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A theoretical model is suggested that describes the generation of partial and split dislocations at grain
boundaries in nanocrystalline metals. The ranges of parameters �such as grain size and level of external stress�
are theoretically revealed at which the formation of partial dislocation semi-loops is energetically favorable. It
is shown that anomalously wide stacking faults between partial dislocations—elements of split dislocations—
are formed due to the effects of high stresses existing in nanocrystalline metals under mechanical load. The
results of the suggested model account for experimental data on observation of partial and split dislocation
configurations in nanocrystalline Al reported in the literature.
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I. INTRODUCTION

Defects in solid state nanostructures often crucially affect
their outstanding physical and mechanical properties and
thereby represent the subject of rapidly growing fundamental
and applied research efforts. In doing so, partial and split
dislocations are recognized as typical defects in solid state
nanostructures such as nanocrystalline metals,1–12 semicon-
ductor quantum dots,13–17 nanoscale films,18–21 and nano-
structured grain boundaries �GBs� in high-transition-tem-
perature superconductors22–26 and perovskite oxide SrTiO3.27

As shown by experimental study, computer simulations, and
theoretical analysis,1–27 the formation of these dislocation
configurations in solid state nanostructures is enhanced due
to the interface and nanoscale effects. At the same time, par-
tial and split dislocation configurations are capable of
strongly influencing functional and structural properties of
nanostructures. In particular, plastic deformation mode car-
ried by partial and split dislocation configurations is among
specific physical mechanisms of plastic deformation in nano-
crystalline solids1–12,28–31 whose mechanical properties com-
monly are enhanced compared to those of their coarse-
grained counterparts. The conventional lattice dislocation
slip is suppressed by GBs in nanocrystalline metals with fin-
est grains �having the mean grain size lower than a critical
value of around 20–30 nm�, in which volume fractions of
GBs and their triple junctions are extremely large. In nano-
crystalline solids with the finest grains, the GBs and their
triple junctions come into play as new sources and channels
of plasticity. Pure nanocrystalline Al is a good example to
demonstrate the unusual mechanisms of plastic deformation
in nanocrystalline metals. Molecular dynamics simula-
tions2,11,12 have shown that plastic deformation of nanocrys-
talline Al with very small grains �from 5 to 10 nm� is real-
ized through intergrain sliding and grain rotation. When the
grain size achieves some tens of nanometers, the generation
of partial and split dislocations by GBs dominates over the
other mechanisms.12,32–34 Partial dislocations, wide strips of
stacking faults, and deformation twins in pure nanocrys-
talline Al were observed in transmission electron microscopy
�TEM� and high-resolution TEM �HRTEM� experiments.6–9

The stacking fault �SF� strips between partial dislocations in
nanocrystalline Al occurred to be 1.5–11 times wider than in

conventional coarse-grained Al.9 This observation is in con-
flict with the traditional view that dislocation splitting and
deformation twinning are practically impossible in pure Al
due to its high SF energy.35

To understand the reasons for dislocation splitting and
abnormal widening of SFs in pure nanocrystalline Al, several
theoretical models have been proposed,9,36–39 describing the
energy characteristics of emission of partial dislocation semi-
loops from GBs. The general issue is that the small grain size
is directly responsible for these phenomena. Following the
models,9,36–39 the SF strips must become wider when the
grain size drops. This important result seems to be weakly
proved due to some common lacks of these models. First, the
energy calculations were rather rough because they used the
solution for the strain energy of a straight infinite dislocation
to approximate the self-energies of finite dislocation seg-
ments composing the partial dislocation semiloops, and ne-
glected the interaction energy terms. Second, it was assumed
that one partial dislocation semiloop remains immobile when
the other expands. Third, the real geometry of partial dislo-
cation semiloop glide was not taken into account. As shown
in our theoretical analysis in this paper, the approaches9,36–38

give no reliable results.
The main aim of this paper is to suggest a three-

dimensional �3D� theoretical model describing the emission
of partial dislocation semiloops from GBs in nanocrystalline
metals. This model is based on strict calculations of energies
of elastically interacting dislocation loops taking into ac-
count the real geometry of their glide in the exemplary case
of nanocrystalline Al. We show that the grain size does not
influence directly the width of dislocation splitting. It is the
high level of applied elastic stress that plays the crucial role,
and the small grain size just provides a possibility to achieve
this level in a nanocrystalline metal.

II. INTERGRAIN SLIDING IN NANOCRYSTALLINE
SOLIDS: GENERAL ASPECTS

Following Refs. 2–5, 12, and 27–30, intergrain sliding
essentially contributes to plastic flow in nanocrystalline met-
als with the finest grains. The intergrain sliding in high-angle
GBs in coarse-grained and nanocrystalline solids occurs by
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either uncorrelated local shear events or movement of GB
dislocations �Fig. 1�.3,40,41

In particular, the intergrain sliding in coarse-grained and
nanocrystalline solids can be effectively conducted by move-
ment of gliding GB dislocations with Burgers vectors paral-
lel with corresponding GB planes �Fig. 1�a��.40 Such GB
dislocations with ordered structures are defined as defects
violating translation symmetries of GBs. They are character-
ized by Burgers vectors whose magnitudes are small �each
magnitude ranges from tentatively a /5 to a /3� and defined
by translational symmetries of the GB structures.40 Glide of
GB dislocations with Burgers vectors parallel with corre-
sponding GB planes is driven by the shear stress and con-
ducts intergrain sliding localized in the dislocation core. For
illustration, expansion of a gliding GB dislocation loop under
the shear stress action is shown in Fig. 1�a�.

The triple junction of GBs serve as borders between the
GB and bulk �grain interior� phases. Therefore the triple
junctions represent geometric obstacles for the glide of GB
dislocations from a GB towards the adjacent grain interiors.
In these circumstances, expansion of gliding GB dislocation
loops in a GB is restricted by the triple junctions, borders of
the GB area �Fig. 1�a��. At certain conditions, further evolu-
tion of such GB dislocation loops can occur through emis-
sion of semiloops of partial dislocations into adjacent grain
interiors. A theoretical analysis of the emission of partial
dislocations from dislocated GBs will be done in the next
section.

Besides the dislocation theory40 of intergrain sliding, there
is an alternative view3,40,41 that intergrain sliding in GBs in
nanocrystalline solids is carried by free-volume defects,
nanometer-size spheroidal regions where the shear resistance
is less than in the rest of the GB due to the presence of an
extra free volume �Fig. 1�b��. Ensembles of such free-volume
defects homogeneously distributed in the GB phase provide

uncorrelated local shear events as elementary acts of inter-
grain sliding.3,40,41 These shear events are driven by the shear
stress and carry homogeneous intergrain sliding in GBs, es-
pecially in GBs having a nonequilibrium, disordered struc-
ture. The discussed view is based on the concept42 of free-
volume defects providing local shear events as elemental
acts of homogeneous plastic deformation in amorphous ma-
terials. In this context, with the interpretation42 of local shear
events as events of the generation of nanoscale dislocation
loops, one finds that the intergrain sliding by local shear
events can produce GB defects which are very similar to the
conventional GB dislocation loop. Actually, since triple junc-
tions serve as obstacles for intergrain sliding, numerous local
shear events, occurring in a GB, result in the accumulation of
the unfinished shear or, in other words, dislocation charge at
the borders of the GB area �Fig. 2�. As a corollary, numerous
local shear events, occurring in a GB, form a rectangular
dislocation loop �Fig. 2� which looks like a conventional GB
dislocation loop shown in Fig. 1�a�. The difference between
the dislocation loop �Fig. 2�h�� and the conventional GB dis-
location loop is in the magnitude of their Burgers vectors.
The conventional GB dislocation loops are characterized by

FIG. 1. Intergrain sliding mechanisms. �a� Expansion of a glid-
ing GB dislocation loop with the Burgers vector b in GB ABCD
conducts intergrain sliding localized at the dislocation core. The
dislocation loop in its initial and final state is shown as dashed and
solid rectangle, respectively. �b� Uncorrelated local shear events in
free-volume defects �gray spheroids� in a GB ABCD conduct ho-
mogeneous intergrain sliding. Each uncorrelated local shear event is
equivalent to the generation of a nanoscale dislocation loop as
shown in the magnified inset.

FIG. 2. Intergrain sliding through uncorrelated events of the
nanoscale dislocation loop generation �local shear events in free-
volume defects� in a GB results in the formation of a defect similar
to the GB dislocation loop with a large Burgers vector. �a� GB in its
initial state is free from any dislocationlike defects. �b� Several
nanoscale dislocation loops �gray ellipses� are generated in GB un-
der the shear stress action. �c� New nanoscale dislocation loops are
generated in GB. Also, several nanoscale dislocation loops con-
verge, thus forming a dislocation loop of intermediate size. �d� Most
nanoscale dislocation loops converge forming a continuous large
dislocation loop having the Burgers vector b� and occupying the
GB area as a whole. �e� New nanoscale dislocation loops �dark
ellipses� are generated in the GB region swept by the previously
formed large dislocation loop �gray region�. �f� Several newly gen-
erated nanoscale dislocation loops converge and form a dislocation
loop �dark region� of intermediate size. �g� Most nanoscale disloca-
tion loops converge forming a continuous large dislocation loop
having the Burgers vector b and occupying the GB area as a whole.
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Burgers vectors whose magnitudes are small �each magni-
tude ranges from tentatively a /5 to a /3� and defined by
translational symmetries of the ordered GB structures.40 The
dislocation loop �Fig. 2�h�� resulted from numerous local
shear events in a disordered GB is characterized by a Burgers
vector whose magnitude is arbitrary. Generally speaking,
since the dislocation loop �Fig. 2�h�� represents a superposi-
tion of numerous nanoscale dislocation loops �associated
with local shear events �Fig. 2��, it should be considered as a
loop of Somigliana dislocation having a variable Burgers
vector. However, for simplicity of our further theoretical
analysis of emission of partial dislocations from GBs, we
suppose the dislocation loop �Fig. 2�h�� to be a GB �Volterra�
dislocation loop with a constant Burgers vector of arbitrary
magnitude �say, ranging from a /5 to 3a�.

The aforesaid allows us to treat the GB dislocation loops
at GBs as typical GB defects resulting from intergrain sliding
conducted by either local shear events or conventional GB
dislocations. The Burgers vector magnitudes of GB disloca-
tion loops �Fig. 2�h�� resulted from numerous local shear
events can be comparatively large �say, exceed the crystal
lattice parameter a�.

III. EMISSION OF PARTIAL DISLOCATION SEMILOOPS
FROM DISLOCATED GB: MODEL

Now let us consider a model of the emission of partial
dislocation semiloops from a GB containing a GB disloca-
tion loop in a fcc metal. The system in its initial state is
represented by a dislocation loop ABCD with the Burgers
vector b �hereinafter called b-loop� formed within the GB
�Fig. 3�a��. For simplicity, both the grain and loop are as-
sumed to have square shape and size d. Under an applied
shear stress � two partial dislocation semiloops �AabB and
Aa�b�B� with the Burgers vectors b1 and b2 are formed one

after another at the b-loop segment AB �Figs. 3�b� and 3�c��.
The shaded area a�abb� in Figs. 3�b� and 3�c� denotes the SF
between the partial dislocation semiloops. The combination
of the Burgers vectors b1 and b2 with the gliding plane de-
fines the gliding system. Following Zhu et al.,37,38 we con-
sider two gliding systems called the 60°-I system and the
screw system comprised of the following dislocations: dislo-
cations with the Burgers vectors b1=a /6�112̄� and b2

=a /6�21̄1̄�, for the 60°-I system; and dislocations with the
Burgers vectors b2=a /6�12̄1� and b1=a /6�21̄1̄�, for the
screw system. Here a is the lattice parameter. The gliding
plane is �111� in both systems, and the GB, at which the
partial dislocation semiloops are generated, is oriented along

�11̄0�. The sum of the Burgers vectors b1 and b2 gives the

lattice Burgers vector b0, in which case b0=a /2�101̄�, for the

60°-I system, and b0=a /2�11̄0�, for the screw system.
Under an applied stress �, the partial dislocation semi-

loops expand by the glide of segments ab and a�b�. The other
segments of the b-loop are assumed to be immobile. To ana-
lyze the generation and expansion of the partial dislocation
semiloops, let us calculate the corresponding changes in the
total energy of the system.

The total energy of the system in its initial state �Fig. 3�a��
is W0=Ws+Wc, where Ws and Wc are the strain and core
energies, respectively, of the b-loop. After emission of the
first partial dislocation semiloop �Fig. 3�b��, the system may
be decomposed into two dislocation loops: the initial b-loop
and a new rectangular loop of partial dislocation with the
Burgers vector b1 �b1-loop�. The energy W1 of such a dislo-
cation configuration depends on the path p1 moved by the
gliding dislocation segment ab:

W1�p1� = Ws + Ws1�p1� + Wint1�p1� + Wc� + Wc1� �p1�

+ Wc0 + Wf1�p1� , �1�

where Ws1�p1� is the self-strain energy of the b1-loop,
Wint1�p1� the energy of elastic interaction between the b- and
b1-loops, Wc� the sum core energy of the three segments of
the b-loop that stay unchanged during generation of the
b1-loop, Wc1� �p1� the sum core energy of the dislocation seg-
ments Aa, ab, and Bb of the b1-loop, Wc0 the core energy of
the segment AB belonging to both the b- and b1-loops, and
Wf1�p1�=��d−2b1��p1−rc1−rc2� the energy of SF in the re-
gion AabB. Here � is the specific SF energy and rci is the
core radius of the segments ab�i=1� and AB �i=2�.

Similarly, after emission of the second partial dislocation
semiloop �Fig. 3�c��, the system may be decomposed into
three dislocation loops: the b- and b1-loops, and a new rect-
angular loop of partial dislocation with the Burgers vector b2
�b2-loop�. The corresponding total energy W2 depends on
two paths p1 and p2 moved by the segments ab and a�b�,
respectively:

FIG. 3. A schematic illustration of the generation of the partial
dislocation loops with Burgers vectors b1 and b2 at the preexistent
GB dislocation loop ABCD with Burgers vector b.
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W2�p1,p2� = Ws + Ws1�p1� + Ws2�p2� + Wint1�p1� + Wint2�p2�

+ Wint3�p1,p2� + Wc� + Wc1� �p1,p2� + Wc2

+ Wc3�p2� + Wc0� + Wf2�p1,p2� , �2�

where Ws2�p2� is the self-strain energy of the b2-loop,
Wint2�p2� the energy of elastic interaction of the b- and
b2-loops, Wint3�p1 , p2� the energy of elastic interaction of the
b1- and b2-loops, Wc1� �p1� the sum core energy of the dislo-
cation segments a�a, ab, and bb�, Wc2 the core energy of the
segment a�b�, Wc3�p2� the sum core energy of the segments
Aa� and Bb� formed due to overlapping of the b1- and
b2-loops, Wc0� the core energy of the segment AB belonging
to the b-, b1-, and b2-loops, and Wf2�p1 , p2�=��d−2b1��p1

− p2−rc1−rc2� the SF energy in the region a�abb�.

Following Ref. 43, the self-energies Wsi�pi� read

Wsi�pi� = Dbi
2��2 − ���hi − pi − d�

+ �1 − � sin2 �i�d ln
2pid

rci�hi + d�

+ �1 − � cos2 �i�pi ln
2pid

rci�hi + pi�
� , �3�

where D=G / �2��1−���, G is the shear modulus, � is the
Poisson ratio, hi

2= pi
2+d2, and �i is the angle between the

Burgers vector bi and axis x. The interaction energies can be
found as the work spent to generate one dislocation loop in
the stress field of the other.44 Using the elastic stress fields
found in Ref. 45, we derive:

Wint i�pi� =
Dbbi

2 �cos � cos �i�cos ��X2 + u2 + x1x� sin �
�X2 + u2

X2 	 − x��sin2 2� − �1 − ��cos 2��ln�v + �X2 + u2�

−
cos �

2	u	
�2x�2 sin2 2� − u2�ln

�X2 + u2 − 	u	
�X2 + u2 + 	u	

−
x�2 sin 4� cos �

	u	
arctan

	u	v
x� sin ��X2 + u2

+ �1 − ��
cos 2�

2 �x1 ln
x1

2 sin2 � + u2

�x1 cos � − x� + �X2 + u2�2

+
 2	u	

sin �
�arctan

	u	�v − cos ��X2 + u2�

sin ��u2 + x��x� − x1 cos � + �X2 + u2��
+ arctan

	u	
x1 sin �

�


+ sin � sin �i��2 − ���X2 + u2 + x��cos � cos 2� + sin2 ��ln�v + �X2 + u2� +
	
�1 − ��

	u	
2

ln
�X2 + u2 − 	u	
�X2 + u2 + 	u	

+
x1 cos �

2
ln

x1
2 sin2 � + u2

�x1 cos � − x� + �X2 + u2�2
�

x�=−d

x�=0 

z�=−d/2

z�=d/2 

x1=rc

x1=pi

z1=−d/2

z1=d/2

, �4�

where i=1,2, � is the angle between the Burgers vector b
and axis x, � is the angle between the planes of b- and
bi-loops, X2=x1

2−2x1x� cos �+x�2, u=z1−z�, v=x1
−x� cos �, rc the core radius of the b-loop, and the notation
f�t�	t=p

t=q = f�q�− f�p� is used. The energy of interaction be-
tween b1- and b2-loops is found in the same way as the
formula above. It is given as follows:

Wint3�p1,p2�

= − Db1b2��2 − ��cos��1 − �2��h1 + h2 − S − d − 2p2�

+ d�cos��1 − �2� − � sin �1 sin �2�

	ln
2dp1p2�d + S�

rc1�p1 − p2��d + h1��d + h2�

+ �cos��1 − �2� − � cos �1 cos �2�

	�p1 ln
p1�p1 − p2 + S�

�p1 − p2��p1 + h1�

+ p2 ln
4d2�p1 − p2�p2

rc1
2 �p1 − p2 + S��p2 + h2�
� . �5�

Here Ri
2=d2+ �d+ pi�2 and S2=d2+ �p1− p2�2. The core ener-

gies figuring on the right-hand side of formulas �1� and �2�
are given by standard approximation which can be found
elsewhere �e.g., see Ref. 46�.

The evolution of the model system can be subdivided into
four general acts which are �1� generation of the first partial
dislocation semiloop accompanied by the energy change

W1

g; �2� movement of the gliding dislocation segment ab of
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the b1-loop �Fig. 3�b��, characterized by the energy change

W1

m�p1 ,��, where � is a small displacement of the segment
ab from its initial position p1; �3� generation of the second
partial dislocation semiloop accompanied by the energy
change 
W2

g�p1�; and �4� combined movement of the seg-
ments ab and a�b� of the b1- and b2-loops, respectively �Fig.
3�c��, characterized by the energy change 
W2

m�p1 ,
�1 , p2 ,�2�, where �1 and �2 are some small displacements of
the segments ab and a�b�from their initial positions p1 and
p2, respectively. The total energy changes, characterizing
these acts, can be expressed through the energies W0, W1�p1�,
and W2�p1 , p2� given above as follows:


W1
g = W1�p0� − W0 − A1�p0� , �6�


W1
m�p1,�� = W1�p1 + �� − W1�p1� − A1��� , �7�


W2
g�p1� = W2�p1,p0� − W1�p1� − A2�p0� , �8�


W2
m�p1,�1,p2,�2� = W2�p1 + �1,p2 + �2� − W2�p1,p2�

− A1��1� − A2��2� . �9�

Here Ai�x�=�bixd sin �i �i=1,2� is the work spent by the
applied stress � to expand the bi-loop, p0 the parameter de-
fining the initial positions of the segments ab and a�b� im-
mediately after the partial dislocation semiloop nucleation.
Within the model, we assume that p0=1 nm. Such a param-
eter is necessary to avoid the incorrectness of using the clas-
sical linear elasticity for describing the system right after the
partial dislocation semiloop emission when a newly formed
dislocation segment lies very close to the preexisting dislo-
cation loop. The value 1 nm is also a standard estimate for
the GB width in nanocrystalline metals.29 Therefore it looks
natural to put the initial position of the dislocation emitted
from a GB at the distance 1 nm from it.

The following three-step algorithm was used to analyze
the energy changes �6�–�9�.

�1� First, the energy change 
W1
g given by Eq. �6� is cal-

culated. If 
W1
g�0 then generation of the first partial dislo-

cation semiloop is energetically favorable for the given sys-
tem, and we move to the next step. Otherwise, if 
W1

g
0,
the generation of the partial dislocations is unfavorable.

�2� At the second step, it is assumed that the first partial
dislocation semiloop already exists and its gliding segment
ab is spaced by p1 from the GB �Fig. 3�b��. Two ways of the
structure evolution are compared. Either the segment ab
moves by a small fixed distance �, or the second partial
dislocation semiloop is nucleated. The energy changes

W1

m�p1 ,�� and 
W2
g�p1� given by Eqs. �7� and �8�, respec-

tively, corresponding to these variants are calculated. If

W2

g�p1��
W1
m�p1 ,�� and 
W2

g�p1��0 then generation of
the second partial dislocation semiloop is supposed to occur,
and we move to the next step of the algorithm. When

W1

m�p1 ,���
W2
g�p1� and 
W1

m�p1 ,���0, it is energeti-
cally favorable for the segment ab to move to a new position
p1+�. Finally, if 
W1

m�p1 ,��
0 and 
W2
g�p1�
0 then the

system has reached its equilibrium state, and only one partial
dislocation semiloop can exist for the given set of param-
eters.

�3� At the third step both the partial dislocation semiloops
are supposed to exist, and their gliding segments ab and a�b�
are shifted by the distances p1 and p2, respectively, from the
GB �Fig. 3�c��. Here we find the equilibrium positions of
these segments through the following iterative procedure. At
each step of this procedure, the segments ab and a�b� are
assumed either staying immobile or moving forward or back-
ward by a fixed distance �. Besides the trivial situation where
both segments do not move, there are eight possible ways for
the system evolution which are characterized by the energy
changes 
W2

m�p1 ,�1 , p2 ,�2� given by Eq. �9�. Here �1 and �2

can take on values from the set −�, 0, �. Actually, with
taking into account the restrictions on dislocation motion
�gliding segments cannot leave the grain interior, the second
segment cannot overtake the first one, etc.�, the number of
variants can be less than eight. At each step we compare the
changes in the total energy of the system, corresponding to
all possible displacements of the gliding segments ab and
a�b�, and the parameters p1 and p2 receive the increments
�1 and �2, corresponding to the minimal value

W2

m�p1 ,�1 , p2 ,�2� if that value is negative. The procedure is
repeated until all values 
W2

m�p1 ,�1 , p2 ,�2� become positive.
This means that the system has reached the minimal value of
its total energy and the current values of p1 and p2 are the
equilibrium ones.

This algorithm can easily be implemented as a computer
code which was done in this work in the MATHEMATICA 4.0

environment. For Al, the parameters37 G=26.5 GPa, �
=0.345, a=0.404 nm, and �=0.122 J /m2 were used. For
easy comparing of our results with those obtained within the
earlier models, we put �=0. Also we assumed that rc=b,
rci=bi �i=1,2�, and �=0.01 nm. Calculations were carried
out for the grain size d in the range from 2 to 60 nm, the
applied stress � in the range from 0 to 2 GPa, and four values
of the Burgers vector b of the preexistent dislocation loop:
b=b0,1.2b0,1.4b0,1.6b0. In both the gliding systems, the Bur-
gers vectors b, b1, b2 had the same magnitudes b0=a�2/2
and b1=b2=a�6/6 but different orientations: in the 60°-I
system �=30°, �1=0°, and �2=60°; in the screw system �
=90°, �1=60°, and �2=120°. As a result, a data file contain-
ing the equilibrium positions of the segments ab and a�b�
was obtained for the given set of the system parameters.

IV. RESULTS OF MODEL

Of practical interest are the critical levels �=�c1 and �
=�c2 at which generation of the first and second partial dis-
location semiloops becomes energetically favorable, respec-
tively. Strictly speaking, generation of a partial dislocation
loop at a preexisting dislocation loop with the Burgers vector
magnitude b
b0 is always favorable.47 However, after its
generation, a newly formed partial dislocation semiloop may
rest close to the GB that cannot be treated as “normal emis-
sion.” That is why the critical stress is defined as a stress
value at which the dislocation segment starts moving from its
initial position p0=1 nm. The dependences of �c1 and �c2 on
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the grain size d are shown in Figs. 4�a� and 4�b�. The solid
and dashed lines represent data for the 60°-I and screw glid-
ing systems, respectively. As is seen, the generation of a
partial dislocation semiloop belonging to the 60°-I system
must occur easier compared to the screw system. Absence of
the curves, corresponding to the screw system at Fig. 4�b�
means that the second partial dislocation semiloop is not
generated in this system. Also it is obvious from Fig. 4 that
the higher the value of the Burgers vector b is, the easier the
emission occurs. When b=b0 �curves 1 and 1��, the critical
values �c1 and �c2 are very high ��0.5 GPa�. Such levels of
stress cannot be reached even in nanocrystalline Al. But with
the higher values of b, the significant drop is observed for �c1
and �c2, especially for the grain sizes d�10 nm. In the range
of very small grain sizes �from 5 to 10 nm� the critical
stresses are high even for b=1.6b0 �curves 4, 4��, so the
emission of partial dislocation semiloops should not occur in
this case. This fact corresponds to the earlier results12,32–34

that the generation of partial and split dislocations by GBs
dominates over the other mechanisms when the grain size
achieves some tens of nanometers.

We also analyzed the equilibrium SF width via d and �. In
this case, we did not consider the emission events. Instead,
we created two partial dislocation semiloops at once and let
the system relax to minimize its total energy. The SF width
s0 was calculated as s0= p1− p2, where p1 and p2 are the
equilibrium positions of the gliding segments ab and a�b�
�Fig. 3�c��. Calculations were carried out for the value of
Burgers vector of preexistent dislocation loop b=b0. In Fig.
5, the ratio s0 /s* in the 60°-I �a� and screw �b� gliding system
is shown as a function of d for different values of �. Here
s*=Gb1

2 / �4���1−��� is the equilibrium SF width for a
couple of straight partial dislocations in an infinite
medium.46 It is seen that wide SFs can be formed in both the

gliding systems, however, in different ranges of d. In the
60°-I system, the SFs are wider at relatively small d, while in
the screw system at larger d. In the screw system, the most
important factor is the level of �: when it is high enough
���1.7–2 GPa�,the SFs can run across the whole grain �the
linear branches of the curves in Fig. 5�b��.

The dashed curves in Fig. 5�a� represent the results by
Zhu et al.37 They are also similar to those of the earlier
models.9,36 One can see a drastic difference between the
present and earlier results. The earlier models9,36,37 predict
anomalously wide SFs for nanocrystalline Al in the whole
range of � whereas our model gives this result for high �
only. Moreover, when �=0, our model gives even narrower
SFs than those formed between straight dislocations in an
infinite medium: s0 /s*�1.

The main reason for such discrepancies �besides the in-
correctness of energy calculations9,36,37� is that before it was
assumed that the first emitted partial dislocation semiloop
remains immobile during the second partial dislocation semi-
loop extension. The SF widening is then explained by the
effect of the perfect lattice dislocation segments Aa� and Bb�
�Fig. 3�c��. The total energy minimization needs these seg-
ments to be shorter, even at the cost of lengthening the par-
tial segments aa� and bb�. As a result, an additional force
appears which leads to SF widening. This would be true only
if the first partial dislocation semiloop is prohibited to ex-
tend. Otherwise only an external stress � could prevent the
segments Aa� and Bb� from disappearing. If � is low enough,
they disappear, the second partial dislocation semiloop is lo-
calized near the GB, and the first partial dislocation semiloop
will shrink to the second one under the common action of the
SF and segments aa� and bb�. Thus, again an additional force
appears, but now it acts towards the SF contraction.

The results of our work fully confirm this reasoning. Un-
der a low �, nanocrystalline Al is expected to contain not

FIG. 4. Dependences of the critical stresses �c1 �a� and �c2 �b� on
the grain size d for the 60�-I �solid lines� and screw �dashed line�
gliding systems. Curves 1 and 1� correspond to b=b0, 2 and 2� to
b=1.2b0, 3 and 3� to b=1.4b0, and 4 and 4� to b=1.6b0.

FIG. 5. The normalized SF width s0 /s* via the grain size d for
different levels of the stress � �shown in GPa units at the curves�:
�a� 60°-I system and �b� screw system. The curves are calculated for
b=b0. The dashed curves show the results by Zhu et al. �Ref. 37�.
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wide but narrow SFs compared to coarse-grained Al. The
cause of anomalously wide SFs seems to be a high � ��1
GPa�, created in nanocrystalline Al at its nanoindenta-
tion6 or production by severe deformation such as cryogenic
ball milling.7–9

V. CONCLUDING REMARKS

In summary, we elaborated a 3D theoretical model de-
scribing the emission of partial dislocation semiloops from
GBs accompanied by formation of SFs in fcc metals. The
theory of dislocation loops was used to calculate the system
energy more accurately compared to the earlier models.9,36–39

By means of an original algorithm, we investigated both the
generation of partial dislocation semiloops and dependence
of the SF width on the grain size and applied stress level.
The critical stress values for the partial dislocation semiloop
generation were defined. It was found that emission of the
partial dislocation semiloops belonging to the 60°-I gliding
system is the most probable. We also showed that anoma-
lously wide SFs in nanocrystalline Al are caused by high

stresses but not by small grain size as was derived in the
earlier models.9,36–39 On the other hand, such high stresses
are possible in nanocrystalline Al because the normal dislo-
cation activity is suppressed by the small grain size. There-
fore, although the small grain size is not directly connected
with anomalously wide SFs in nanocrystalline Al, it repre-
sents the primary cause of this phenomenon.
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