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1. INTRODUCTION

Thin-film heterostructures enjoy broad application
in present-day micro- and nanoelectronics. The stabil-
ity of the properties of heterostructures, which is of
prime importance for their successful use in technol-
ogy, depends substantially on the presence of defects
and stress fields in the films (see, e.g., reviews [1–5]
and monographs [6, 7]). For instance, the difference in
the crystal lattice parameters between the substrate and
film materials gives rise to the formation of internal
stresses in films, more specifically, of misfit stresses
which considerably affect the evolution of the structure
and functional properties of the films. In particular, if
the film thickness is in excess of a certain critical
value, the misfit stresses become partially accommo-
dated through the formation of misfit dislocations
(MDs) in the interface separating the substrate and the
film [1–16]. Such MDs disrupt the interface coherence,
which can quite frequently degrade the functional
properties of heterostructures. Recently, methods for
increasing the critical film thickness on substrates
were proposed based on the concept of formation of
thin buffer layers of a given structure between films
and substrates (see, e.g., [17–20]). An alternative
method of increasing the critical thickness of films on
substrates is proposed and studied theoretically in this
paper. This method consists essentially in a prelimi-
nary plastic deformation of the substrate with the for-
mation of edge dislocation walls and stress fields
which suppress MD nucleation and, accordingly,
increase the critical thickness of a film.

2. DISCLINATIONS IN PLASTICALLY 
DEFORMED SUBSTRATES

Plastic deformation of a crystal is frequently accom-
panied by the formation of edge dislocation walls in
them (small-angle grain boundaries) [21, 22]. For
instance, dislocation walls of one type form when the
substrate is bent. Such walls actually represent small-
angle grain boundaries, each of them crossing the sub-
strate to terminate at the opposite free surface of the lat-
ter. Dislocation walls (small-angle boundaries) in sub-
strates can substantially affect the misfit stress relax-
ation processes in epitaxial layers deposited on them. In
particular, the formation of dislocation walls of one
type in a plastically deformed substrate is capable of
narrowing the ranges of the parameters (the film thick-
ness and the degree of misfit) within which MD forma-
tion in the interface separating the film and the substrate
is energetically favorable. To calculate the critical
parameters for MD nucleation at the boundary between
a plastically deformed substrate (containing dislocation
walls) and a film, one has to determine the stress fields
generated by the dislocation walls in the film. At dis-
tances in excess of the separation between neighboring
dislocations in dislocation walls, the disclination com-
ponent provides a major contribution to the stress fields
of such dislocation walls. Therefore, to simplify the
calculation of the stress fields created in a film by edge
dislocation walls, we will approximate each such wall
by a wedge disclination (which bounds the wall) near
the film–substrate interface (Fig. 1). Generally speak-
ing, each finite dislocation wall is bounded by two dis-
clinations. The second disclination bounds the disloca-
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tion wall near the free substrate surface opposite to that
on which a film is deposited. The stress fields of the sec-
ond disclination are screened efficiently by the (near-
est) free surface and, therefore, do not affect, in any
way, dislocation nucleation in the film.

3. A FILM ON A SUBSTRATE 
WITH DISCLINATIONS: MODEL

Let us consider a system consisting of a semi-infi-
nite substrate with disclinations and a film of thickness

 

h

 

 (Fig. 1). The film and the substrate are assumed to be
elastically isotropic solids with equal shear moduli 

 

G

 

and equal Poisson ratios 

 

ν

 

. We assume that the disclina-
tions in the substrate are of the wedge type, have the
same strength 

 

ω

 

, and are the same distance 

 

p

 

 apart
forming two infinite orthogonal rows at a distance 

 

d

 

from the substrate surface (Fig. 1). We shall also
assume that the substrate and film lattices are of the
same type, the two basis vectors of each lattice lie in the
interface plane and are pairwise parallel, and that the
parameters of each lattice corresponding to these basis
vectors are equal. (For instance, the crystal lattices of
the Ge

 

x

 

Si

 

1 – 

 

x

 

/Si system are mutually oriented as
(001)[110] 

 

||

 

 (001)[110].) In this case, the boundary
separating the substrate and film lattices is character-
ized by a two-dimensional dilatation misfit 

 

f

 

 deter-
mined from the relation 

 

f

 

 = 2(

 

a

 

1

 

 – 

 

a

 

2

 

)/(

 

a

 

1

 

 + 

 

a

 

2

 

), where

 

a

 

1

 

 and 

 

a

 

2

 

 are the lattice parameters of the substrate and
the film, respectively.

When a film grows coherently on a substrate, the lat-
tice misfit between the different phases and the discli-
nations in the substrate give rise to the formation of
elastic strains in the film. For certain values of the
parameters of the system (misfit 

 

f

 

, film thickness 

 

h

 

, dis-
tance 

 

d

 

 from the disclinations to the film–substrate
interface, separation 

 

p

 

 between the disclinations, and
disclination strength 

 

ω

 

), the interface can transform to
a semicoherent state characterized by MD nucleation
(Fig. 2). To find the conditions favoring MD nucleation,
we compare the energy of the system in the coherent
state (without MDs) with that after a first single MD has
formed in the system. In doing this, we assume that the
positions of the disclinations in the substrate are fixed
and are not affected by the MD nucleation. Within this
model, the MD is an edge dislocation with the Burgers
vector 

 

b

 

 = (

 

b

 

l

 

e

 

l

 

), where 

 

e

 

l

 

 is a unit vector parallel to the
0

 

x

 

2

 

x

 

3

 

 plane and forms an angle 

 

ϕ

 

 with the 

 

x

 

2

 

 axis. This
MD line lies on an 

 

m

 

 axis related to the coordinates 

 

x

 

2

 

and 

 

x

 

3

 

 through the expressions 

 

x

 

2

 

 =  – 

 

m

 

sin

 

ϕ

 

 and

 

x

 

3

 

 =  + 

 

m

 

cos

 

ϕ

 

, where  and  are constants
(Fig. 2).

In the case of a film growing coherently on the sub-
strate, the energy 

 

W

 

0

 

 of the system is a sum of the
energy 

 

W

 

f

 

 of proper film strains associated with the
presence of a misfit, proper energy 

 

W

 

ar

 

 of two orthogo-
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nal rows of disclinations, and the energy 
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ar
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 with
which the disclination rows interact with the misfit
stresses:

(1)

The energy

 

 W

 

 of a system with a single MD can be writ-
ten as

(2)

where 
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 is the proper MD elastic energy, 
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 – 
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 is the
interaction energy between the MD and the misfit
stresses, 
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 – 
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 is the interaction energy between the
MD and the disclination rows, and 
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 is the MD core
energy. (All the energies are reduced to a unit MD
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 Misfit dislocation in the interface between the film
and a plastically deformed substrate. Wedge disclinations
(triangles) bound dislocation walls of deformation origin.
The disclination row along the 
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 axis is not shown.
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Fig. 2.

 

 Two coordinate frames on the plane. The Burgers
vector of a dislocation is directed along the 

 

l 

 

axis, and the
dislocation line coincides with the

 

 m

 

 axis.
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length.) For an MD to nucleate at the film–substrate
interface, the energy W of the system with the MD must
be less than the energy W0 of the system without
the MD:

(3)

To determine the ranges of parameters within which an
MD can nucleate, we calculate (in the next section) the
quantities Wd, W f – d, War – d, and Wc entering Eq. (3).
As already pointed out, these quantities are the corre-
sponding average linear energy densities per unit MD
length. We note that the linear densities of the proper
energy of an MD, its interaction energy with the elastic
misfit stress field, and the MD core energy are the same
at any point of the MD line. At the same time, the linear
interaction energy density between the MD and a dis-
clination row is different at different points of the MD
line. Therefore, in our subsequent calculation of War – d,
we average this energy density over the MD line.

4. THE ENERGY OF A DISLOCATION
IN A THIN-FILM SYSTEM 

WITH DISCLINATIONS

The proper energy Wd (per unit MD length) of an
MD lying in the film–substrate interface is given by
[23]

(4)

where b is the magnitude of the MD Burgers vector b
and D = G/[2π(1 – ν)].

The elastic interaction energy W f – d (per unit MD
length) between the MD and the misfit stress fields is
[23]

(5)

The average interaction energy War – d (per unit MD
length) between the MD and two disclination rows is
given by [24]

(6)

where

is the component of the stress tensor generated by the

two disclination rows; (x1, x2) and (x1, x3) are
the stresses generated by disclination rows parallel to
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the x2 and x3 axes, respectively; and 〈…〉m denotes aver-
aging over the coordinate m along the MD line. To cal-
culate the energy War – d, we present the stresses

(x1, x2) and (x1, x3) in the form

(7)

where σkk is the component of the stress tensor gener-
ated by a disclination of strength ω with a line (x1 =

−h – d, xk = 0). The stress (x1, xk) can be expressed

through the stress function χ(x1, xk) of this disclination
as [25]
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Equations (3)–(5) and (10) yield the following nec-
essary condition for MD nucleation:

(13)

5. THE CRITICAL PARAMETERS OF FILMS
ON SUBSTRATES WITH DISCLINATIONS

To determine the ranges of parameters within which
MD nucleation in the film–substrate interface is ener-
getically favorable, we consider first the situation in
which the projection of the MD line on the plane con-
taining the disclination network is parallel to one of the
disclination rows; i.e., ϕ = sπ/2, where s = –1, 0, 1, 2. In
this case, we have

for ϕ = ±π/2 and

for ϕ = 0 or π. Hence, in the case under study, the ranges
of the f and h parameters in which an MD can nucleate

at the film–substrate boundary depend on the  (or

) coordinate of the MD line relative to the disclina-

tion network. The values of  and  will be calcu-
lated below from the condition of the minimum of the
energy War – d.

Figure 3 plots the g( /p) relations (k = 2, 3) for var-
ious values of d/p and h/p. As seen from Fig. 3, for any

values of d/p and h/p, the maxima of the g( /p) func-

tions lie at points  = ( j + 1/2)p and their minima are

at  = , where j and  are integers, k = 2 if ϕ = 0 or
π, and k = 3 for ϕ = ±π/2.1 Hence, the energy War – d

passes through a minimum at  =  for bl = +b and

at  =  for bl = –b. Substituting into Eq. (13) two

different pairs of equalities, (  = p/2, bl = +b) and

1 Differentiation of Eq. (12) yields the same result.
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(  = 0, bl = –b) (k = 2 if ϕ = 0, π and k = 3 for ϕ =
±π/2), we obtain the following relations for the critical
values of the misfit:

(14)

(15)

In Eqs. (14) and (15), f + and f – are the maximum and
minimum values of the misfit f at which an MD with ϕ
being a multiple of π/2and bl equal to +b and –b,
respectively, can nucleate in the film–substrate inter-
face.

Figure 4 displays plots of f +(h/b) and f –(h/b) in the
h/b vs. f coordinate frame for different values of ω.
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MDs of both signs is energetically unfavorable for
f−(h/b) < f < f +(h/b) (region II). If the substrate has no
disclinations (ω = 0) (Fig. 4a), MDs can nucleate in a
film of thickness h larger than a certain critical value hc

given by the intercept of the f +(h/b) (for f > 0) or f –(h/b)
(for f < 0) curve with a horizontal line f = const. For
ω > 0, the f +(h/b) curve passes through a minimum (f0)
and, for f < f0, the critical film thickness is given by the
intercept of a horizontal line f = const with the f –(h/b)
curve. As a result, for f < f0 and f ≈ f0, the presence of
disclinations in the substrate brings about a substantial

increase (by a few times) of the critical thickness hc

compared with that for a film on a defect-free unde-
formed substrate. The critical thickness of a film
reaches its maximum value h0 for f  f0, f < f0. A com-
parison of Figs. 4b and 4c indicates that the value of h0
for ω = 1° is larger than that for ω = 3°.

Figure 5 presents the phase diagram of the system in
the (h/b, 8π(1 + ν)f) coordinates for different distances
d from the disclinations to the interface and different
distances p between the disclinations. As seen from
Fig. 5, an increase in d or a decrease in p shifts region
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Fig. 4. Phase diagram of the system plotted in the (h/b, f)
coordinate frame for the case of the MD Burgers vector par-
allel to the disclination network lines with parameters d =
20b, p = 250b, and (a) ω = 0, (b) ω = 1°, and (c) ω = 3°. The
lower and upper curves of f – and f +, respectively, separate
region I, where MDs with bl = +b can nucleate, region II,
where MDs do not nucleate, and region III of possible
nucleation of MDs with bl = –b. The values of f + and f – are
normalized against 1/[8π(1 + ν)].
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II, where MDs do not nucleate, toward larger misfits,
while, at the same time, bringing about a decrease in h0.

Now, we consider the case where the projection of
the MD line onto the plane containing a disclination
network is not parallel to any of the disclination rows
(ϕ ≠ nπ/2, where n is an integer). To analyze this case,

one has to calculate the quantities 〈g(  – msinϕ)〉m

and 〈g(  + mcosϕ)〉m entering Eq. (14). In view of the
periodicity of the function g(t), as well as accepting the
conditions sinϕ ≠ 0 and cosϕ ≠ 0, we obtain

(16)

Substituting Eq. (16) into Eq. (13), we obtain the fol-
lowing two equations for the minimum (f '+) and maxi-
mum (f '–) values and of the misfit f for which the nucle-
ation of MDs with ϕ ≠ nπ/2 and bl equal to +b and –b,
respectively, is possible in the film–substrate interface:

(17)

(18)

As follows from Eqs. (17) and (18), an increase in ω or
d or a decrease in p shifts the f '+(h/b) and f '–(h/b) curves
toward larger values of f.

To find the ranges of parameters within which MDs
with any Burgers vector (either parallel or not parallel
to the disclination network rows) do not nucleate, the
f −, f +, f '–, and f '+ were plotted vs. h/b in the same coor-
dinate frame (not displayed here). It was found that the
parameter region in which MDs with a Burgers vector
oriented arbitrarily in the interface plane do not nucle-
ate coincides with the region where nucleation of MDs
with Burgers vectors parallel to one of the disclination
rows is not possible (region II in Fig. 4b).

6. CONCLUSION

Thus, we carried out a theoretical study of the con-
ditions favoring nucleation of misfit dislocations in thin
films on plastically deformed substrates containing dis-
clination ensembles. It was shown that disclinations
present in the substrate affect the ranges of the parame-
ters (film thickness h and misfit f) in which film growth
without MD nucleation is energetically favorable. For
certain values of f (depending on the disclination

x2
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h
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b
---------------ln 1

2
---– 4πωh h 2d+( )

bp
-----------------------------------+ 

  .

strength ω, distance p between the disclinations, and
distance d from the disclinations to the interface), the
critical thickness of a film on a substrate with disclina-
tions substantially exceeds the critical thickness of a
film grown on an undeformed defect-free substrate.
Increasing the parameter d or ω or decreasing the
parameter p shifts the (h, f) region in which MDs do not
nucleate toward larger values of f. The results obtained
indicate a possibility of effectively increasing the criti-
cal thickness of single-crystal films through prelimi-
nary plastic deformation of their substrates.
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