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Abstract

A theoretical model is suggested which describes the strengthening of
nanocrystalline materials due to the effects of triple junctions of grain
boundaries as obstacles for grain-boundary sliding. In the framework of the
model, a dependence of the yield stress characterizing grain-boundary sliding
on grain size and triple-junction angles is revealed. With this dependence
we have found that, in as-fabricated nanocrystalline materials, the yield stress
depends upon a competition between conventional dislocation slip and grain-
boundary sliding. On the other hand, yield stress dependence on grain size in
heat-treated nanocrystalline materials is described as that caused by a competition
between conventional dislocation slip and Coble creep. Grain-size and triple-
junction angle distributions are incorporated into the consideration to account
for distributions of grain size and triple-junction angles, occurring in real
specimens. The results of the model are compared with experimental data from
as-fabricated and heat-treated nanocrystalline materials and shown to be in good
agreement.

} 1. Introduction

Nanocrystalline materials exhibit unique mechanical properties which are differ-
ent from those of conventional coarse-grained polycrystals (for example Koch et al.
(1999), Mohamed and Li (2001) and Padmanabhan (2001)). This is related, in many
aspects, to the effects of grain boundaries (GBs) whose volume fraction rapidly
grows with grain refinement. In fact, high-density ensembles of GBs serve as obsta-
cles for conventional dislocation slip in nanocrystalline materials and, at the same
time, open up several effective deformation modes that usually are not significant in
coarse-grained polycrystals. These modes are GB diffusional creep (Masumura et al.
1998, Kim et al. 2000, Yamakov et al. 2002), triple-junction diffusional creep
(Fedorov et al. 2002), rotational mode (occurring via movement of GB disclinations)
(Ke et al. 1995, Hackney et al. 1996, Gutkin et al. 2002, Murayama et al. 2002,
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Ovid’ko 2002) and GB sliding (Hahn et al. 1997, Hahn and Padmanabhan 1997,
Konstantinidis and Aifantis 1998, Fedorov et al. 2003) (for a review, see Gutkin et al.
(2001)). In these circumstances, grain refinement causes switching from conventional
lattice dislocation slip to deformation modes conducted by GB dislocations, GB
disclinations and point defects. The effective actions of various deformation
modes that are in competition with each other are believed to cause the unique
deformation behaviour of nanocrystalline materials.

The competition between different deformation modes in nanocrystalline mate-
rials is caused by their structural peculiarities which, in general, are sensitive to
fabrication and processing technologies. Two nanocrystalline specimens with the
same compositions and mean grain sizes, which are prepared by different procedures,
may exhibit different mechanical properties (Koch et al. 1999, Mohamed and Li
2001, Padmanabhan 2001). In this context, the structure and geometry of triple
junctions of GBs are among the most important issues for the mechanical behaviour
of nanocrystalline materials. Indeed, in recent years, triple junctions have been
recognized as defects with the structure and properties being different from those
of the GBs that they adjoin (for example Gutkin and Ovid’ko (1994) and King
(1999)). In particular, triple junctions serve as carriers of enhanced diffusional
creep (Rabukhin 1986, Fedorov et al. 2002), sources of lattice dislocations
(Owusu-Boahen and King 2001), and strengthening elements for GB sliding
(Hahn et al. 1997, Hahn and Padmanabhan 1997, Konstantinidis and Aifantis
1998, Fedorov et al. 2003) in plastically deformed coarse- and fine-grained materials.
As a corollary, triple junctions are structural elements that are capable of playing the
important or even crucial role in the ‘fabrication–structure–mechanical properties’
relationship in namely nanocrystalline materials where the volume fraction of triple
junctions is extremely high. The role of triple junctions as inherent structural ele-
ments of nanocrystalline materials should definitely be taken into consideration
when discussing the specific features of deformation in nanocrystalline materials.

One such specific feature manifests itself in deviations from the conventional
grain-size–strength relationship. More precisely, the dependence of the yield stress
�y on grain size d deviates from the classical Hall–Petch relationship (�y ¼ �0 þ
kd�1=2, with �0 and k being constant parameters) at small d being of the order of
10 nm (Koch et al. 1999, Padmanabhan 2001). As has been experimentally detected
by Weertman and Sanders (1994) and Volpp et al. (1997), the �yðdÞ dependence in
nanocrystalline materials shows two different behaviours, depending on their mode
of processing. In the range of small grain sizes, heat-treated materials exhibit
‘inverse’ Hall–Petch behaviour (softening with reduction in grain size), while the
yield stress or hardness of as-prepared materials slightly increases or saturates at
grain size d4 10 nm (Weertman and Sanders 1994, Volpp et al. 1997) showing little
or no ‘inverse’ Hall–Petch behaviour. We think that this difference between the
deformation behaviours of heat-treated and as-prepared nanocrystalline materials
is related to the difference between their defect structures. Different defect structures
in heat-treated and as-prepared materials cause the occurrence of effective action of
different deformation modes owing to grain refinement. In particular, the contribu-
tion of GB sliding is expected to be high in as-prepared materials commonly char-
acterized by high density of lattice and GB dislocations which enhance GB sliding
processes. On the other hand, heat treatment is capable of suppressing the GB
sliding, in which case other deformation modes effectively come into play.
We present a theoretical model describing GB sliding and its contribution to plastic
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flow in both as-prepared and heat-treated nanocrystalline materials. In doing so,
special attention will be paid to the role of triple junctions of GBs in GB sliding
processes in nanocrystalline materials.

} 2. Grain-boundary dislocations and triple junctions in plastically

deformed nanocrystalline materials

Let us consider a nanocrystalline specimen fabricated in highly non-equilibrium
conditions. Most of the fabrication routes produce highly defective GBs. In parti-
cular, GBs with an excess density of GB dislocations (carriers of GB sliding) often
exist in as-fabricated nanocrystalline materials (Valiev and Alexandrov 2000,
Mohamed and Li 2001) (figure 1 (a)). When a mechanical load is applied to the
specimen, mobile GB dislocations (with the Burgers vector being parallel to GB
planes) move, causing GB sliding. Some moving GB dislocations annihilate with
GB dislocations having Burgers vectors of opposite sign (figure 1 (b)). Other GB
dislocations are stopped at triple junctions of GBs, which represent effective obsta-
cles for dislocation movement (figure 1 (b)). In general, GB dislocations stopped near
a triple junction are capable of overcoming the junction obstacle by a dislocation
reaction when the shear stress reaches some critical value. In nanocrystalline materi-
als with their high-density ensembles of triple junctions, the critical shear stress
needed for GB dislocations to overcome triple junctions specifies the contribution
of GB sliding to the yield stress. In these circumstances, the critical shear stress is
a very important parameter of plastic deformation in nanocrystalline materials,
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(a)

(b)

Figure 1. GB dislocation ensemble in an as-prepared nanocrystalline specimen (a) before and
(b) after mechanical load.



which quantitatively characterizes GB sliding as a deformation mode being in
competition with other deformation modes.

The main aim of this paper is to calculate the critical shear stress in question in
the framework of the model described below. We consider a model configuration of
GB dislocations in a nanocrystalline material, which is formed near a triple junction
under the action of shear stress � (figure 2 (a)). The configuration consists of three
dipoles of GB dislocations with Burgers vectors � b0, � b1 and � b2, which are
parallel to the corresponding GB planes adjacent to the triple junction. GB disloca-
tions are stopped by the (central) triple junction and its neighbouring triple junctions
(figure 2 (a)), in which case the interspacings between the GB dislocations that
form the three dipole configurations are tentatively equal to the corresponding GB
lengths d0, d1 and d2 respectively. Let us designate the GB dislocation dipoles as A,
B and C, respectively. In our consideration, we assume that energy barriers for GB
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Figure 2. Elementary act of GB sliding in mechanically loaded nanocrystalline specimen.
(a) GB dislocations are accumulated near triple junctions. (b) A dislocation with
Burgers vector b0 transfers by a distance l, in which case it comes into reaction
with two dislocations (with Burgers vectors �b1 and �b2), resulting in the formation
of a GB dislocation with Burgers vector b3.



dislocations to overcome triple junctions are all different, but the lowest barrier
characterizes the central triple junction. With this assumption, in order to estimate
the yield stress for GB sliding, we should analyse the energy chracteristics of trans-
formations of GB dislocations, occurring at the central triple junction. In doing this,
we note that an elementary act of the GB sliding is a transfer of the GB dislocation
with Burgers vector b0 (initially stopped by the central triple junction at GB of
length d0) to the neighbouring GB of length d2. This transfer over a short distance l
occurs at critical shear stress �c at which the transfer becomes energetically favour-
able. The transfer is accompanied by a dislocation reaction which involves all
the three GB dislocations stopped at the central triple junction and results in the
formation of a sessile GB dislocation with Burgers vector b3¼ b0� b1� b2
(figure 2 (b)). The process discussed is an elementary relaxation process contributing
to plastic deformation of a nanocrystalline specimen under a mechanical load. It is
characterized by the shear stress �c which, in the framework of our model, specifies
the contribution of GB sliding to the yield stress of a nanocrystalline material. The
stress �c essentially depends on characteristics of GB dislocations and the central
triple junction. In order to reveal these dependences, we shall calculate below the
difference between energies of the final (figure 2 (b)) and the initial (figure 2 (a))
configurations of defects in a plastically deformed nanocrystalline material.

} 3. Yield stress for grain-boundary sliding in

nanocrystalline materials

The initial defect configuration (figure 2 (a)) is characterized by the total energy
density (per unit of GB dislocation length) W t

1 which consists of six key terms:

W t
1 ¼ WA þWB þWC þWAB þWAC þWBC: ð1Þ

Here WA,WB andWC are the proper energy densities of GB dislocation dipoles A, B
and C, respectively. WAB, WAC and WBC are the energy densities that characterize
the elastic interactions between GB dislocation dipoles A and B, A and C, and B
and C, respectively.

The proper energy density of a dislocation dipole is effectively calculated as the
work spent to the generation of the dipole in its stress field. Such calculations are,
in fact, routine and may be found in literature (for example Gutkin and Ovid’ko
(2001)). Following these calculations, the energy densities of GB dislocation dipoles
are as follows:

WA ¼ Db20 ln
d0
rc0

� �
þ Z0

� �
, ð2Þ

WB ¼ Db21 ln
d1
rc1

� �
þ Z1

� �
, ð3Þ

WC ¼ Db22 ln
d2
rc2

� �
þ Z2

� �
: ð4Þ

Here D ¼ G=2pð1� �Þ, G is the shear modulus, � Poisson’s ratio, rc0 � rc1 � rc2 ¼ rc
are the dislocation core radii, and Z0 � Z1 � Z2 ¼ Z are the factors for taking
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into account the contributions of dislocation cores into the energy density. The
characteristic value of rc is of the order of the magnitude of the Burgers vector
which is in the range 0.08–0.1 nm for a GB dislocation (Sutton and Balluffi 1995).
The dipole arms are larger than a few nanometres. Hence the above energy formulas
should be quite accurate for our first-approximation model.

Now let us calculate the energy densities WAB, WAC and WBC. The energy
density that characterizes the interaction between two GB dislocation dipoles can
be effectively calculated as the work spent in generating one dipole in the stress field
of another dipole (Mura 1968). For instance, the energy density WAB that charac-
terizes the elastic interaction between GB dislocation dipoles A and B is given by the
following formula:

WAB ¼ �b0

ð�rc

�d0

�ð1Þ
xy ðx, y ¼ 0Þ dx, ð5Þ

where �ð1Þ
xy is the xy component of the stress field created by the dipole B. In general,

the stress field �ð1Þ
xy ðx, yÞ is as follows:

�ð1Þ
xy ðx, yÞ ¼ �ð1Þ

x1x1
� �ð1Þ

y1y1

� �
sin �1 cos �1 þ �ð1Þ

x1y1
cos ð2�1Þ, ð6Þ

where the stress field components �ð1Þ
x1x1

, �ð1Þ
y1y1

and �ð1Þ
x1y1

are written in the coordinate
system ðx1, y1Þ (see figure 2). These components are given by the known formulae
(Hirth and Lothe 1982)

�ð1Þ
x1x1

¼ Db1y1
3x21 þ y21

ðx21 þ y21Þ
2
�

3ðx1 � d1Þ
2
þ y21

½ðx1 � d1Þ
2
þ y21�

2

 !
, ð7Þ

�ð1Þ
y1y1

¼ Db1y1 �
x21 � y21

ðx21 þ y21Þ
2
þ

ðx1 � d1Þ
2
� y21

½ðx1 � d1Þ
2
þ y21�

2

 !
, ð8Þ

�ð1Þ
x1y1

¼ Db1 �
x1ðx

2
1 � y21Þ

ðx21 þ y21Þ
2
þ
ðx1 � d1Þ½ðx1 � d1Þ

2
� y21�

½ðx1 � d1Þ
2
þ y21�

2

 !
, ð9Þ

where coordinates ðx1, y1Þ are in the following relationships with coordinates ðx, yÞ:

x1 ¼ x cos�1 þ y sin �1, ð10Þ

y1 ¼ y cos�1 � x sin �1: ð11Þ

With equations (7)–(11), substitution of equation (6) into equation (5) gives the
interaction energy density

WAB ¼ �Db0b1
cos�1

2
ln

d2
0d

2
1

r2cðd
2
0 þ 2d0d1 cos�1 þ d2

1 Þ

 !
þ

d0d1 sin
2 �1

d2
0 þ 2d0d1 cos�1 þ d2

1

" #
:

ð12Þ
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By analogy with the calculation scheme for WAB, we calculate the interaction
energy densities WAC and WBC which are respectively as follows:

WAC ¼ �Db0b2
cos�2

2
ln

d2
0d

2
2

r2cðd
2
0 þ 2d0d2 cos�2 þ d2

2 Þ

 !
þ

d0d2 sin
2 �2

d2
0 þ 2d0d2 cos�2 þ d2

2

 !
,

ð13Þ

WBC ¼ �Db1b2 �
cos �

2
ln

d2
1d

2
2

r2cðd
2
1 � 2d1d2 cos � þ d2

2 Þ

 !
þ

d1d2 sin
2 �

d2
1 � 2d1d2 cos � þ d2

2

 !
,

ð14Þ

where � ¼ �1 þ �2.
Thus, we have all the terms of the total energy density W t

1 of the initial defect
configuration (figure 2 (a)). The terms are given by equations (2)–(4) and (12)–(14).

The total energy density W t
2 of the final defect configuration (figure 2 (b)) result-

ing from the considered plastic deformation act at triple junction of GBs can be
formally written in the form similar to the total energy density W t

1 of the initial
defect configuration (see equation (1)), that is through the proper energy densities of
dislocation dipoles and the energy densities which characterize their pair interac-
tions. To do this, we need to represent the dislocation with Burgers vector b3,
resulting from the dislocation reaction at triple junction (figure 2 (b)), as a super-
position of the three dislocations participating in the reaction. This representation
will allow us to use equations (2)–(4) and (12)–(14) in their slightly modified forms
in the description of terms composing the total energy density W t

2. In doing this,
the key modification of the expressions discussed is in replacing terms that corre-
spond to contributions of cores of the three initial dislocations (figure 2 (a)) by a term
which describes the corresponding contribution of the resultant dislocation core.

Following the approach considered, the total energy density of the final defect
configuration (figure 2 (b)) can be written as follows:

W t
2 ¼ Wb � �b0l cos ð2�Þ þW e

A þW e
B þW e

C þW 0
AB þW 0

AC þW 0
BC þ

X3
i¼0

W c
i : ð15Þ

Here Wb denotes the energy barrier for movement of the GB dislocation with
Burgers vector b0 across the central triple junction, � the angle between the GB
plane with dipole A and the plane of the shear stress � action, and W e

A, W
e
B and

W e
C are the proper elastic energy densities of GB dislocation dipoles A, B and C,

respectively.W 0
AB,W

0
AC andW 0

BC are the energy densities that characterize the elastic
interactions between dipoles A and B, A and C, and B and C, with transfer of the
dislocation of the dipole A taken into account; W c

i (i ¼ 0, 1, 2, 3) is the core energy
density of the ith dislocation with Burgers vector bi.

The energy barrier Wb for GB dislocation motion is an analogue of Peierls
barrier for conventional lattice dislocations. It is caused by atomic configuration
at the central triple junction and, in general, represents a structural and material
characteristic (which is independent on grain size d ). Analysis of its dependence
on geometric parameters of the triple junction is beyond the scope of this paper.
We focus on the relationship between GB dislocation Burgers vectors, geometric
parameters (angles between adjacent GBs) of triple junctions, grain size d and
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shear stress �. Therefore, in the present paper, hereafter we assume Wb (see
equations (23) and (26)) to be an adjustable parameter of our model.

The proper elastic energy densities of dislocation dipoles are given by equations
(2)–(4) where terms Zi are removed:

W e
A ¼ Db20 ln

d0 þ l

rc0

� �
, ð16Þ

W e
B ¼ Db21 ln

d1
rc1

� �
, ð17Þ

W e
C ¼ Db22 ln

d2
rc2

� �
: ð18Þ

Here rc0 � rc1 � rc2 ¼ rc.
The energy densities that characterize the elastic interactions between dislocation

dipoles are given by equations (12)–(14) with d0 being replaced by d0 þ l. In doing
this, we have

W 0
AB ¼ WABðd0 ! d0 þ lÞ, ð19Þ

W 0
AC ¼ WACðd0 ! d0 þ lÞ, ð20Þ

W 0
BC ¼ WBC: ð21Þ

The dislocation core energy densities in the first approximation are given by the
well-known formula (Hirth and Lothe 1982)

W c
i ¼ Db2i Zi, i ¼ 0, 1, 2, 3: ð22Þ

With equations (16)–(22) substituted into equation (15), we find the total energy
density W t

2 in the final state of the defect configuration (figure 2 (b)). Then the
characteristic difference �W t

¼ W t
2 �W t

1 between the energy densities of the con-
figuration in its final (figure 2 (b)) and initial (figure 2 (a)) states is as follows:

�W t
¼ Wb � �b0l cos ð2�Þ þD

Z

2
b23 � b20 � b21 � b22
� �

þ b20 ln
d0 þ l

d0

� �	

þ b0
X2
i¼1

b2i
2

cos �i ln
d2
0 ðd0 þ lÞ2 þ 2ðd0 þ lÞdi cos�i þ d2

i


 �
ðd0 þ lÞ2ðd2

0 þ 2d0di cos�i þ d2
i Þ

 !"

þ
bid0di sin

2 �i

d2
0 þ 2d0di cos�i þ d2

i

�
biðd0 þ lÞdi sin

2 �i

ðd0 þ lÞ2 þ 2ðd0 þ lÞdi cos�i þ d2
i

#)
: ð23Þ

The structure of equation (23) for �W t is evident. The term (Z/2)(b23 � b20 � b21 � b22)
describes a change in the sum dislocation core energy due to the dislocation reaction
at a triple junction. The term b20 ln ½ðd0 þ lÞ=d0� specifies the change in the proper
energy of dipole A due to transfer of one dislocation composing the dipole by a
distance l. The terms in the sum

P
describe changes in the interaction energies

associated with the dislocation transfer in question.
The transformation of GB dislocation configuration (figure 2) occurs as

an energetically favourable process, if �W t < 0. In this situation, the equation
�W t

¼ 0 allows one to obtain the critical shear stress �c needed for realization of
the transformation. In order to find an analytic relationship between �c, dislocation
Burgers vectors and geometric parameters of triple junctions, let us first consider the
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special case where d0 ¼ d1 ¼ d2 ¼ d. In these circumstances, equation (23) is simpli-
fied, and the critical shear stress �c is found from

�0cðdÞ ¼ pþ q
l

d
þ s

l2

d2
, ð24Þ

where

�0c ¼
�c
D

b0l cos ð2�Þ, ð25Þ

p ¼
Wb

D
þ
Z

2
ðb23 � b20 � b21 � b22Þ, ð26Þ

q ¼
b0
2

ð2b0 � b1 cos�1 � b2 cos�2Þ, ð27Þ

s ¼
b0
4

b1 sin
2 �1

ð1þ cos�1Þ
2
þ

b2 sin
2 �2

ð1þ cos �2Þ
2

" #
: ð28Þ

In deriving equations (24), (27) and (28), we have used the inequality l � d and
the relationships ln ð1þ l=dÞ � l=d and ð1þ l=dÞ2 � 1þ 2l=d. From figure 2 (b) the
following relationships can be extracted: b0 ¼ b1 cos�1 þ b2 cos�2 þ b3 cos�3 and
b1 sin �1 ¼ b2 sin �2 � b3 sin �3. With these relationships, the second term in equation
(26) can be rewritten as

b23 � b20 � b21 � b22 ¼ 2b1b2 cos ð�1 þ �2Þ � 2b0 ðb1 cos�1 þ b2 cos �2Þ: ð29Þ

With this formula, all the parameters appearing in equation (24) depend on only the
characteristics of the initial defect configuration shown in figure 2 (a). The parameter
p is always positive, but it may change in a non-monotonic way with variations bi and
�i (see below). The parameter q is either positive or negative, depending on relation-
ships between b0 and bi cos�i (i ¼ 1, 2). In particular, q < 0 at low �i and large bi,
and q > 0 in the opposite case. Values of q (and, as a corrollary, values of �0c) increase
with increasing angles �i and decreasing bi. The parameter s is always positive, but
the contribution of the term sl2=d2 to �c (see equation (24)) is always negligibly small.

Thus, in the situation with all grains having the same sizes d, the dependence
of the shear stress �c (characterizing the GB sliding) on grain size d is given by
equation (24) with the two hyperbolic and d�2-type terms sensitive to d. For positive
(or negative) values of parameter q, the 1/d term gives rise to an increase (or a
decrease respectively) in �c with reducing grain size d. The d�2-type term with an
always positive coefficient s causes an increase in �c on a reduction in the grain size d.
However, this term commonly is negligibly small (owing to the low l ) compared with
the hyperbolic term.

With x ¼ d�1=2, from equation (24) we have the following dependence which is
written in variables used to describe the classical Hall–Petch dependence:

�0cðxÞ ¼ pþ qlx2 þ sl2x4 : ð30Þ

This formula is convenient in an analysis of the deviations of �cðd
�1=2

Þ ¼ �cðxÞ
dependence from the classical Hall–Petch relationship. From equation (30) it follows
that there are the two parabolic and x4-type terms sensitive to x ¼ d�1=2. The x4 term
is small and therefore will be hard to detect experimentally, in contrast with the
parabolic term. The x2 term, in the framework of our model, is responsible for the
deviations of �cðd

�1=2
Þ dependence from the classical Hall–Petch relationship.
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Now let us consider the general situation where GBs adjacent to the central triple
junction have different lengths. To describe this situation, we suppose that di=d0 ¼ ai
(i ¼ 1, 2) and d0 ¼ d. In these circumstances, the first term p in equation (30) does
not change, while the parameter q in the second term on the right-hand side of
equation (30) has the following form:

qða1, a2Þ ¼ b0 b0 � b1
a1 cos�1ða1 þ cos�1Þ

a21 þ 2a1 cos�1 þ 1
� b2

a2 cos�2ða2 þ cos�2Þ

a22 þ 2a2 cos �2 þ 1

� �
: ð31Þ

The sign of parameter q given by equation (31) is highly sensitive to the param-
eters ai. The third term on the right-hand side of equation (30) is as follows:

Sðx, a1, a2Þ ¼ b0
X2
i¼1

biai sin
2 �i

a2i þ 2ai cos�i þ 1
�

biai sin
2 �i ð1þ lx2Þ

a2i þ 2ai cos�ið1þ lx2Þ þ ð1þ lx2Þ2

 !
:

ð32Þ

Thus, in the situation discussed, the critical shear stress that characterizes GB
sliding in the framework of our model is represented as

�0cðx, a1, a2Þ ¼ pþ qða1, a2Þlx
2
þ Sðx, a1, a2Þ , ð33Þ

here p, qða1, a2Þ and Sðx, a1, a2Þ are given by equations (26), (31) and (32) respec-
tively. This is the main result of our model.

} 4. Plastic flow in as-prepared and heat-treated nanocrystalline

materials: comparison with experiments

Let us compare the results of our model and experimental data (Volpp et al.
1997) on measurements of microhardness HV in as-prepared and heat-treated
nanocrystalline NiAl materials synthesized by the ball-milling technique. In our
calculations we shall use the following characteristic values of parameters of these
materials and defect configuration under consideration. The elastic constants are
(Volpp et al. 1997) G¼ 70GPa and � ¼ 0:314. For simplicity of analysis, we assume
that �1 ¼ �2 ¼ �, Z¼ 1 and � ¼ 0. Moduli of the GB dislocation Burgers vector are
taken as follows: b0 ¼ 0:1 nm and b1 ¼ b2 ¼ 0:08 nm (in other terms, a/5 and a/3,
with a being the crystal lattice parameter); they correspond to those of experimen-
tally observed GB dislocations (Sutton and Balluffi 1995). The distance by which
the GB dislocation with Burgers vector b0 moves is l¼ 1 nm; it corresponds to the
characteristic thickness of GBs. These values are considered reasonable based on the
information available. As we shall see later, the actual forms of the predicted curves
are not too sensitive on their values. The energy barrier for GB dislocation motion is
assumed to be Wb ¼ �Gb20, where � is the adjusting parameter being of the order of
unity. This formula is written empirically as a typical ‘dislocation energy’ term. Its
dimension and order of magnitude are those of the core energy of dislocation. Also
to compare theoretical calculations of the yield stress �c with experimental measure-
ments of the microhardness Hth

V , we shall use the known relationship (Tabor 1951)
Hth

V � 3�yð" ¼ 8%Þ � 6�y.
Equation (33) predicts the relation between yield stress and grain size provided

that the mechanism described in the paper is dominant. To compare this result
with experiments, especially with those of Volpp et al. (1997), we proceed by noting
that the last term, that is, Sðx, a1, a2Þ, can be safely neglected, as mentioned before.
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The term qða1, a2Þ can in principle be both positive and negative as given by equation
(31). It is easy to show that, for the range of cos�,

a cos � ðaþ cos�Þ

a2 þ 2a cos�þ 1
�

a

aþ 1
cos�: ð34Þ

In figure 3, we compare these two terms and show how close the two terms are for
the several values of a.

Therefore qða1, a2Þ can be written as

qða1, a2Þ ¼ b0 b0 � b1 cos�
a1

a1 þ 1
� b2 cos�

a2
a2 þ 1

� �
: ð35Þ

The term ða cos�Þ=ðaþ 1Þ can at most be equal to one and, if a � 1 (grain sides
approximately equal), then it is 1

2
or less. Next we note that the angle � will not

always be close to zero but may vary from 0 to p=2. Therefore this term on averaging
over � will be 2=p or less which is 0:637 or less, whatever the value of a. More
simply, one notes that 1

2
< a=ðaþ 1Þ < 1 and 0 < cos� < 1 which gives average

a=ðaþ 1Þ � 3
4
and, if cos� � 1

2
, then ða cos �Þ=ðaþ 1Þ � 3

8
. Therefore, if we take

b0 ¼ 0:1 nm and b1 ¼ b2 ¼ 0:08 nm as previously stated, there is a very good possi-
bility that qða1, a2Þ is positive, especially if a1 and a2 are not too large.

We shall therefore assume that qða1, a2Þ is positive and then apply the procedure
given by Masumura et al. (1998) for averaging over the grain size distribution to
develop a yield stress – (average grain size)�1=2 curve to take into account the range
of grain sizes in a nanocrystalline material. This is done by assuming that the
mechanism discussed in the present paper operates for grain sizes less than d*,
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and the usual Hall–Petch mechanism operates for grain sizes higher than d*. The
statistical nature of the grain sizes in a polycrystal is taken into consideration by
using an analysis similar to that employed by Kurzydlowski (1990). The volumes
of the grains are assumed to be log-normally distributed, and the standard deviation
of the distribution was taken to be 1. Figure 4 gives the full curve following this
procedure for the whole range of average grain sizes where d* was taken as 16 nm.
The curve then needs the value of a single parameter � given by ql=pd�. The best
fit is obtained for � ¼ 0:10, which corresponds to q=p ¼ 1:6 if l is taken to be 1 nm.
This ratio appears to be reasonable but cannot yet be calculated exactly, because
of the uncertainty in the values of the parameters needed to calculate p and q.

Next we discuss the specific features of plastic deformation in annealed nano-
crystalline materials. The heat treatment causes annihilation of GB dislocations,
carriers of GB sliding, which gives rise to the hampering of GB sliding. In fact,
the generation of new GB dislocations commonly requires intensive flows of lattice
dislocations from grain interiors to GBs, where lattice dislocations split into GB
dislocations. At the same time, the density of lattice dislocations is low in annealed
materials, while their nucleation under mechanical load is hampered owing to
nanoscale effects (for details, see Gryaznov et al. (1991) and Romanov (1995)).
Since GB sliding is suppressed, deformation mechanisms alternative to GB sliding
are capable of effectively contributing to plastic flow or even being dominant in such
materials. In the context discussed, the case of the annealed nanomaterial used by
Volpp et al. (1997) can also be explained. In this case, however, the mechanism
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Figure 4. Comparison of theoretical predictions with the experimental results of
Volpp et al. (1997).



proposed by Masumura et al. (1998), based on the idea that at least for very small
well annealed grains Coble-creep type behaviour may be applicable, holds. It was
also postulated that modelling of strengthening by nanocrystalline materials needs
consideration of both dislocation interactions and sliding due to Coble creep acting
simultaneously if the polycrystals have a distribution in sizes as is always the case.
Their model is thus based on using Coble creep (with a threshold stress) for finer
grains and conventional Hall–Petch strengthening for larger grains incorporating
into the analysis to a distribution of grain sizes occurring in most specimens. In
the Masumura et al. (1998) model the � versus d relationship used for Coble creep
is given by

�c ¼
A

d
þ Bd3, ð36Þ

where B is as usual both a temperature- and a strain-rate dependent constant as
given by Masumura et al. (1998). This threshold term A/d can be large if d is in the
nanometre range. We again denote by d* the grain size at which a transition from
dislocation mode to Coble creep mode happens. So d* is now given by

kðd�
Þ
�1=2

¼
A

d�
þ Bðd�

Þ
3: ð37Þ

It is likely that the transition from dislocation mode to other modes happens at
around the same grain size and d* should be taken the same for both types of
specimen.

The dislocation mode of deformation (i.e. for large grains) is common to both
types of specimen and this mode depends only on the grain size; hence it is reason-
able to assume that a transition from dislocation mode to other modes will occur at
a fixed value of grain size irrespective of deformation modes at smaller grain sizes.
(We tried to use two different grain sizes for two cases and found that the agreement
with experimental data plotted in figure 4 was not improved.)

For completeness we apply the procedure given by Masumura et al. (1998) and
we show this result also in figure 4. For this case we also take d�

¼ 16 nm and a value
of 0.13 for P, the ratio of Coble threshold stress to the conventional stress; that is,

P ¼
A=d�

Bðd�Þ
3
: ð38Þ

Thus both the curves can be satisfactorily explained at least approximately. Our
analysis thus points to two different mechanisms operating for the finer grains,
and a common dislocation mechanism operating for the larger grains in the two
types of specimen studied by Volpp et al. (1997).

The values of � and P used for comparison, although reasonable, need further
investigation.

} 5. Discussion and concluding remarks

Thus, according to the results of our theoretical analysis, the yield stress char-
acterizing GB sliding in nanocrystalline materials is caused by transformations
of GB dislocations at triple junctions (figure 2). In doing this, the grain size and
geometry of triple junctions strongly influence the GB sliding as a channel of plastic
deformation. In particular, GB dislocations overcome easily a triple junction of GBs,
if its characteristic abutting angles �1 and �2 are small enough. With a high density
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of GB dislocations and ‘soft’ triple junctions (with small �1 and �2) in as-prepared
nanocrystalline materials, GB sliding intensively occurs in these materials where it
effectively competes with the conventional dislocation slip highly sensitive to grain
size. In order to describe the competition between the conventional dislocation slip
and GB sliding, we have taken into consideration the grain size d and triple junction
angle � distributions, accounting for such distributions that occur in real specimens.
With these distributions, the yield stress dependence on grain size in as-prepared
materials, calculated in the framework of our model, is in rather good agreement
with the corresponding experimental data (Masumura et al. 1998) on mechanical
characteristics of as-prepared nanocrystalline NiAl materials synthesized by the ball
milling technique (see figure 4).

Heat treatment of nanocrystalline materials gives rise to annihilation of GB
dislocations and causes triple junctions to be mostly at equilibrium, that is those
characterized by abuting angles of about 120�. These structural transformations
suppress GB sliding, in which case alternative deformation mechanisms associated
with the active role of GBs compete with conventional dislocation slip in heat-
treated nanocrystalline materials. Here, following the approach by Masumura
et al. (1998), we have calculated the yield stress dependence on grain size d in
heat-treated nanocrystalline NiAl materials, taking into account competition
between the conventional dislocation slip and Coble creep (treated to be alternative
to GB sliding). The theoretical dependence again is in a good agreement with the
corresponding experimental data (Volpp et al. 1997).

The annealing of the specimen will definitely affect the long-range order and
vacancy concentration. This is taken into account in the two constants A and B.
In the calculation only their ratio is needed and this is a parameter whose value is
assumed (see equation (38)). The mechanical behaviour of the specimen depends on
this parameter, as seen in figure 4.

It is usually believed that GB dislocations can have multiple small Burgers
vectors or, in many cases, they seem to be essentially continuous infinitesimal dis-
locations. However, continuous infinitesimal dislocations are, in fact, a mathemati-
cal abstraction only which is used sometimes to simplify treatment of real discrete
dislocations (including GB dislocations) or to model some special stress (strain)
distributions, in contrast with the more realistic discrete dislocations that we use
in our model. The magnitudes of GB dislocation Burgers vectors, used in our
theoretical analysis, are 0.08 and 0.1 nm (or, in other terms, a/5 to a/3, with a
being the crystal lattice parameter); they correspond to those of experimentally
observed GB dislocations (for example Sutton and Balluffi (1995)). The functional
form of our result does not depend critically on the actual magnitude of these
Burgers vectors.

In our treatment we do not consider the piling up of GB dislocation at the
triple junction. In principle, real discrete dislocations can form pile-ups near triple
junctions of GBs. Then the dislocation distribution between triple points will repre-
sent a pile-up dipole with a complex reaction at the tip. However, the formation of a
GB dislocation pile-up near a triple junction needs a certain level of external stress
(considered, for example, in the paper by Fedorov et al. (2003)) which is usually
much higher than the stress which is necessary to form a dipole of discrete disloca-
tions. This is why we consider dipoles of discrete dislocations in our model. We
consider the lowest possible stress that is necessary to apply to make a dislocation
pass through the triple junction. Namely this stress is identified with ‘yield stress’ in
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our paper. In this context, we show that under this stress even a single dislocation
can bypass the triple junction. It is difficult to see how this triple junction would be
an obstacle to a whole array of discrete dislocations forming a dislocation pile-up.
Our result conclusively proves there will be no pile-ups under these conditions at the
triple junctions.

We are of course not asserting that pile-ups at the triple junctions never exist.
We think that there exist two possible situations whose realization depends on the
strength of a triple junction.

(i) The triple junction strength is sufficiently low for the stress that is needed for
dislocation bypass through the junction to also be low, and even lower
than that which is necessary to create a dislocation pile-up.

(ii) The triple junction strength is sufficiently high to provide formation of
a dislocation pile-up before the head dislocation will bypass through the
junction.

In our model we deal with case (i) only because we consider as-sintered nano-
materials, which are expected to contain triple junctions of different strengths: low
and high. Of course, we have had to consider ‘weak links’ to estimate the yield stress.
Hence the discrete dipole process analysed by us here is expected to be more realistic.

Finally we note that the stress fields of the triple junction itself has been neglec-
ted in our treatment. A detailed consideration of stress fields is not required for the
problem under consideration. It would be required if we were considering in detail
the atomic structure of the triple junction or at least considering an anisotropic
continuum model. Our isotropic model is focused on the yield stress dependence
on grain size d, in which case a complicated and space-consuming description of the
atomic structure of the triple junction is not needed. Instead we use the concept of an
energy barrier due to the triple junction in our isotropic model, which as we show is
enough to capture the basic aspects related to the yield stress dependence on the
grain size d.

It is worth noting that, during the last decade, many researchers have tried to
explain the peculiarities of Hall–Petch curves for nanostructured materials. The
existing theoretical models may be subdivided into two types. The models of the
first type are based on using a ‘rule-of mixtures’ approach (Gryaznov et al. 1993,
Carsley et al. 1995, Milligan et al. 1995, Wang et al. 1995, Ovid’ko 1997, Kim 1998,
Konstantinidis and Aifantis 1998, Song et al. 1999, Kim et al. 2000) while those of
the second type involve specific physical mechanisms of dislocation plasticity as
piling of lattice dislocations near GBs (Lian et al. 1993, Nazarov 1996, Pande and
Masumura 1996), their absorption by GBs (Malygin 1995), penetration through the
boundaries (Lu and Sui 1993), interaction with GB dislocations (Seattergood and
Koch 1992) or with triple junction disclinations (Zaichenko and Glezer 1997). We
have recently given a review of these models (Gutkin et al. 2001) where it was shown
that most of them are in good accordance with experimental data. On the other
hand, many of them are restricted by the range of large grain sizes where lattice
dislocation motion still dominates over other mechanisms of plasticity or by very
severe assumptions, for example about the amorphous nature of GBs in nanocry-
stalline metals. In elaborating our present model, we have tried to avoid such strong
restrictions by using the grain-size distribution approach (Masumura et al. 1998,
Fedorov et al. 2002) which allows us to include both the bulk lattice (for larger
grains) and the GB (for smaller grains) mechanisms of plasticity.
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To summarize, the idea of competition between conventional dislocation slip and
deformation modes associated with active role of GBs (GB sliding and Coble creep)
in nanocrystalline materials effectively describes experimentally detected deviations
of the yield stress dependence on grain size at small grains. In doing this, according
to the results of our theoretical model, GB sliding dominates in as-prepared nano-
crystalline materials where densities of GB dislocations and soft triple junctions are
rather high. Coble creep (diffusional creep associated with enhanced diffusion along
GBs) crucially contributes to plastic flow in heat-treated nanocrystalline materials
where the density of GB dislocations (carriers of GB sliding) is low and triple-
junction geometry predominantly hampers GB sliding.
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