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Nanodisturbances and nanoscale deformation twins in fcc nanowires
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The nanodisturbance deformation mode is theoretically described as a specific physical mechanism of plastic
flow in nanowires with a fcc crystal structure. The mode represents formation and evolution of nanodisturbances—
nanoscopic areas of ideal plastic shear with tiny shear vectors—in mechanically loaded nanowires. We calculated
the energy and stress characteristics for the formation of both isolated nanodisturbances and their groups (whose
evolution results in nucleation of deformation twins) in Au and Cu nanowires having square cross sections. It is
shown that the nanodisturbance deformation mode tends to dominate over conventional dislocation generation and
glide in Au and Cu nanowires (with flat free surfaces) at high stresses and zero temperature. In these nanowires,
the critical stress for the formation of isolated nanodisturbances and that for nucleation of deformation twins is
sensitive to the nanowire width. The sensitivity corresponds to the “smaller is stronger” tendency.
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I. INTRODUCTION

Plastic deformation processes at the nanoscale level
strongly influence mechanical and physical properties of
various nanostructured solids; see, e.g., Refs. 1–23. In recent
years, particular attention has been paid to defect structure
evolution and physical mechanisms of plastic deformation
in nanometer- and submicrometer-sized wires (hereinafter
called nanowires).11–23 In particular, it was revealed that
mechanically loaded nanowires show unusual deformation
behavior that is dependent on their sizes. For instance,
as it has been demonstrated in experiments12,14,15,20,23 with
metallic fcc nanowires having diameters of ∼200–500 nm,
the values of their strength under compression tests are
larger by 10–50 times than those of bulk materials with
the same chemical composition. Also, such nanowires show
pronounced strain hardening under plastic deformation. The
experimental data12,14,15,20,23 pointing to both superior strength
and pronounced strain hardening of nanowires have their log-
ical explanation within the idea14,15 of dislocation starvation.
According to this explanation suggested by Greer and Nix,14,15

preexistent dislocations move in nanowires and rapidly disap-
pear at nanowire free surfaces during the first deformation
stage. As a result of the first deformation stage, a nanowire
becomes free from dislocations. Then, the second stage of
deformation occurs at very high stresses needed to initiate
plastic flow of the defect-free nanowire. Also, as has been
shown in recent experiments,17,22 superior strength (close to
the theoretical strength) is typical for dislocation-free metallic
nanowires with linear sizes of their cross sections ranging
from 75 to 1000 nm. In the context discussed, there is much
interest in understanding the physical mechanisms that govern
plasticity in defect-free nanowires at the nanoscale level.
According to computer models18,19 of plastic flow in initially
defect-free nanowires, dislocations nucleate at nanowire free
surfaces. In the case of a nanowire with a square cross section,
its corners (edges) serve as preferred sites for dislocation
nucleation.19 In the case of a cylinderlike nanowire, dislocation
nucleation preferably occurs at the nanowire free surface in the
vicinity of thin strips of atoms on otherwise flat terraces.18 In
addition, the formation of nanoscale deformation twins has

been observed in a computer model11 of plastic deformation
in initially defect-free, single-crystalline Cu nanowires.

Recently, in Ref. 24, a specific mechanism of plas-
tic deformation in defect-free nanowires has been sug-
gested. This mechanism represents formation of near-surface
nanodisturbances—nanoscopic areas of plastic shear with tiny
shear vectors—in single-crystalline nanowires under mechan-
ical load. Deformation-induced formation of isolated stacking
faults without the involvement of any dislocations in nanowires
with extra small sizes was predicted.24 This prediction has
been indirectly confirmed by the experimental observation25

of isolated stacking faults in Au nanowires with lateral sizes
∼5 nm or smaller. In Ref. 24 the nanodisturbance deformation
mode was briefly described within a two-dimensional simple
model. In particular, we used the simplification that the
nanodisturbance deformation mode and conventional lattice
dislocation slip in a nanowire with a square cross section
do not depend on the coordinate along one edge of the
square cross section.24 The main aim of this paper is to
elaborate a three-dimensional theoretical description of the
nanodisturbance deformation mode as a specific mechanism
of plastic deformation mechanism in defect-free nanowires
with a fcc crystal lattice, taking into account the role of
nanowire corners (edges) as the preferred nucleation sites
for plastic shear. Also, we will theoretically describe the
role of nanodisturbances (consequently formed at neighboring
crystallographic planes) as nuclei of nanoscale deformation
twins in fcc nanowires.

II. GEOMETRY OF NANODISTURBANCE DEFORMATION
MODE IN fcc NANOWIRES

Let us consider plastic deformation of a single-crystalline
fcc metal nanowire having an initial shape of a long rectangular
box [Fig. 1(a)]. A square section of the nanowire has a size
d × d [Fig. 1(a)]. In the situation where the nanowire is free
from defects, its plastic flow can occur through conventional
nucleation of dislocations at a nanowire free surface and their
further glide across a nanowire cross section [Figs. 1(a)–
1(e)].18,19 In addition, following Ref. 24, plastic flow in the
nanowire can occur in an alternative way through the formation
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FIG. 1. Plastic deformation modes in nanowires. (a)–(e) Conventional partial dislocation slip. (a) Initial state. (b)–(e) Conventional partial
dislocation with Burgers vector b is generated at the nanowire free surfaces (where steps of width b are formed) and slips towards opposite free
surfaces. A stable stacking fault (SF) joins the dislocation and the free surfaces at which the dislocation was generated. (f)–(j) Nanodisturbance
deformation mode (three-dimensional view). (f) Initial state. (g) and (h) Immobile noncrystallographic dislocation is generated. Its Burgers
vector magnitude s gradually increases, and a generalized stacking fault (gray region) is formed (and evolves in parallel with the growth of s)
between the dislocation and free-surface steps. (i) The partial dislocation transforms into a conventional partial dislocation (when s reaches the
magnitude b of the Burgers vector of a conventional partial dislocation) and then moves toward the opposite free surfaces. (j) The final structure
with surface steps of width b is formed. (k)–(o) Two-dimensional view of the nanodisturbance deformation mode in a crystallographic plane
(containing slip line AD) of a nanowire with a cubic elementary cell containing atoms of two sorts (full and open circles).

of near-surface nanodisturbances, nanoscopic areas of plastic
shear with tiny shear vectors [Figs. 1(f)–1(j)].

Let us discuss the geometric details of the alternative
deformation mechanism. They are illustrated in both a general
three-dimensional view of a nanowire under tensile defor-
mation in Figs. 1(f)–1(j) and a two-dimensional view of a
crystallographic plane serving as a model of the diagonal
cross section KLMN [Fig. 1(f)] of the nanowire in Figs. 1(k)–
1(o). With the real crystallography of fcc nanowires taken
into account, it is logical to expect that a nanodisturbance
is formed in the rhombic slip plane {111}. At the initial
stage, an applied shear stress initiates a “momentary” ideal
(rigid-body) shear occurring along the nanoscale fragment
ABC of the slip plane. Such a shear is characterized by a
tiny shear magnitude s and produces a generalized stacking
fault ABC having nanoscale sizes [Figs. 1(g) and 1(l)]. [In the

theory of crystals, a generalized stacking fault is defined as
a planar defect resulted from a cut of a perfect crystal across
a single plane into two parts, which are then subjected to a
relative displacement through an arbitrary vector s (lying in
the cut plane) and rejoined; see e.g., Refs. 26 and 27.] In the
nanowire interior, the generalized stacking fault is bounded by
a “noncrystallographic” partial dislocation BC characterized
by a nonquantized (noncrystallographic) Burgers vector s with
a very small magnitude s < b, where b is the magnitude of
the Burgers vector of a conventional “crystallographic” partial
dislocation [Figs. 1(g) and 1(l)]. This defect configuration is
called the near-surface nanodisturbance.24 At the following
stage, the magnitude s continuously increases [Figs. 1(h) and
1(m)]. In parallel with the increase in s, the noncrystallographic
partial can move. Then, magnitude s reaches magnitude b,
and the nanodisturbance transforms into a conventional partial
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FIG. 2. Nanodisturbance deformation
mode in the limiting situation where a
nanodisturbance occupies a whole area
of a nanowire section. In this situation,
the nanodisturbance consists of only a
generalized stacking fault and produces
steps at the nanowire free surface, while
noncrystallographic dislocations are absent.

dislocation joint by a stable stacking fault (a generalized
stacking fault with minimum energy) ABC with the free surface
[Figs. 1(i) and 1(n)]. The conventional partial dislocation
moves and disappears at the free surface, in which case a
stable stacking fault is formed in its path [Figs. 1(j) and 1(o)].

Isolated stable stacking faults (and no dislocations) were
experimentally observed in Au nanowires with lateral sizes
of ∼5 nm or smaller.25 This experiment indirectly supports
the suggested representations of nanodisturbances as potential
carriers of plastic deformation in metallic nanowires. Also,
the near-surface nanodisturbances in nanowires [Figs. 1(g)–
1(i) and 1(l)–1(n)] are similar to “bulk” nanodisturbances
experimentally observed28 in grain interiors of polycrystals
of special titanium alloys called Gum metals. Such “bulk”
nanodisturbances were in situ observed (by high-resolution
electron microscopy) during plastic deformation of Gum
metals.28 The bulk nanodisturbances are bounded by loops
of noncrystallographic partial dislocations and nucleate owing
to high shear stresses and a dramatic decrease in some elastic
constants.28–31 As it has been shown in Ref. 24, the formation
of near-surface nanodisturbances occurs as a new deformation
mode in nanowires [Figs. 1(g)–1(i) and 1(l)–1(n)] owing
to the nanoscale and free-surface effects. More precisely,
as a consequence of these effects, the stresses created by
nanodisturbances are effectively screened in nanowires, in
which case the formation of nanodisturbances is enhanced.

Also, recently, nanoscale deformation processes in
nanometer-sized single crystals with an approximately spher-
ical shape have been experimentally examined by Sun et al.32

They reported that plastic deformation of nanometer-sized
Au and Pt crystals in a wide temperature range is con-
trolled by fast events of plastic shear. These fast events
result in the formation of stable stacking faults observed
in the experiment.32 In general, such faults can be formed
owing to either the slip of short-lived partial dislocations or
the nanodisturbance deformation mode. At the same time,

dislocations were not experimentally observed in nanometer-
sized single crystals under plastic deformation.32 In order
to identify the deformation mechanism, Sun et al.32 carried
out the corresponding molecular-dynamics simulations. Ac-
cording to the simulations,32 plastic shear in nanometer-sized
single Pt crystals occurs as either the slip of short-lived partial
dislocations or a homogeneous instant slip, depending on
temperature and applied stress.32 The latter mechanism, in
fact, represents the nanodisturbance deformation mode in the
limiting situation where a nanodisturbance occupies a whole
area of a nanowire section (Fig. 2). That is, the nanodisturbance
consists of only a generalized stacking fault and produces
steps at the nanowire free surface, while noncrystallographic
dislocations are absent (Fig. 2).

The discussed experiments and computer simulations al-
low us to conclude that our theoretical representations on
nanodisturbances in nanowires [Figs. 1(f)–1(o) and 2] are
indirectly supported by (i) the experiment25 concerning plastic
deformation (thinning) of Au nanowires, (ii) the experiment28

with plastic deformation of Gum metals, and (iii) results32 of
molecular-dynamics simulations of plastic flow in nanometer-
sized single crystals having an approximately spherical shape.

III. ENERGY AND STRESS CHARACTERISTICS OF
NANODISTURBANCE DEFORMATION MODE IN fcc

NANOWIRES

Let us calculate the energy characteristics of the specific
and conventional modes of plastic flow in nanowires in the
exemplary case shown in Fig. 1. Within our model, we
consider a nanowire subjected to a constant tensile load. The
formation of a nanodisturbance and evolution (in time) of its
characteristics, s and x, represent the plastic response of the
nanowire material to this mechanical creeplike test. Plastic
shear occurs along a rhombic slip plane {111} making an
angle arccos(1/

√
3) with the square base section (Fig. 1) of the
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nanowire. The shear occurs under the shear stress τ acting in
the plane {111}. The nanowire is supposed to be an elastically
isotropic solid having a shear modulus G and a Poisson ratio ν.

The specific deformation mode [Figs. 1(g)–1(i) and 1(l)–
1(n)] is characterized by the change �Wn in the nanowire
energy owing to the nanodisturbance formation. The energy
change �Wn (the difference between the energy of the
nanowire with the nanodisturbance and that of the defect-free
nanowire) consists of the four terms,

�Wn = Wd + Ws + Wgsf − A, (1)

where Wd is the proper energy of the dislocation (per its unit
length), Ws is the free-surface energy related to formation of
free-surface steps owing to plastic shear across a nanowire
section, Wgsf is the generalized stacking fault energy, and A is
the work spent to the plastic shear.

Let us calculate the proper energy Wd of the dislocation
located within a nanowire (Fig. 1). The dislocation line BC
is oriented along the [110] direction. In other words, the
dislocation line is perpendicular to rectangular section KLMN
[Fig. 1(f)] of the nanowire. For illustration, Fig. 3(a) shows a
nanowire section that is parallel with the nanowire base and
contains the dislocation line. We assume that the nanowire
height is much larger than the linear size d of a square section
of the nanowire. With this assumption, the nanowire can be
approximately considered as a rectangular box of infinite
height. In this case, the spatial location of the dislocation
is unambiguously described by the distance x between the
dislocation line and an edge of the nanowire [Fig. 3(a)]. The
length of the line BC is equal to 2x.

The analytical expression for the proper energy Wd of a
dislocation whose line core is not parallel to a free surface
in a nanowire with square cross section is unknown. At the
same time, it is well known33 that the free surfaces of solids
effectively screen the elastic fields of dislocations. In this
circumstance, in the calculation of the proper energy Wd , it
is effective to exploit the standard approximation4,34,35 used in
the calculation of the energy of dislocations in nanostructures.
In doing so, we divide the dislocation line into segments
of infinitesimal length dl. Then we suppose that the proper
energy density of each dislocation segment depends only on
the distance between the segment and the nearest free surface.
More precisely, we approximately take the energy of the

x
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FIG. 3. Geometry of edge dislocation in nanowire (shown
schematically). (a) The square nanowire section is parallel with the
nanowire base and contains the dislocation line BC. (b) Slip plane of
the dislocation BC.

dislocation segment as dW = (Ds2/2) ln(h/s)dl, where D =
G/[2π (1 − ν)], s is the dislocation Burgers vector magnitude,
where s also serves as the dislocation core radius,33 and h is the
distance between the dislocation segment and the nearest free
surface. In the context discussed, h plays the role of screening
length for the dislocation stress fields, in the spirit of the
textbook formula33 for the proper elastic energy that equals
(Ds2/2) ln(R/r0) of an edge dislocation with the Burgers
vector magnitude s, the dislocation core radius r0, and the
screening length R of the dislocation stress fields.

Because the dislocation is not parallel with a free surface,
the distance h between a dislocation segment and the nearest
free surface is sensitive to the segment position. More
precisely, the distance h is given as follows:

h(l) =
{

l/
√

2, if l � x,

(2x − l)/
√

2, if l > x,
(2)

where l denotes the distance between a dislocation segment
and point B [see Fig. 3(a)]. With formula (2), after integration
of the elastic energy dW = (Ds2/2) ln(h/s)dl of a dislocation
segment along the dislocation line, we find the proper energy
of the dislocation under consideration:

Wd = Wc + Ds2

2

∫ 2x−s
√

2

s
√

2
ln

h(l)

s
dl

= Ds2

(
x ln

x

s
√

2
+ s

√
2

)
. (3)

Here the energy Wc of the dislocation core is given as Wc =
Ds2x.33 The value of s

√
2 in the integration limits in formula

(3) serves as a cut parameter. When the distance l between
a dislocation segment and point B lies within either interval
l < s

√
2 or interval 2x − s

√
2 < l < 2x, the distance between

this segment and the free surface is lower than the dislocation
core radius s. Therefore, for the discussed intervals of l, we
do not take into account contributions of the corresponding
dislocation segments into the elastic energy of the dislocation.

Formula (3) is valid within the interval s
√

2 � x < d/
√

2.
In the case of x > d/

√
2, the energy depends in the same way

on the distance between the dislocation line and the opposite
edge of the nanowire. This allows us to rewrite formula (3) in its
general form [valid within the interval s

√
2 � x � (d − s)

√
2]

as follows:

Wd = Ds2

[
min(x,d

√
2 − x) ln

min(x,d
√

2 − x)

s
√

2
+ s

√
2

]
.

(4)

The energy Wgsf of the stacking fault and work A are given
as

Wgsf = γgsf(s)S, A = τsS, (5)

respectively. Here γgsf(s) is the specific energy of the gener-
alized stacking fault (γgsf is a function of s), and S is the area
of a fragment ABC of the slip plane (rhomb) [see Figs. 1 and
3(b)]. With geometry of the fragment ABC [Fig. 3(b)], its area
is written as follows:

S =
{

x2
√

3, if x � d/
√

2,

[d2 − (d
√

2 − x)2]
√

3, if x > d/
√

2.
(6)
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The energy Ws of steps at the nanowire free surfaces is
evidently given as

Ws = γsSstep, (7)

where γs is the specific energy of the free surface (per its unit
area), and Sstep is the sum area of steps at the nanowire free
surfaces. Figure 3(b) schematically shows a cross section of
the nanowire by the slip plane, in which case the steps have
the form of trapezoids (ABB ′A′ and ACC ′A′). Their sum area
can be approximately written as

Ssteps ≈ 2xs. (8)

Formulas (1), (2), and (4)–(8) allow one to calculate the energy
change �Wn(x,s) as a function of variables x and s ranging

within the intervals b
√

2 < x < (d − b)
√

2 and 0 < s � b,
respectively.

The energy change �Wn(x,s) characterizes the generation
and evolution of a nanodisturbance. When s = b, formula
(1) transforms into the expression for the energy change,
specifying classical generation and glide of a lattice partial
dislocation. In this context, analysis of the expression (1)
allows one to calculate the energy characteristics of both
the specific and classical deformation modes as well as to
reveal the optimum way of the system evolution. Below, we
performed such an analysis in the example case of a Au
nanowire with the following typical values of parameters: G =
27 GPa, ν = 0.44, and γs = 1.48 J/m2.33 The gliding partial
dislocation is chosen as an edge Shockley dislocation with
Burgers vector magnitude b = 0.166 nm. For the generalized
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FIG. 4. Maps of the energy change �Wn(x,s) in the case of a Au nanowire (with size d = 1 nm) under the external shear stress
(a) τ = 3 GPa, (b) τ = 4 GPa, and (c) τ = 4.8 GPa. The values of �Wn are given in units of Db3.
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stacking fault in Au, the dependence γgsf(s) of its specific
energy on s was simulated in Ref. 36. With results from
Ref. 36, this dependence can be approximated by the following
formula:

γgsf(s/b) =
{

γus

2

(
1 − cos 2πs

b

)
, 0 � s/b < 1/2,

γus+γisf

2 − γus−γisf

2 cos 2πs
b

, 1/2 � s/b < 1.
(9)

Here γus and γisf are the maximum and minimum values
of γgsf(s), respectively. Note that γus and γisf characterize
unstable and stable configurations of the generalized stacking
fault, respectively. In the case of Au, according to simula-
tions presented in Ref. 36, one has γus ≈ 0.134 J/m2 and

γisf ≈ 0.033 J/m2. Using these characteristic values of pa-
rameters and formulas (1), (2), and (4)–(9), we calculated the
energy maps �Wn(x,s) at different values of external stress in
the case of a Au nanowire having the sizes d = 1 nm (Fig. 4)
and d = 10 nm (Fig. 5). The maps allow us to analyze the
system evolution in the parameter space (x,s) for both the
specific and classical deformation modes.

Within our model, the final defect configuration in a
deformed nanowire is specified by the parameter pair [x =
(d − b)

√
2, s = b] and corresponds to the upper right-hand

corner of the energy maps shown in Figs. 4 and 5. In this case,
the classical deformation mode corresponds to the arrowed
route 1 at the upper part of the map. According to results of
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our calculations, there is an energy barrier for the classical
deformation mode to occur. The barrier height is indicated at
point I of route 1 (Figs. 4 and 5).

In addition, in the energy maps (Figs. 4 and 5), one
can distinguish route 2 corresponding to the nanodisturbance
deformation mode. Route 2 is specified by the presence of a
saddle point II, where the energy value is lower than that at
point I. Thus, the nanodisturbance deformation mode (route
2) is characterized by a lower-energy barrier, compared to
the classical deformation (route 1). The determination of the
saddle-point energies (Figs. 4 and 5) suggests that the results
of our model may be applied in the future to related, thermally
activated overcoming mechanisms that control the mechanical
properties of nanowires.

For definiteness, we consider a zero-temperature situation.
For comparatively low values of the stress τ [Figs. 4(a), 4(b),
5(a), and 5(b)], the system at zero temperature evolves through
route 3 to a state with the lowest energy (point III), and no
barrier exists at the route. However, this state is not the final
configuration with x = (d − b)

√
2 and s = b. For a low stress

level [Figs. 4(a), 4(b), 5(a), and 5(b)], the system at zero
temperature never actually reaches the final configuration.
For large values of the stress τ , the nanodisturbance mode
occurs in the nonbarrier way, and the system reaches the final
configuration at zero temperature, in contrast to the classical
deformation [see Figs. 4(c) and 5(c)]. In this case, ideal Au
nanowires with sizes d = 1 and 10 nm are unstable relative
to the nanodisturbance deformation. Also, according to our
calculations (not presented here), the energy maps �Wn(x,s)
are very similar for nanowires having size d in the range
from 1 to 300 nm. These results allow us to conclude that
the nanodisturbance deformation plays the dominant role in
ideal fcc metal nanowires with widely ranged sizes at high
stresses and zero temperature.

IV. EFFECTS OF FREE-SURFACE STEPS ON LATTICE
DISLOCATION GENERATION AND

NANODISTURBANCE DEFORMATION MODE IN fcc
NANOWIRES

In real metal nanowires, there are extra factors that
influence the competition between the classical dislocation
glide [Figs. 1(a)–1(e)] and the nanodisturbance deformation
mode [Figs. 1(g)–1(i) and 1(l)–1(n)]. In particular, steps at
nanowire free surfaces strongly affect both the processes of the
lattice dislocation generation and those of the nanodisturbance
formation. For instance, let us consider a fcc metal nanowire
having steps at its free surfaces [Fig. 6(a)]. The height of
each step is equal to the Burgers vector magnitude b of a
partial lattice dislocation. The geometry of the steps enhances
the generation of lattice dislocations and nanodisturbances
at them, compared to the case of an ideal free surface. It
is because the generation processes [Fig. 6(b)] decrease the
heights of the free-surface steps. However, the discussed effect
for dislocations is different from that for nanodisturbances.
When a partial lattice dislocation is generated at a step,
the step completely disappears [Fig. 6(b)]. As a result, the
energy of the system is decreased by the energy of the
free-surface step with height b, and the dislocation generation
is greatly enhanced. When a nanodisturbance with a tiny shear

(a) (b)

P

Q

P

Q

FIG. 6. Generation of a crystallographic partial dislocation and a
noncrystallographic dislocation (through the nanodisturbance mech-
anism) in a nanowire with preexisting steps on the free surface.
(a) Initial configuration with steps P and Q. (b) Crystallographic
partial dislocation is generated at step P, and nanodisturbance is
generated at step Q. As a result, step P disappears (with the
assumption that its initial width is equal to the dislocation Burgers
vector magnitude), and the step Q width is decreased by the shear
magnitude s characterizing the nanodisturbance.

magnitude s is generated at a step, its height is decreased by
s (� b) [Fig. 6(b)]. As a corollary, the energy of the system
is decreased by the energy of the free-surface step with height
s, and the nanodisturbance generation [Fig. 6(b)] is slightly
enhanced. In these circumstances, the classical generation of
lattice dislocations at free-surface steps can dominate over the
nanodisturbance generation at such steps [Fig. 6(b)].

In order to describe the competition between the classical
dislocation glide and the nanodisturbance deformation mode,
let us examine the energy change �W ∗

n that characterizes
both processes in question (Fig. 6). In the situation where a
nanodisturbance with a tiny shear magnitude s is generated at
a free-surface step Q, the energy change �W ∗

n is described by
formula (1) with the term Ws being replaced by −Ws . Here Ws

is the energy of the free-surface step (created during formation
of a nanodisturbance at an ideal free surface and disappearing
during the formation of a nanodisturbance at a free-surface
step) with height s. That is, we find

�W ∗
n = Wd − Ws + Wgsf − A, (10)

where the terms Wd , Ws , Wgsf , and A are described in Sec. III.
When s = b, formula (10) transforms into the expression for
the energy change specifying classical generation and glide
of a lattice partial dislocation. In this context, an analysis of
expression (10) allows one to calculate and analyze the energy
characteristics of both the specific and classical deformation
modes.

Figure 7 presents the energy map �W ∗
n (x,s) calculated

by formula (10) in the case of a Au nanowire (with the
size d = 10 nm) at an external stress of τ = 1.2 GPa. In
contrast to the energy maps corresponding to ideal nanowires
(Figs. 4 and 5), the energy map �W ∗

n (x,s) shown in Fig. 7
has the nonbarrier route 1 (corresponding to the classical
generation and glide of a lattice dislocation). At the same
time, the energy barrier exists for the evolution through route
3 (corresponding to the nanodisturbance deformation mode)
toward the final configuration [x = (d − b)

√
2, s = b]. Thus,
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FIG. 7. Map of the energy change �W ∗
n (x,s) in the case of a

Au nanowire with size d = 10 nm under the external shear stress
τ = 1.2 GPa. The values of �W ∗

n are given in units of 102 Db3.

according to our calculations (Fig. 7), the classical deformation
mode—generation and glide of lattice dislocations—is more
favorable than the nanodisturbance deformation mode in Au
nanowires with steps at given values of the nanowire size and
the external stress.

Commonly, the probability of the existence of steps at
nanowire free surfaces increases with increasing nanowire
sizes. As a corollary, with the results of our theoretical
examination, it is logical to expect that the nanodisturbance
deformation mode (classical dislocation slip, respectively)
tends to dominate with decreasing (increasing, respectively)
nanowire sizes. In particular, the nanodisturbance deformation
mode can effectively occur in nanowires having ultrasmall
sizes.

When mechanical load is absent, steps can be formed at
nanowire free surfaces owing to thermally activated diffusion
processes on such surfaces and in near-surface regions. In
this context, an increase in temperature enhances both the
formation of steps at the nanowire free surfaces and, if the
mechanical load is applied to the nanowire, the classical
dislocation slip.

Also, thermal fluctuations can directly assist plastic defor-
mation occurring through either the classical dislocation slip
or nanodisturbance deformation mode in nanowires. However,
the role of temperature in direct enhancement of plastic flow in
nanowires is significant, only if the external stress is very close
to the critical stress for the athermal deformation. It is a narrow
range of stresses. Our estimates (not presented here) show that,
within this range of stresses, the thermally assisted events of
plastic deformation hardly influence the competition between
conditions of classical dislocation slip and the nanodisturbance
deformation mode. Thus, the key role of temperature is in
the enhancement of the formation of steps at nanowire free
surfaces.

V. GEOMETRY, ENERGY, AND STRESS
CHARACTERISTICS OF TWIN FORMATION

OCCURRING THROUGH NANODISTURBANCES
IN fcc NANOWIRES

In previous sections, we considered the generation of
isolated nanodisturbances in a nanowire under tensile load.
At the same time, there is another interesting situation where
a nanodisturbance is formed at a crystallographic plane neigh-
boring a preexisting stacking fault [Figs. 8(a), 8(b) and 8(c)]
(which may result from evolution of a previously generated
nanodisturbance). In this situation, the defect configuration
consisting of the stable stacking fault and the nanodisturbance
serves as a nucleus of a deformation twin in the nanowire.
More precisely, when the nanodisturbance transforms into a
stable stacking fault, a twin nucleus is generated, consisting
of two stable stacking faults of nanoscopic size [Fig. 8(d)].
Similar defect configurations (called microtwins) have been
theoretically considered in papers27,36–38 focusing on the
competition between lattice dislocation slip and twin for-
mation in bulk materials. Following calculations,27,36–38 the
energy of a generalized stacking fault growing in a plane
neighboring the preexisting stable stacking fault is different
from that of a sole generalized stacking fault. Also, the
stress concentration that is likely to exist at the surface step
from which the initial stacking fault has been created may
also help in the nucleation of the another nanodisturbance.
Therefore, conditions for the formation of a nanoscale twin
nucleus through the nanodisturbance deformation mode in
a fcc nanowire (Fig. 8) are different from those of isolated
nanodisturbances [Figs. 1(g)–1(i) and 1(l)–1(n)].

Let us calculate the energy change �Wt characterizing
the generation of a twin nucleus through the nanodisturbance
deformation mode (Fig. 8). In the framework of the proposed
model (Fig. 8), the energy change �Wt in fact specifies
the generation of a nanodisturbance in a crystallographic
plane neighboring a preexisting stable stacking fault. The
discussed situation (Fig. 8) is different from the previously
considered situation with isolated nanodisturbances Sec. III

(a) (b) (c) (d)

A

B

A'

B'

A

B

A'

B'

A

B

A'

B' 

A

B

FIG. 8. Generation of twin nucleus by the nanodisturbance mode
in a nanowire: Two-dimensional view in a crystallographic plane of a
nanowire with a cubic elementary cell containing atoms of two types
(full and open circles). (a) The nanowire is in its initial state with stable
stacking fault AB (which may result from the evolution of a previously
generated nanodisturbance). (b) and (c) A nanodisturbance A′B ′ is
generated and evolves in a crystallographic plane neighboring the
preexisting stacking fault. (d) The nanodisturbance transforms into a
stable stacking fault (neighboring the preeexisting stacking fault). As
a result, a nanoscale twin nucleus is generated that consists of two
stable stacking faults AB and A′B ′.
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in the following two aspects. First, the initial configuration
contains a stable stacking fault [Fig. 8(a)] having an energy
γisf

√
3d2 (with

√
3d2 being the rhombic slip plane area).

Second, a generalized stacking fault with energy Wtf is
generated and evolves in a crystallographic plane neighboring
a preexisting stable stacking fault [Figs. 8(b) and 8(c)], instead
of an isolated generalized stacking fault (with energy Wgsf)
(Fig. 1). In these circumstances, the energy change �Wt can
be written as follows:

�Wt = Wd + Ws + Wtf − γisfS − A, (11)

where Wd , Ws , S, and A are given by formulas (4)–(8).
The energy Wtf of the generalized stacking fault having a

stable stacking fault in a neighboring plane (Fig. 8) is as
follows:

Wtf = γtf (s)S, (12)

where γtf (s) is the specific energy of the generalized stacking
fault in question. With results from Ref. 36, the functionγtf of
s can be approximated by the following formula:

γtf (s/b)

=
{

γisf + γut−γisf

2

(
1 − cos 2πs

b

)
, 0 � s/b < 1/2,

γut+2γtsf

2 − γut−2γtsf

2 cos 2πs
b

, 1/2 � s/b < 1.
(13)

Here γut is the maximum value of γtf (s), corresponding to
the unstable configuration of the generalized stacking fault
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FIG. 9. Maps of the energy change �Wt (x,s) in the case of a Au nanowire (with size d = 1 nm) under the external shear stress
(a) τ = 2.8 GPa, (b) τ = 3.8 GPa, and (c) τ = 4.5 GPa. The values of �Wt are given in units of Db3.
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(Fig. 8), and γtsf is the energy of the generalized stacking fault
in its stable configuration (Fig. 8). In the case of Au, one has36

γut = 0.148 J/m2 and 2γtsf = 0.031 J/m2.
We calculated the energy maps �Wt (x,s) for a Au nanowire

with sizes d = 1 nm (Fig. 9) and d = 10 nm (Fig. 10) at
different values of the external stress. The energy maps for
twin nucleation (Figs. 9 and 10) are very similar to those for
the formation of isolated nanodisturbances (Figs. 4 and 5) in
deformed fcc nanowires. In this context, all the conclusions
(formulated in Sec. III) concerning isolated nanodisturbances
come into play in the case of twin nucleation as well. More pre-
cisely, there exist three possible routes of nanoscale twinning
deformation (see routes 1–3 presented in Figs. 9 and 10). Route
1 corresponds to the conventional twinning micromechanism

through emission and movement of crystallographic partial
dislocations (Fig. 11). Route 2 corresponds to the twinning
micromechanism associated with the nanodisturbance defor-
mation mode (Fig. 8). Routes 1 and 2 are specified by nonzero
energy barriers [Figs. 9(a) and 10(a)]. At the same time,
nonbarrier route 3 corresponds to the twinning micromech-
anism associated with the nanodisturbance deformation mode
(Fig. 8). Evolution of the system through nonbarrier route 3
at intermediate stresses [Figs. 9(b) and 10(b)] stops at the
state [x = (d − b)

√
2, s ≈ 0.1b], but does not reach the final

state [x = (d − b)
√

2, s = b] in which a nanoscale two-layer
twin [Fig. 8(d)] is generated. Evolution of the system through
nonbarrier route 3 reaches the final state [x = (d − b)

√
2,

s = b] only at a high level of applied stresses [Figs. 9(c) and
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(a) (b) (c) (d)
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B

A

B

A'

B' 

FIG. 11. Generation of a twin nucleus by the dislocation mech-
anism in a nanowire: Two-dimensional view in a crystallographic
plane of a nanowire with a cubic elementary cell containing atoms of
two types (full and open circles). (a) The nanowire is in its initial state
with stable stacking fault AB. (b) and (c) A partial dislocation glides
on a crystallographic plane neighboring the preeexisting stacking
fault. (d) The dislocation glide is complete, in which case a nanoscale
twin nucleus (consisting of two stable stacking faults AB and A′B ′)
is generated.

10(c)]. Thus, according to our calculations (Figs. 9 and 10),
the nonbarrier formation of nanoscale deformation twins in
nanowires can occur through the nanodisturbance deformation
mode (Fig. 8) when the applied stresses are high.

In addition, from Figs. 4, 5, 9, and 10, it follows that
the nanoscale twin nucleation (Fig. 8) is more energetically
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FIG. 12. Dependences of the critical stress τc (the smallest
stress at which the nanodisturbance deformation mode occurs in
the nonbarrier way) on the nanowire size d in (a) Au and (b) Cu
nanowires. Solid curves correspond to the formation of an isolated
nanodisturbance. Dashed curves correspond to the formation of a
nanoscale twin nucleus.

favorable than the formation of isolated nanodisturbances
(Fig. 1) and stable stacking faults (Fig. 2). In order to illustrate
this fact, we calculated the dependences of the critical stress
τc (the smallest stress at which the deformation occurs in the
nonbarrier way) on the nanowire size d, for Au and Cu, in both
the cases of the nanoscale twin nucleation and formation of
isolated stacking faults through the nanodisturbance deforma-
tion mode (Fig. 12). For Cu, we used the following values of
parameters: G = 48 GPa, ν = 0.34, γs = 1.725 J/m2,34 γus =
0.18 J/m2, γisf = 0.041 J/m2, γut = 0.2 J/m2, and 2γtsf =
0.04 J/m2.36 The calculated dependences show that the values
of the critical stress τc characterizing the twin nucleation are
lower (by ∼15%) than those characterizing the formation of
isolated stacking faults in Au [Fig. 12(a)] and Cu [Fig. 12(b)]
nanowires. The same result is expected to be valid for any
fcc metal whose energy characteristics γisf , γus, and γut satisfy
inequality γut − γisf < γus.

The dependences in Fig. 12 are indicative of a size effect
(“smaller is stronger”) in the considered range of d from 1
to 300 nm. Also, note that the critical stress in Au and Cu
nanowires with d = 10 nm has very high values. For Au,
we find τc ≈ 0.1 G in the case of isolated nanodisturbances,
and τc ≈ 0.09 G in the case of nanoscale deformation twins
[Fig. 12(a)]. For Cu, we have τc ≈ 0.09 G in the case of
isolated nanodisturbances, and τc ≈ 0.08 G in the case of
nanoscale deformation twins [Fig. 12(b)]. In the latter case
(Cu), the values of the shear stress τc fall in the range (from 0.02
to 0.09 G) measured in the room-temperature experiment22

with the tensile load of Cu nanowires having linear sizes of
their cross sections in the range from 75 to 280 nm.

VI. CONCLUDING REMARKS

Thus, a specific physical mechanism of plastic flow—
the nanodisturbance deformation mode associated with the
formation and evolution of near-surface nanodisturbances
[Figs. 1(g)–1(i) and 1(l)–1(n)]—can occur in strained
nanowires with a fcc crystal structure owing to the nanoscale
and free-surface effects. Also, nucleation and growth of
nanoscale deformation twins can be realized through suc-
cessive generation and evolution of nanodisturbances at
neighboring crystallographic planes (Fig. 8). With the results
of our calculations of the energy characteristics (Figs. 4 and 5),
the nanodisturbance deformation dominates over conventional
dislocation generation and glide in ideal Au nanowires at
high stresses and zero temperature. At the same time, in
Au nanowires with steps at their free surfaces (Fig. 6),
the classical deformation mode—generation and glide of
lattice dislocations—is more energetically favorable than the
nanodisturbance deformation mode.

Also, we theoretically examined the role of the nanodis-
turbance deformation mode in the generation of nanoscale
twins in mechanically loaded fcc nanowires. It has been shown
that, in nanowires under high applied stresses, the nonbarrier
formation of nanoscale deformation twins can effectively
occur through the nanodisturbance deformation mode (Fig. 8).
Also, from Figs. 4, 5, 9, and 10, it follows that the nanoscale
twin nucleation (Fig. 8) is more favorable than the formation
of isolated nanodisturbances (Fig. 1) and stable stacking
faults (Fig. 2). Values of the critical stress τc—the smallest
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stress at which the nanodisturbance deformation occurs in
a nonbarrier way—for nanoscale twinning deformation are
lower (by ∼15%) than those for the formation of isolated
nanodisturbances in Au and Cu nanowires (Fig. 12). The
critical stress τc is sensitive to nanowire size d. In the
considered range of d from 1 to 300 nm, the dependences τc(d)
show a clear size effect (“smaller is stronger”) (Fig. 12). When
nanowires are specified by an ultrasmall width, the values of
the critical stress τc are very high. For instance, in the case of
the formation of isolated nanodisturbances in nanowires with
d = 10 nm, the critical stress has values of τc ≈ 0.1 G for Au
[Fig. 12(a)] and τc ≈ 0.08 G for Cu [Fig. 12(b)].

The suggested theoretical representations on the nanodis-
turbance deformation mode in nanowires [Figs. 1(f)–1(o) and
2] are indirectly supported by the following experiments and
computer simulations: (i) the experiment25 concerning plastic
deformation (thinning) of Au nanowires, (ii) the experiment28

with plastic deformation of Gum metals, and (iii) results32 of
molecular-dynamics simulations of plastic flow in nanometer-
sized single crystals having an approximately spherical shape
(for details, see the discussion in Sec. III).

The suggested representations on the nanodisturbance
deformation mode are worth being taken into account in future
experimental and theoretical examinations of the deformation
behavior of nanowires. Of special importance would be
an experimental in situ observation of the nanodisturbance
formation during plastic deformation of nanowires with
ultrasmall sizes and various compositions. This will allow
one to experimentally identify the conditions at which the
nanodisturbance deformation mode is dominant. Finally, the
nanodisturbance deformation mode is of large fundamental in-
terest as a physical deformation mechanism that can contribute
to plastic flow in both composite solids containing nanowires

FIG. 13. Crack growth in a composite solid with nanowires
(shown schematically). Metallic nanowires are under plastic defor-
mation in the wake of brittle crack tip. They hamper crack growth.

(Fig. 13) and nanowires with preexisting plane defects such as
grain, twin, and interphase boundaries (that recently attracted
much interest39–42).
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