phenomenon of
high strain rate superplasticity — the ability of a
solid to undergo large deformation often without
the formation of a neck prior to fracture — in nan-
ocrystalline materials produced by severe plastic
deformation.

To summarize, in this paper we have theoreti-
cally described the role of triple junctions as
obstacles for plastic flow occurring via grain
boundary sliding. With results of our theoretical
analysis, triple junctions strongly influence plastic
deformation processes, causing selection of the
dominant deformation mechanism realized in
mechanically loaded nanocrystalline materials
where the volume fraction of the grain boundary
phase is extremely high. It is important for under-
standing the fundamentals of plastic deformation
processes in nanocrystalline materials as well as
for development of technologies based on plastic
forming of nanostructures.
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Appendix A

Let us calculate the energies Eint
1 , Eint

2 and Eint
1�2

that characterize interactions between dislocations
having non-parallel Burgers vectors (for details,
see Section 2). As an example, calculations for the
term Eint

1 are given below in detail. As the calcu-
lation procedures for Eint

2 and Eint
1�2 are absolutely

similar, we give only the final results for them.
Following the general method [41], the energy

Eint
1 of the interaction between two dislocations

with the Burgers vectors b� and b
 is calculated as
the work spent to generation of the dislocation with
the Burgers vector b
 in the stress field of the dislo-
cation with the Burgers vector b�. That is,

Eint � b
	
xd

�

sb�
xydx, (A1)

where xd is a parameter characterizing the distance
between the dislocations. The energy Eint

1 may be
calculated as a sum of such energies of pair inter-
action (the energies of interaction between the b1

dislocation and the pile-up dislocations) as follows:

Eint
1 � �n

i � 2

Eint
b1�bi

, (A2)

where Eint
b1�bi

is the energy of interaction between
the b1 dislocation and the ith dislocation from the
pile-up.

For example, let us calculate the energy of inter-
action between the b1 dislocation and the second
dislocation (in the initial pile-up, i � 2) having the
Burgers vector b (Fig. 10). To do so, it is con-
venient to write the stress tensor sij of the second
dislocation in the Oxy coordinate system (Fig. 10)
with the x-axis being parallel to the gliding plane
of the b1 dislocation. The sxy component reads

sxy � sx�y�cos2a1 �
sin2a1

2
(sy�y��sx�x�), (A3)

where sx�y�, sy�y� and sx�x� are the stress components
of the second dislocation in the Ox�y�coordinate
system which are given by [25]

sx�x� � �Db
y�(3x�2 � y�2)
(x�2 � y�2)2 , sy�y� (A4)

� Db
y�(x�2�y�2)
(x�2 � y�2)2, sx�y� � Db

x�(x�2�y�2)
(x�2 � y�2)2

with

x� � xcosa1�ysina1, y� � xsina1 (A5)

� ycosa1.

Substitution of eq. (A3) with (A4) and (A5) into
(A1) gives

Eint
b1�b � b1	

xd

�

�sxy(x,yd)cos2a1 (A6)

�
sin2a1

2
[syy(x,yd)�sxx(x,yd)]�dx,

where xd � w � x2cosa1 and yd � �x2sina1 (Fig.
10). After integration in eq. (A6), we obtain:

Eint
b1�b � Dbb1�cosa

2
ln

R2

x2
d � y2

d

(A7)

�
yd(xdsina � ydcosa)

x2
d � y2

d
�.

The energy Eint
1 is given by a sum (eq. (A2)) of

terms similar to Eint
b1�b presented by eq. (A7).

Appendix B

Dislocation positions within a discrete pile-up
can be calculated effectively using the theory of
the Laguerre polynoms [26]. The Laguerre poly-
nom Ln(x) is defined as the solution of the follow-
ing equation:

x2
d2y
dx2 � (1�x)

dy
dx

� ny � 0. (B1)

The first derivative L�n(x) of the Laguerre poly-
nom is the solution of the equation:

x
d2y
dx2 � (2�x)

dy
dx

� (n�1)y � 0. (B2)

With eq. (B2), L�n(x) can be written as follows:

L�n(x) � � �n�1

k � 0

n!(�x)k

k!(k � 1)!(n�k�1)!
. (B3)

As was shown in [26], the roots of the L�n(x) coincide
with dislocation positions in a discrete pile-up.
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Fig. 10. Schematics of splitting of the head dislocation of a pile-up. The coordinates of the b1 dislocation are xd � w � x2cosa1,
and yd � �x2sina1, where w is the dislocation path after the splitting.
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