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Abstract

A new mechanism for relaxation of misfit stresses in composite nanowires
(quantum wires) is suggested and theoretically examined, namely the formation
of misfit dislocation loops. The stress field of a prismatic dislocation loop in a
cylinder (nanowire) is calculated. The parameters of two-phase composite nano-
wires at which the formation of misfit dislocation loops is energetically favourable
are estimated. The effect of stress fields of dislocation loops on the formation of
compositionally modulated nanowires is discussed.

} 1. Introduction

Nanowires with their unique physical properties represent the subject of growing
fundamental research motivated by a range of new applications (for example Cui
and Lieber (2001), Langlais et al. (2001), Ovid’ko and Sheinerman (2001), Priester
and Grenet (2001), Gudiksen et al. (2002), Lauhon et al. (2002) and Wang et al.
(2002)). Of special interest is the behaviour of composite (two-phase) nanowires such
as nanowires in ‘shells’ (Lauhon et al. 2002) and compositionally modulated nano-
wires (Priester and Grenet 2001), because of their importance for high technologies
based on nanostructures with complicated architecture as well as for understanding
the nature of nanoscale effects in composite solids. With the two-phase structure
of these nanowires, interphase boundaries are expected to play an essential role in
physical processes occurring in the nanowires. In particular, misfit dislocations are
capable of being generated in composite nanowires, strongly affecting their func-
tional properties. Although we are as yet unaware of any experimental observations
of misfit dislocations in nanowires, we suppose that such dislocations may form in
composite nanowires much as they are generated in flat thin films and quantum dots
(for example Fitzgerald (1991), Jain et al. (1997), Liu et al. (2000), Ovid’ko (2002)
and Ovid’ko and Sheinerman (2002)). In the paper by Gutkin et al. (2000), conven-
tional straight misfit dislocations in two-phase composite solids having the wire form
(nanowires in ‘shells’) have been theoretically examined. The main aim of this paper
is to suggest a theoretical model describing misfit dislocation configurations of the
new type in two-phase composite nanowires, namely the misfit dislocation loops in
nanowires embedded in ‘shells’ (figure 1).
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} 2. Composite nanowire with misfit dislocation loops: model

Let us consider a two-phase composite nanowire as a composite cylinder with
radius R and infinite length. The model cylinder is composed of an internal cylinder
(substrate) of radius R0<R and a film of thickness h ¼ R� R0, which envelops the
internal cylinder as shown in figure 1. In the framework of the suggested first
approximation model, we shall not take into account the crystallography of the
adjacent film and substrate, in which case the interphase (film–substrate) boundary
is treated as a surface of the internal cylinder (figure 1). (That is, there are no facets
at the interphase boundary.)

The film and substrate are assumed to be isotropic solids having the same values
of the shear modulus G and the same values of Poisson’s ratio �. The film–substrate
boundary is characterized by the two-dimensional dilatation misfit parameter
f ¼ 2ða2 � a1Þ=ða2 þ a1Þ, where a1 and a2 are the crystal lattice parameters of the
substrate and the film respectively.

Misfit stresses occur in film/substrate composite solids owing to the geometric
mismatch characterized by f at interphase boundaries between crystalline lattices of
films and substrates. In most cases, a partial relaxation of the misfit stresses is
realized via generation of various defects (for example Fitzgerald (1991), Jain et al.
(1997), Müllner et al. (1997) and Gao et al. (1999)). The conditions at which
isolated misfit dislocations (MDs), misfit disclinations and their configurations
(dipoles, rows and walls) are generated in wire composite solids have been analysed
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Figure 1. Prismatic misfit dislocation loop in a two-phase composite cylinder (nanowire).

2104 I. A. Ovid’ko and A. G. Sheinerman



by Gutkin et al. (2000) and Sheinerman and Gutkin (2001). In this paper we elabo-
rate a theoretical model describing the formation of prismatic MD loops (figure 2),
MD configurations of the new type in composite nanowires, whose stress fields can
induce modulation of the chemical composition of the nanowires.

In general, there are several potential mechanisms for the formation of MD
loops in composite nanowires. A prismatic MD loop can be formed, for instance,
through generation of a dislocation semiloop at the lateral free surface of the nano-
wire (figure 2 (a)), its climb towards the interphase boundary (figure 2 (b)), its con-
sequent expansion in the plane of the cylinder cross-section (figure 2 (c)), and
merging and annihilation of two opposite-sign MD segments between the interphase
boundary and the nanowire free surface (figure 2 (d)). The nucleation of a dislocation
semiloop occurs at the lateral free surface of the nanowire (figure 2 (a)), where the
semiloop is the easiest to generate at a stress concentrator, for example at a surface
step. Also, the expansion of the semiloop in the plane of the nanowire cross-section is

(a)

(c)

(b)

(d)
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b b

Figure 2. Climb mechanism for formation of a MD loop in a two-phase composite nanowire.
b denotes the dislocation Burgers vector.
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realized by climb (figure 2). Therefore, it is a rather slow process whose velocity is
controlled by point-defect migration associated with dislocation climb.

Besides the climb mechanism (figure 2), there is also a glide mechanism for the
formation of MD loops (figure 3). Prismatic MD loops are generated at the upper
and bottom free surfaces of a composite nanowire of finite length and then glide
towards the central area of the nanowire (figure 3). The action of this glide mecha-
nism is effective, in particular, in short nanowires.

Both the mechanisms for the formation of MD loops (figures 2 and 3) can be
simultaneously realized in a composite nanowire (figure 4). In doing so, the climb
mechanism is dominant in the central area of the nanowire, while the upper and
bottom free surfaces of the nanowire serve as effective sources of gliding MD loops
(figure 4).

Now let us analyse the conditions in which the formation of a prismatic MD loop
at the interphase boundary is energetically favourable in a cylindrical composite
nanowire (figure 1). To do this, we shall calculate and compare energy characteristics
of two physical states realized in a composite nanowire, namely the coherent state
with MD-free interphase boundary and the semicoherent state with the interphase
boundary containing one MD loop, which accommodates, in part, the misfit stresses.
The formation of the first MD loop is energetically favourable, if it leads to a
decrease in the total energy, that is if the energy difference �W between the final
and initial states is negative. �W consists of the three terms, in which case we have

(a) (b) (c)

b b

Figure 3. Glide mechanism for formation of MD loops in a two-phase composite nanowire:
(a) nanowire in its initial dislocation-free state; (b), (c) generation of prismatic
dislocation loops at the upper and bottom free surfaces of the nanowire and their
consequent glide towards the central area of the nanowire. b denotes the dislocation
Burgers vector.
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the following criterion for the formation of the MD loop to be energetically
favourable:

�W ¼ W l
þW l�f

þW c < 0: ð1Þ

Here W l denotes the proper elastic energy of the MD loop, W l�f the energy that
characterizes the elastic interaction between the MD loop and the misfit stresses,
and W c the energy of the MD loop core. In order to calculate W l and W l�f , in the
following section we shall calculate the stress fields created by a MD loop in a
cylindrical composite solid (nanowire).

} 3. Stress field of a misfit dislocation loop in two-phase

composite nanowire

The problems of calculation of elastic fields of circular dislocation loops have
been addressed by many workers. To date, solutions have been obtained for circular
dislocation loops in an isotropic infinite medium (Kröner 1958, Kroupa 1960,
1962a,b, Bullough and Newmann 1960, Marchikowsky and Sree Harsha 1968,
Huang and Mura 1970, Demir et al. 1992, Khraishi et al. 2000a,b, Kolesnikova
and Romanov 2003), isotropic half-spaces (Baštecká 1964, Jäger et al. 1975, Ohr
1978), two-phase composite materials with a planar interphase boundary (Salamon
and Dundurs 1971, 1977, Dundurs and Salamon 1972, Salamon and Comninou
1979, Salamon 1981, Yu and Sanday 1991), isotropic (Chou 1963) and anisotropic
(Chou 1964) plate and an elastic sphere (Willis et al. 1983). However, the solutions
that have been available up until now are not suitable for the calculation of energies
of dislocation loops in nanowires. Therefore, in this section, we calculate the stress
field of a circular prismatic dislocation loop in an elastically isotropic cylinder.

Let us introduce the cylindrical coordinate system ðr, �, zÞ with the z axis being
the central line of the cylinder (figure 1). Let the centre of the MD loop be located at

b

Figure 4. Combined action of the climb and glide mechanisms for formation of MD loops in
a two-phase composite nanowire. b denotes the dislocation Burgers vector.
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the centre line r¼ 0 of the cylinder, which plays the role of the symmetry axis. The
MD loop is located in the plane z¼ 0 and has the radius R0 and Burgers vector
b ¼ bzez. In the framework of our model, the cylindrical composite nanowire with a
prismatic dislocation loop has its centre line as the symmetry axis.

In our calculations of the stress field �l
ij of a MD loop in a cylindrical composite

(figure 1), we shall use the expressions (Dundurs and Salamon 1972, Salamon and
Comninou 1979, Kolesnikova and Romanov 2003) for the stress fields of MD loops
in elastically isotropic infinite media. In doing this, we represent the stress field �l

ij

as the following sum: �l
ij ¼ �1

ij þ �v
ij, where �

1
ij is the stress field created by the MD

loop in an infinite medium and �v
ij is the additional stress field that allows one to

satisfy the boundary conditions at the cylinder free surface r¼R. These boundary
conditions are as follows: �1

rk ðr ¼ RÞ þ �v
rkðr ¼ RÞ ¼ 0, where k ¼ r, �, z.

The stress field �1
ij has been given by Dundurs and Salamon (1972), Salamon and

Comninou (1979), Kolesnikova and Romanov (2003) as

�1
rr ¼ �M

1� 2�

~rr
Jð1, 1; 0Þ þ j ~zzjJð1, 0; 2Þ � Jð1, 0; 1Þ �

j ~zzj

~rr
Jð1, 1; 1Þ

� �
, ð2Þ

�1
�� ¼ �M

2�� 1

~rr
Jð1, 1; 0Þ � 2�Jð1, 0; 1Þ þ

j ~zzj

~rr
Jð1, 1; 1Þ

� �
, ð3Þ

�1
zz ¼ M½Jð1, 0; 1Þ þ j ~zzjJð1, 0; 2Þ�, ð4Þ

�1
rz ¼ M ~zzJð1, 1; 2Þ, ð5Þ

�1
r� ¼ �1

z� ¼ 0: ð6Þ

Here ~rr ¼ r=R0, ~zz ¼ z=R0, M ¼ Gbz=2ð1� �ÞR0 and Jðm, n; pÞ are the Lipschitz–
Hankel integrals. They are defined (Eason et al. 1955) as Jðm, n; pÞ ¼Ð1
0 JmðtÞJnð~rrtÞ exp ð�j ~zzjtÞ tp dt, with Jm(t) being the first-type Bessel functions of the

mth order.
The strained state of a two-phase composite cylinder is characterized by the

absence of torsion. In this situation, the stress field �v
ij does not depend on �, and

its components �v
r� and �v

z� are equal to zero. For this stress field, one can introduce
the stress function ’, satisfying equation (Timoshenko and Goodier 1970) ��’ ¼ 0,
where � denotes the Laplace operator. This operator is written in cylindrical coor-
dinates as � ¼ o2=or2 þ ð1=rÞðo=orÞ þ ð1=r2Þðo2=o�2Þ þ o2=oz2. For the stress function
’ which does not depend on �, we obtain �’ ¼ ðo2’=or2Þ þ ð1=rÞðo’=orÞ þ o2’=oz2.
The stress tensor components �v

ij are expressed through the stress function ’ by the
following relationships (Timoshenko and Goodier 1970):

�v
rr ¼

o

oz
��’�

o2’

or2

 !
, �v

�� ¼
o

oz
��’�

1

r

o’

or

� �
, ð7Þ

�v
zz ¼

o

oz
ð2� �Þ�’�

o2’

oz2

" #
, �v

rz ¼
o

or
ð1� �Þ�’�

o2’

oz2

" #
, ð8Þ

�v
r� ¼ �v

z� ¼ 0: ð9Þ

Note that �1
rr and �1

rz are even and odd functions respectively of ~zz. Since the
stresses �v

rr and �v
rz are in the relationships �v

rrð~rr ¼ ~RRÞ ¼ ��1
rr ð~rr ¼ ~RRÞ and �v

rzð~rr ¼ ~RRÞ ¼
��1

rz ð~rr ¼ ~RRÞ (where ~RR ¼ R=R0) with the stresses �1
rr and �1

rz , these stresses �
v
rr and �v

rz

are even and odd functions respectively of ~zz. As a corollary, with the first formula
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from equations (7) and the second formula from equations (8), we find that ’ is an
odd function of ~zz.

In the situation with a two-phase nanowire modelled as a composite cylinder of
infinite length, the stress function ’ being an odd function of ~zz can be represented
in the following form (Timoshenko and Goodier 1970):

’ ¼ MR3
0

ð1
0

h
�1ðkÞI0ð~rrkÞ � ~rrk�2ðkÞI1ð~rrkÞ

i
sinðk ~zzÞ dk: ð10Þ

Here I0ð~rrkÞ and I1ð~rrkÞ are the modified Bessel functions of the zero order and first
order, respectively; �1ðkÞ and �2ðkÞ are the functions determined from the boundary
conditions.

With equations (7) and (8) substituted into equation (10), we have

�v
rr ¼ M

ð1
0

�I0ð~rrkÞ þ
I1ð~rrkÞ

~rrk

� �
�1ðkÞ þ

h
ð1� 2�ÞI0ð~rrkÞ þ ~rrkI1ð~rrkÞ

i
�2ðkÞ

� �
� k3 cosðk ~zzÞ dk, ð11Þ

�v
�� ¼ M

ð1
0

�
I1ð~rrkÞ

~rrk
�1ðkÞ þ ð1� 2�ÞI0ð~rrkÞ�2ðkÞ

� �
k3 cosðk ~zzÞ dk, ð12Þ

�v
zz ¼ M

ð1
0

�
I0ð~rrkÞ�1ðkÞ �

h
2ð2� �ÞI0ð~rrkÞ þ ~rrkI1ð~rrkÞ

i
�2ðkÞ

�
k3 cosðk ~zzÞdk, ð13Þ

�v
rz ¼ M

ð1
0

�
I1ð~rrkÞ�1ðkÞ �

h
2ð1� �ÞI1ð~rrkÞ þ ~rrkI0ð~rrkÞ

i
�2ðkÞ

�
k3 sinðk ~zzÞ dk: ð14Þ

In order to determine the functions �1ðkÞ and �2ðkÞ in the expressions for �v
ij , let

us introduce the following functions:

g1ð~rr, kÞ ¼ �I0ð~rrkÞ þ
I1ð~rrkÞ

~rrk

� �
�1ðkÞ þ

h
ð1� 2�ÞI0ð~rrkÞ þ ~rrkI1ð~rrkÞ

i
�2ðkÞ

� �
k3, ð15Þ

g2ð~rr, kÞ ¼

�
I1ð~rrkÞ�1ðkÞ �

h
2ð1� �ÞI1ð~rrkÞ þ ~rrkI0ð~rrkÞ

i
�2ðkÞ

�
k3: ð16Þ

In doing this, we shall search for g1 and g2 as even and odd functions, respectively, of
k. Note that the stresses �v

rr and �v
rz in the situation discussed represent (with accu-

racy up to factors p and �ip) the inverse Fourier transforms of the functions g1 and
g2: �v

rrð~rr, ~zzÞ ¼ pF�1
½g1�, �rzð~rr, ~zzÞ ¼ �ipF�1

½g2�, where i ¼ �11=2, and F�1
½g�ðkÞ ¼

ð1=2pÞ
Ð1
�1

gðkÞ exp ðik ~zzÞ dk is the inverse Fourier transform. In these circumstances,
the inverse Fourier transform of g1ð~rr, kÞ (being an even function of k) and g2ð~rr, kÞ
(being an odd function of k) are, respectively, as follows: F�1

½g1� ¼ ð1=pÞ
Ð1
0 g1ð~rr, kÞ

cosðk ~zzÞ dk and F�1
½g2� ¼ ði=pÞ

Ð1
0 g2ð~rr, kÞ sinðk ~zzÞ dk. Application of the direct Fourier

transform F ½g�ðkÞ ¼ ĝgðkÞ ¼
Ð1
�1

gð ~zzÞ exp ð�ik ~zzÞ dk to the stresses �v
rrð~rr, ~zzÞ and �v

rzð~rr, ~zzÞ
yields

g1ð~rr, kÞ ¼
1

p
�̂�v
rrð~rr, kÞ, g2ð~rr, kÞ ¼

i

p
�̂�v
rzð~rr, kÞ: ð17Þ

Application of the direct Fourier transform to the boundary conditions �v
rrð

~RR, ~zzÞ ¼
��1

rr ð
~RR, ~zzÞ and �v

rzð
~RR, ~zzÞ ¼ ��1

rz ð
~RR, ~zzÞ gives

�̂�v
rrð

~RR, kÞ ¼ ��̂�1
rr ð

~RR, kÞ, �̂�v
rzð

~RR, kÞ ¼ ��̂�1
rz ð

~RR, kÞ: ð18Þ
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From equations (17) and (18) we find that

g1ð ~RR, kÞ ¼ �
1

p
�̂�1
rr ð

~RR, kÞ, g2ð ~RR, kÞ ¼ �
i

p
�̂�1
rz ð

~RR, kÞ: ð19Þ

With equations (15) and (16) substituted into equation (19), we obtain the following
system of equations for the functions �1ðkÞ and �2ðkÞ:

a11�1 þ a12�2 ¼ b1, ð20Þ

a21�1 þ a22�2 ¼ b2: ð21Þ

Here

a11 ¼ �I0ð ~RRkÞ þ
I1ð ~RRkÞ

~RRk
, ð22Þ

a12 ¼ ð1� 2�ÞI0ð ~RRkÞ þ ~RRkI1ð ~RRkÞ, ð23Þ

a21 ¼ I1ð ~RRkÞ, ð24Þ

a22 ¼ �½2ð1� �ÞI1ð ~RRkÞ þ ~RRkI0ð ~RRkÞ�, ð25Þ

and the coefficients b1 and b2 are expressed through �̂�1
rr ð

~RR, kÞ and �̂�1
rz ð

~RR, kÞ by
the following relationships: b1 ¼ �1=ðMpk3Þ�̂�1

rr ð
~RR, kÞ, b2 ¼ �i=ðMpk3Þ�̂�1

rr ð
~RR, kÞ.

Substitution of the expressions for �̂�1
rr ð

~RR, kÞ and �̂�1
rz ð

~RR, kÞ (derived in appendix A),
into the above relationships gives

b1 ¼
2 sgn k

pk2

(
I1ðjkjÞ ~RRjkj þ

2ð1� �Þ

~RRjkj

� �
K1ð

~RRjkjÞ þ K0ð
~RRjkjÞ

� �

� jkjI0ðjkjÞ K0ð
~RRjkjÞ þ

K1ð
~RRjkjÞ

~RRjkj

 !)
, ð26Þ

b2 ¼
2

pjkj
~RRI1ðjkjÞK0ð

~RRjkjÞ � I0ðjkjÞK1ð
~RRjkjÞ

� �
: ð27Þ

Solution of the system (20) and (21) is as follows:

�1 ¼
b1a22 � b2a12
a11a22 � a12a21

, �2 ¼
b2a11 � b1a21
a11a22 � a12a21

: ð28Þ

Since the function I0ð ~RRkÞ is even and the function I1ð ~RRkÞ is odd, from equations (15),
(16) and (22)–(28) we find the condition that the function g1ðkÞ is even and the
function g2ðkÞ is odd (see above) to be valid. In this situation, the stress field �v

ij is
given by equations (9), (11)–(14) and (22)–(28). The sum stress field of the MD loop
in a composite nanowire (figure 1) represents the sum of the stresses �1

ij (given
by equations (2)–(6)) and �v

ij .
For illustration, the dependences of the stresses �l

rr and �l
rz (in units of

Gbz=2ð1� �ÞR0) on r=R0 are presented in figure 5, for ~zz ¼ 1, ~RR ¼ 2 and � ¼ 0:3.
The stresses �1

rr and �1
rz are shown as dashed curves in this figure. As follows

from figure 5, the stresses �l
rr and �l

rz satisfy the boundary conditions at the cylinder
(nanowire) free surface and are essentially different from the stresses �1

rr and �1
rz ,

respectively, which are created by a prismatic dislocation loop in an infinite medium.
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} 4. Critical condition for energetically favourable formation

of a misfit dislocation loop in composite nanowire

With the stress field �l
ij calculated in } 3, we shall calculate the difference �W

between the energy of the state of a composite nanowire with the MD loop (figure 1)
and that of the defect-free state. In doing this, let us calculate terms W l, W l�f and
W c on the right-hand side of equation (1) for �W . The proper energy W l is calcu-
lated using the general formula (Mura 1968)

W l
¼

bz
2

ð2p
0

ðR0�rc

0

�l
zzð~rr, ~zz ¼ 0Þr dr d�, ð29Þ

where rc is the dislocation loop core radius. With the equation �l
zz ¼ �1

zz þ �v
zz, after

substitution of equations (4) and (13) into equation (29), we rewrite this formula
as follows: W l

¼ ð1� ~rrcÞp
2Db2R0qð ~RR, ~rrcÞ. Here ~rrc ¼ rc=R0, b ¼ jbzj is the MD loop

(a)

(b)
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Figure 5. Dependences of stresses �l
rr, �

l
rz, �

1
rr and �1

rz on r=R0, for z=R0 ¼ 1, R=R0 ¼ 2 and
� ¼ 0:3: (a) dependences �l

rrðr=R0Þ (——) and �1
rr ðr=R0Þ (- - - -); (b) dependences

�l
rzðr=R0Þ (——) and �1

rz ðr=R0Þ (- - - - -).
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Burgers vector magnitude, D ¼ G=2pð1� �Þ and

qð ~RR, ~rrcÞ ¼ Jð1, 1; 0Þ
		
~rr¼1�~rrc
~zz¼0

�

ð1
0

 
�1ðkÞ � 2ð2� �Þ�2ðkÞ

k
I1½kð1� ~rrcÞ�

� ð1� ~rrcÞI2½kð1� ~rrcÞ��2ðkÞ

!
k3dk: ð30Þ

The first and second terms on the right-hand side of equation (30) correspond to the
proper energy of the MD loop in an infinite medium and the difference between the
proper energy MD of loops located in a cylinder and an infinite medium. In order to

estimate the value of integral Jð1, 1; 0Þj ~rr¼1�~rrc
~zz¼0

in equation (30), it is convenient to use its

asymptotic representation at ~rrc � 1 (for details, see Dundurs and Salamon (1972)):

Jð1, 1; 0Þj ~rr¼1�~rrc
~zz¼0

� ð1=pÞ½lnð8=~rrcÞ � 2�.

The energy W l�f that characterizes the interaction between the MD loop and the
misfit stresses is calculated using the general formula (Mura 1968):

W l�f
¼ bz

ð2p
0

ðR0

0

�f
zzr dr d�, ð31Þ

where �f
zz is the zz component of the misfit stress field, calculated by the formula

(Gutkin et al. 2000)

�f
zz ¼ 2Gf

1þ �

1� �

�R2
0 � R2

R2
YðR0 � rÞ þ

�R2
0

r2
Yðr� R0Þ

 !
: ð32Þ

(Note that the formula for �f
zz in the paper by Gutkin et al. (2000) contains a

misprint corrected here.) Here YðtÞ is the Heaviside function, equal to 1, for t > 0,
and to 0, for t < 0. With equation (32) substituted into equation (31), we obtain

W l�f
¼ �4p2ð1þ �ÞDbzR

2
0 f 1�

�

~RR2

� �
: ð33Þ

The energy Wc of the dislocation loop core is given by the approximate formula
(Hirth and Lothe 1982) W c

� ðDb2=2Þl. Here l ¼ 2pR0 is the length of the MD loop.
With the formulae for W l, W l�f and W c substituted into equation (1) for �W ,

we find the following condition for the formation of the MD loop in a composite
nanowire to be energetically favourable: j f j > fc, where

fc ¼
pð1� ~rrcÞqð ~RR, ~rrcÞ þ 1

4pð1þ �ÞðR0=bÞ 1� �= ~RR2

 � : ð34Þ

fc given by equation (34) represents the critical misfit parameter for the energetically
favourable formation of the MD loop with bz ¼ þb (if f > 0) or bz ¼ �b (if f <0).

The dependences of the critical misfit parameter fc on the film thickness h are
shown in figure 6 (a), for � ¼ 0:3, rc ¼ b and different values of R0. For comparison,
the dependences of the critical misfit parameter f dc for the formation of straight misfit
dislocations (calculated by Gutkin et al. (2000)) are shown, too. For clarity, curve 1
in figure 6 (a) is also presented in figure 6 (b) on a larger scale. The broken line in
figure 6 (b) shows the critical misfit parameter f1c that corresponds to the case when
h ! 1, in which the two-phase composite cylinder transforms into a cylindrical
inclusion in an infinite medium. As follows from figure 6, the dependences fc(h)

2112 I. A. Ovid’ko and A. G. Sheinerman



have maximums fc ¼ fmc when the film thickness becomes larger by a small value
than the substrate radius. (The maximums are weakly distinguished in figure 6 (a),
because curves fc(h) weakly fall in the regions to the right of their maxima. However,
they are well distinguished, if the scale of figure changes; see, for example figure 6 (b).)
For fc > fmc , the formation of the MD loop is energetically favourable at any value
of the film thickness h (at a fixed value of the substrate radius R0). If f

1
c < f < fmc ,

the formation of the MD loop can occur in a certain range of values of film thickness
h. In the situation with f < f1c , the MD loop can be formed, if the film thickness h
is lower than some critical thickness. Thus, the conditions for the energetically
favourable formation of a MD loop in a two-phase composite cylinder (nanowire)
are significantly different from those of the formation of a straight MD in such a
cylinder. The formation of a straight MD is energetically favourable, if film and
substrate thicknesses are close to each other, and only at sufficiently large values of f
and R0 (see figure 6 (a)). As follows from figure 6 (a), at identical values of f and R0,
the critical misfit parameter fc for the formation of MD loops is commonly lower
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(b)
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Figure 6. Dependences of critical misfit parameters fc and f dc on non-dimensional film thick-
ness h / b, for � ¼ 0:3 and rc ¼ b. (a) the case when R0=b ¼ 10, 20 and 30, with depen-
dences fcðh=bÞ shown as solid curves 1, 2 and 3, respectively, and dependences f dc ðh=bÞ
shown as broken curves 10, 20 and 30, respectively; (b) the case when R0=b ¼ 10, where
the broken line shows the misfit parameter f1c .
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than the critical misfit parameter f dc for the energetically favourable formation of
straight MDs ( fc<f dc ). There is just one exception from the above statement. In
small intervals of h, where h � R0 (or h is larger than R0 by a small value) and the
curves fc(h) have their maxima, while the curves f dc (h) have their minima, we have
fc > f dc . Thus, in wide ranges of the geometric parameters R0 and h of a two-phase
nanowire, the formation of MD loops (figure 1) may occur at smaller misfit values
than the formation of straight MDs.

The dependences fc(R0) are presented in figure 7, for � ¼ 0:3, rc ¼ b and various
values of the film thickness h. As follows from figure 7, fc decreases with rising R0

(see also figure 6 (a)), approaching zero in the limit which R0 ! 1. For h > 10b, fc is
very close to the critical value f1c of misfit parameter for a cylindrical second-phase
inclusion in an infinite medium (see curves 2 and 3 in figure 7). However, for very
thin films with a thickness of several atomic layers, fc(h) is essentially lower than f1c
(see curves 1 and 3 in figure 7).

} 5. Concluding remarks

Thus, in this paper, we have suggested and theoretically examined a new relaxa-
tion mechanism in strained composite nanowires, namely the formation of MD
loops (figures 1, 2, 3 and 4). According to our theoretical analysis, MD loops
may form at smaller misfit values than straight MDs in wide ranges of geometric
characteristics of two-phase nanowires. Generally speaking, the formation of MD
loops in composite nanowires is either desirable or disappointing, from an applica-
tions viewpoint, depending on the roles of composite nanowires in applications.
So, the formation of MD loops in semiconducting composite nanowires, similar to
MDs in quantum dots on substrates (for example Ovid’ko (2002) and Ovid’ko and
Sheinerman (2002)), can lead to degradation of functional properties of nanowires.
However, if the internal cylindrical region of a two-phase nanowire has a polyatomic
composition sensitive to the stress field distribution in this internal cylinder, stress
fields of MD loops are capable of causing a modulation of the chemical composition
in the nanowire (figure 8). Such composite nanowires have the potential to be
exploited in nanotechnologies related to data storage and information processing
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0.005
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0.015
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R  /b0

1 2 3

Figure 7. Critical misfit parameter fc as a function of non-dimensional substrate radius R0=b,
for � ¼ 0:3, rc ¼ b and h=b ¼ 3 (curve 1) h/b¼ 10 (curve 2) and h/b¼1 (curve 3).
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(Lauhon et al. 2002). In the context discussed, experimental identification of MD
loops in two-phase nanowires, being MD configurations of a new type will be of
special importance.
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APPENDIX A

This appendix deals with calculation of Fourier images �̂�1
rr ð

~RR, kÞ and �̂�1
rz ð

~RR, kÞ of
the stresses �1

rr ð
~RR, ~zzÞ and �1

rz ð
~RR, ~zzÞ respectively in equations (26) and (27). These

Fourier images are calculated with the help of equations (2) and (5) as follows:

�̂�1
rr ð

~RR, kÞ ¼ �M
1� 2�

~RR
ĴJð1, 1; 0Þ þ F

h
j ~zzjJð1, 0; 2Þ

i�

�ĴJð1, 0; 1Þ �
1

~RR
F
h
j ~zzjJð1, 1; 1Þ

i�					
~rr¼ ~RR

, ðA1Þ

�̂�1
rz ð

~RR, kÞ ¼ MF
h
~zzJð1, 1; 2Þ

i			
~rr¼ ~RR

: ðA2Þ

Figure 8. Modulation of chemical composition in internal cylindrical region of nanowire,
induced by stress fields of MD loops (schematically).
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For calculation of �̂�1
rr ð

~RR, kÞ and �̂�1
rz ð

~RR, kÞ, let us find expressions for ĴJð1, 1; 0Þ,
ĴJð1, 0; 1Þ, F ½j ~zzjJð1, 0; 2Þ�, F ½j ~zzjJð1, 1; 1Þ� and F ½ ~zzJð1, 1; 2Þ� appearing in equations
(A 1) and (A 2). To do this, let us consider the double integral ĴJðm, n; pÞ ¼Ð1
�1

Ð1
0 JmðtÞJnð~rrtÞ exp ð�j ~zzjtÞtpdt exp ð�ik ~zzÞ d ~zz. A change in the integration order

and single integration (with respect to ~zz) in this integral allows us to represent it
in the following form:

ĴJðm, n; pÞ ¼ 2

ð1
0

JmðtÞJnð~rrtÞt
pþ1

t2 þ k2
dt: ðA3Þ

Using the same operations, the double integrals

F
h
j ~zzjJðm, n; pÞ

i
¼

ð1
�1

ð1
0

JmðtÞJnð~rrtÞ exp ð�j ~zzjtÞtpdt j ~zzj exp ð�ik ~zzÞ d ~zz

and

F
h
~zzJðm, n; pÞ

i
¼

ð1
�1

ð1
0

JmðtÞJnð~rrtÞ exp ð�j ~zzjtÞtpdt ~zz exp ð�ik ~zzÞ d ~zz

can be written as follows:

F
h
j ~zzjJðm, n; pÞ

i
¼ 2

ð1
0

JmðtÞJnð~rrtÞ
tpðt2 � k2Þ

ðt2 þ k2Þ2
dt, ðA4Þ

F
h
~zzJðm, n; pÞ

i
¼ �4ik

ð1
0

JmðtÞJnð~rrtÞt
pþ1

ðt2 þ k2Þ2
dt: ðA5Þ

With the right-hand sides of equations (A 4) and (A 5) compared with that of equa-
tion (A 3), we find that

F
h
j ~zzjJðm, n; pÞ

i
¼ ĴJðm, n; p� 1Þ þ jkj

oĴJðm, n; p� 1Þ

ojkj
, ðA6Þ

F
h
~zzJðm, n; pÞ

i
¼ i

oĴJðm, n; pÞ

ok
: ðA7Þ

In order to calculate the integrals ĴJðm, n; pÞj ~rr¼ ~RR, we shall use the following rela-
tionship (Ditkin and Prudnikov 1974):ð1

0

JmðtÞJnð~rrtÞt
m�nþ1

t2 þ k2
dt ¼ jkjn�mImðjkjÞKnð~rrjkjÞ, ~rr > 1, 1þ n5m > �1: ðA8Þ

In the considered situation with the MD loop in a composite cylinder (nanowire), we
have ~RR > 1. In these circumstances, substitution of equation (A 8) into equation
(A 3), for m ¼ n ¼ 1 and p¼ 0, yields

ĴJð1, 1; 0Þj~rr¼ ~RR ¼ 2I1ðjkjÞK1ð
~RRjkjÞ: ðA9Þ

In order to calculate integral ĴJð1, 0; 1Þj~rr¼ ~RR, let us represent it, using equation (A 3),
in the following form:

ĴJð1, 0; 1Þj~rr¼ ~RR ¼ 2

ð1
0

J1ðtÞJ0ð ~RRtÞt
2

t2 þ k2
dt: ðA10Þ
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Also, we shall use the relationshipð1
0

J1ðtÞJ0ð ~RRtÞ dt ¼ 0, ~RR > 1: ðA11Þ

With the equation t2=ðt2 þ k2Þ ¼ 1� k2=ðt2 þ k2Þ substituted into equation (A 10),
and equation (A 11) taken into account, we obtain

ĴJð1, 0; 1Þj~rr¼ ~RR ¼ �2k2
ð1
0

J1ðtÞJ0ð ~RRtÞ

t2 þ k2
dt ¼ �2jkjI1ðjkjÞK0ð

~RRjkjÞ: ðA12Þ

Integral ĴJð1, 1; 2Þ, in its turn, can be represented with the help of equation (A 8) and
the equation t3=ðt2 þ k2Þ ¼ t� k2t=ðt2 þ k2Þ in the following form:

ĴJð1, 1; 2Þj ~rr¼ ~RR ¼ 2

ð1
0

J1ðtÞJ1ð ~RRtÞt dt� k2
ð1
0

J1ðtÞJ1ð ~RRtÞt

t2 þ k2
dt

 !
: ðA13Þ

From equations (A 8) and (A 13), one finds that

oĴJð1, 1; 2Þ

ok

				
~rr¼ ~RR

¼ �2
o

ok
k2I1ðjkjÞK1ð

~RRjkjÞ

 �

: ðA14Þ

Substitution of equation (A 12) into equation (A 6) with m¼ 1, n¼ 0, and p¼ 2,
insertion of equation (A 9) into equation (A 6) with m ¼ n ¼ p ¼ 1, and substitution
of equation (A 14) into equation (A 7) with m ¼ n ¼ 1 and p¼ 2 yield

F j ~zzjJð1, 0; 2Þ½ �j~rr¼ ~RR ¼ �2jkj I1ðjkjÞ K0ð
~RRjkjÞ � ~RRjkjK1ð

~RRjkjÞ
� 


þ jkjI0ðjkjÞK0ð
~RRjkjÞ

� �
,

ðA15Þ

F j ~zzjJð1, 1; 1Þ½ �j~rr¼ ~RR ¼ 2jkj � ~RRI1ðjkjÞK0ð
~RRjkjÞ þ I0ðjkjÞK1ð

~RRjkjÞ
� �

, ðA16Þ

F ~zzJð1, 1; 2Þ½ �j~rr¼ ~RR ¼ ikF j ~zzjJð1, 1; 1Þ½ �j~rr¼ ~RR: ðA17Þ

In deriving equations (A 15)–(A 17), the recurrent relationships I 01ðxÞ ¼ I0ðxÞ�
I1ðxÞ=x,K

0
0ðxÞ ¼ �K1ðxÞ,K

0
1ðxÞ ¼ �½K0ðxÞ þ K2ðxÞ�=2 andK2ðxÞ ¼ K0ðxÞþ ð2=xÞK1ðxÞ

between the modified Bessel functions have been used.
With equations (A9 ), (A 12) and (A 15)–(A 17) substituted into equations (A 1)

and (A 2), we find the following expressions for �̂�1
rr ð

~RR, kÞ and �̂�1
rz ð

~RR, kÞ:

�̂�1
rr ð

~RR, kÞ ¼ �2Mjkj I1ðjkjÞ ~RRjkj þ
2ð1� �Þ

~RRjkj

� �
K1ð

~RRjkjÞ þ K0ð
~RRjkjÞ

� ��

� jkjI0ðjkjÞ K0ð
~RRjkjÞ þ

K1ð
~RRjkjÞ

~RRjkj

 !)
, ðA18Þ

�̂�1
rz ð

~RR, kÞ ¼ 2Mik2sgn k ~RRI1ðjkjÞK0ð
~RRjkjÞ � I0ðjkjÞK1ð

~RRjkjÞ
� 


: ðA19Þ
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