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1. INTRODUCTION

Polycrystalline films are objects of intensive funda-
mental and applied research, as they are widely applied
in modern high-technological production processes.
The stability of the physical properties of such films is
of primary importance for their technological applica-
tion and depends significantly on the defects and stress
fields in them (see, e.g., reviews [1–5] and papers [6,
7]). For example, a difference between the lattice
parameters in substrate and film materials causes inter-
nal stresses in the films. These misfit stresses signifi-
cantly affect the evolution of the structure and the func-
tional properties of the films. When the thickness of a
film reaches a certain critical value, misfit stresses, as a
rule, are partially accommodated into misfit disloca-
tions at the substrate–film interface [1–15]. However,
the presence of grain boundaries in polycrystalline and
nanocrystalline films causes alternative efficient mech-
anisms of relaxation of misfit stresses (and in general,
residual stresses of a different nature) via grain-bound-
ary dislocations and disclinations [16–19]. In analyzing
these alternative mechanisms, particular attention has
been given to the theoretical description of grain-
boundary defects in symmetric planar tilt boundaries.
In general, however, films also contain asymmetric and
faceted grain boundaries [20]. In this work, we propose
a theoretical model of a new misfit-stress relaxation
mechanism which can operate in polycrystalline films
and is related to the formation of faceted grain bound-
aries whose facets are asymmetric tilt boundaries.

2. FACETED GRAIN BOUNDARIES 
IN FILMS: MODEL

Let us consider a model of the film–substrate system
consisting of a bicrystal film of thickness 

 

H

 

 and a semi-
infinite substrate (Fig. 1). The film and substrate are
assumed to be elastically isotropic solids with the same
shear modulus 

 

G

 

 and Poisson ratio 

 

ν

 

. The film–sub-

strate interface is characterized by the one-dimensional
misfit parameter

(1)

where 

 

a

 

f

 

 and 

 

a

 

s

 

 are the lattice parameters of the film and
substrate, respectively.

In this work, we analyze two physical states of the
film, namely, the state with a straight-line symmetric
tilt boundary (Fig. 1a) and the state with a faceted
boundary whose facets are asymmetric tilt boundaries
(Fig. 1b). For the sake of definiteness, we study low-
angle tilt boundaries simulated as ensembles of edge
lattice dislocations. However, the results of our consid-
eration can be generalized to the case of a high-angle
grain boundary simulated as a grain boundary having
dislocations with Burgers vectors of the complete coin-
cidence lattice of the boundary [20]. The plane of the
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Fig. 1.

 

 Dislocation structure of grain boundaries in a bicrys-
tal film: (a) symmetric plane tilt boundary, (b) faceted grain
boundary, and (c) faceted grain boundary modeled as a wall
of superdislocations having Burgers vectors with alternat-
ing directions (schematic).
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symmetric tilt boundary is assumed to be normal to the
free surface (Fig. 1a). Such a boundary contains 

 

M

 

 peri-
odically ordered edge dislocations with a Burgers vec-
tor 

 

b

 

 parallel to the interface and normal to the plane of
the tilt boundary. The misorientation 

 

θ

 

 of the low-angle
symmetric tilt boundary is connected with dislocation
parameters by the Frank formula 

 

b

 

 = 2(

 

H

 

/

 

M

 

)sin(

 

θ

 

/2)
[20].

A faceted grain boundary consists of facets (seg-
ments) having the dislocation structure of an asymmet-
ric tilt boundary (Fig. 1b). For simplicity, we consider
facets of only two types, having the same structure and
length 

 

L

 

; the angle between adjacent facets is 

 

α

 

, and
their number is 

 

N

 

. Like a symmetric boundary, a fac-
eted boundary contains 

 

M

 

 edge dislocations with a
Burgers vector 

 

b

 

 that is parallel to the film–substrate
interface. Therefore, the orientations of the crystal lat-
tices far from a faceted boundary are identical to those
in the case of a symmetric tilt boundary. Since the
Burgers vectors 

 

b

 

 of dislocations making up a faceted
grain boundary are not normal to the facet planes, each
facet is an asymmetric tilt boundary.

A symmetric tilt boundary and a faceted boundary
in the film differ in the spatial arrangement of the dislo-
cation ensemble. This causes the different character of
interaction between the grain boundaries under study
and the misfit-stress field in the film. The periodic wall
of edge dislocations making up a symmetric tilt bound-
ary is essentially characterized by short-range stress
fields. The stress fields of dislocations making up a
periodic wall (Fig. 1a) completely compensate (shield)
each other at distances exceeding the wall period 

 

H

 

/

 

M

 

.
Therefore, a symmetric tilt boundary with a periodic
dislocation structure weakly interacts with the field of
misfit stresses.

Dislocations in a faceted boundary are arranged so
that the mutual shielding of their stress fields is sub-
stantially weakened. Consequently, a faceted boundary
is a source of long-range stress fields and strongly inter-
acts with misfit-stress fields in the film. In particular,
dislocations in a faceted boundary can provide efficient
relaxation of misfit stresses, which decreases the total
elastic energy of the system as compared to the case of
a symmetric tilt boundary. This decrease is the driving
force for the formation of faceted grain boundaries,
which have been detected experimentally in films (see,
e.g., review [21] and references therein). In this work,
we perform a theoretical study of the conditions of for-
mation of faceted boundaries in the context of the
model of the dislocation structure of such boundaries
shown in Fig. 1c.

If facets are not long, the dislocation structure of
each of them responsible for the asymmetry can be sim-
ulated, to a first approximation, as one edge superdislo-
cation placed at the center of a facet. The Burgers vec-
tor 

 

B

 

 of the superdislocation is parallel to the facet
plane, and its magnitude is equal to the sum of the pro-
jections of the Burgers vectors of lattice dislocations

(the facet elements) along its direction. Thus, a faceted
grain boundary in a film subjected to a misfit-stress
field is simulated as a vertical wall of 

 

N

 

 edge superdis-
locations with alternating Burgers vectors 

 

B

 

 (differing
in direction but having the same magnitude) in the mis-
fit-stress field (Fig. 1c).

Within this model, we consider the physical states
(Figs. 1a, 1b) as independent states, which are actual-
ized upon film growth. It is assumed that either a sym-
metric or a faceted grain boundary (depending on the
ratio of the elastic energies of the film in these physical
states) forms in the film. We do not analyze transforma-
tions between these film states or possible energy bar-
riers between them.

A certain similarity between the formation of fac-
eted grain boundaries and the faceting of the free sur-
faces of crystals should be noted. However, the cause of
the spontaneous faceting of a crystal flat surface is an
orientation dependence of the surface free energy (see,
e.g., [22]), whereas the driving force of the formation
of faceted grain boundaries is their involvement in the
relaxation of misfit stresses.

3. ENERGY CHARACTERISITCS OF GRAIN 
BOUNDARIES IN THE FILM

The energy of the film with a faceted grain boundary
(Fig. 1b) is higher than the energy of the film with a
symmetric boundary (Fig. 1a) by the elastic energy of
the superdislocations (Fig. 1c) and by the surface
energy of the boundary related to an increase in the
boundary length caused by facet formation. In the
course of the facet formation, however, misfit stresses
relax, which should lead to a decrease in the total
energy of the film. The competition of these factors
specifies whether the formation of a faceted grain
boundary is favorable or not as compared to the sym-
metric boundary. Thus, the characteristic difference 

 

∆

 

W

 

between the energies of the faceted and symmetric
grain boundaries in the film consists of three parts: the
elastic energy of superdislocations 

 

W

 

el

 

 (which includes
the energy of superdislocations and the energy of their
interactions), the surface energy of the boundary 

 

W

 

s

 

,
and the interaction energy of the superdislocations with
misfit stresses 

 

W

 

f

 

:

(2)

If 

 

∆

 

W

 

 < 0, faceting is energetically favorable. Note that
the total volume of grains in the film is the same in both
physical states (Figs. 1a, 1b).

Below, we calculate the terms in Eq. (2). The energy

 

W

 

el

 

 can be represented in the form

(3)

∆W W
el

W
s

W
f
.+ +=

W
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Here,  is the self-energy of the 

 

i

 

th dislocation and

 is the interaction energy between the 

 

i

 

th and 

 

j

 

th
dislocations (

 

i

 

, 

 

j

 

 = 1, …, 

 

N

 

, where the first dislocation
is the nearest to the free surface and the dislocation
index increases as the interface is approached). Accord-
ing to the general procedure for calculating the interac-
tion energy of defects [23], the energy of interaction of
two dislocations can be written as the work done in the
nucleation of one dislocation in the stress field of the
other dislocation (in the coordinate system shown in
Fig. 1c):

(4)

Here, 

 

B

 

jx

 

 and 

 

B

 

jy

 

 are the components of the Burgers vec-

tor of the 

 

j

 

th dislocation,  and  are the compo-
nents of the stress tensor of the 

 

i

 

th dislocation, and 

 

h

 

j

 

 is
the distance from the free surface to the 

 

j

 

th dislocation.
According to Fig. 1c, 

 

h

 

j

 

 can be represented in the form

(5)

The stress tensor components are sums of the indi-
vidual contributions from each component of the Burg-

ers vector of a dislocation, i.e.,  =  +  and

 =  + . The components of the stress ten-
sor of the 

 

i

 

th dislocation near the free surface have the
form [23]

(6)

(7)

where 

 

x

 

1

 

 = 

 

x

 

 – 

 

h

 

i

 

, 

 

x

 

2

 

 = 

 

x

 

 + 

 

h

 

i

 

, and  =  + 

 

y

 

2

 

, with 

 

n

 

 =

1, 2. The components  and  vanish at 

 

y

 

 = 0
and, hence, are not presented here. Substituting Eqs. (6)
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and (7) into Eq. (4), we obtain the pair interaction
energy

(8)

where D = G/2π(1 – ν). In our model (Fig. 1c), the com-
ponents Biy are the same for all dislocations irrespective
of their index: Biy = Bcos(α/2). However, the sing of the
components Bix alternates with their index; i.e., Bix = (–
1)iBsin(α/2). Thus, Eq. (8) can be rewritten in the form

(9)

which is more convenient for further analysis.
Using a calculation procedure similar to that used

above to calculate , we find the self-energy  of
the ith dislocation at a distance hi from the free surface
to be

(10)

where r0 is the dislocation core radius.

Substituting Eqs. (9) and (10) into Eq. (3), we obtain
the elastic energy

(11)

The difference between the surface energies of the
faceted and symmetric boundaries is

(12)

Here, N is the number of facets, L is the facet length, H
is the film thickness, and γ is the surface energy density
of the grain boundary.
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In general, the interaction energy between the ith
dislocation and the misfit stress field is given (by anal-
ogy with Eq. (4)) by the formula

(13)

where  and  are the components of the misfit-
stress tensor. Since the off-diagonal components of the
misfit-stress tensor are zero and the diagonal ones have
the form σ(f) = 4πD(1 + ν)f [6], we have from Eq. (13)

(14)

Summing Eq. (14) over i and using Eq. (5), we obtain
the energy W f:

(15)

Thus, we found all components of the difference
between the energies of the faceted and symmetric
boundaries, ∆W. Substituting Eqs. (11), (12), and (15)
into Eq. (2), we obtain the final expression

(16)

4. RESULTS OF MODEL CALCULATIONS 

Using Eq. (16), derived for the characteristic differ-
ence between the energies of the faceted and plane
symmetric grain boundaries, we find the dependence of
∆W on the parameters of the system. First, we deter-
mine the dependence of ∆W on the misfit parameter f at
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various values of the Burgers vector of a superdisloca-
tion. The following values of the parameters are used:
elastic modulus G = 100 GPa, ν = 0.3, facet length L =
10 nm, angle between adjacent facets α = 90°, number
of facets N = 100 [therefore, the film thickness is H =
NLsin(α/2) ≈ 700 nm], and surface energy density
characteristic of aluminum γ = 0.6 J/m2 [24]. The Burg-
ers vector of a superdislocation is B = nb, where b is the
Burgers vector of a lattice dislocation. The superdislo-
cation core radius is taken to be r0 = B.

The calculated ∆W( f ) dependence from Eq. (16) at
b = 0.4 nm and H = 700 nm is given in Fig. 2. As the
misfit parameter f increases, the energy difference ∆W
is seen to decrease linearly and reach negative values,
which means that the contribution of the relaxation
term is predominant. Therefore, the formation of a fac-
eted boundary becomes energetically favorable as com-
pared to a symmetric tilt boundary. The data in Fig. 2
allow the following conclusion about the effect of the
Burgers vectors of superdislocations on ∆W: at small
values of the misfit parameter, an increase in the Burg-
ers vector leads to an increase in ∆W, since the elastic
energy of superdislocations increases in proportion to
B2 and the interaction energy between superdisloca-
tions and the misfit-stress field depends linearly on B.
However, at large values of the misfit parameter, when
misfit-stress relaxation becomes predominant, an
increase in the Burgers vector of a superdislocation
decreases ∆W.

The ∆W(B) dependence calculated from Eq. (16) at
various values of f and the system parameters given
above is shown in Fig. 3. The value of B was varied
from b to 5b. The plots in Fig. 3 exhibit a very strong
dependence of ∆W on the Burgers vector of superdislo-
cations. The maximum value of B at which the forma-
tion of a faceted boundary is still favorable as compared
to a symmetric tilt boundary is equal to 3b at realistic
values of the misfit parameter. Figure 4 shows the
dependence of ∆W on the film thickness for various val-
ues of the misfit parameter at B = b. These dependences
exhibit three possible types of behavior: (1) a faceted
boundary is energetically unfavorable over the whole

30

0.002
0

10

–10

–30

0.010 f0.006

B = 2b

B = b

∆W
, µ

 J

Fig. 2. Dependence of the difference ∆W between the ener-
gies of faceted and plane grain boundaries on the misfit
parameter f in a film H = 700 nm thick at various values of
the Burgers vector of superdislocations.
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thickness range (Fig. 1b), (2) a faceted boundary is
energetically favorable over the whole thickness range,
and (3) a faceted boundary is energetically unfavorable
in a thin film and becomes favorable at film thicknesses
greater than a certain critical value. The curve at f =
0.004 in Fig. 4 illustrates the third type of behavior. The
same curve is shown in Fig. 5 on a larger scale.

The plot in Fig. 6 shows the dependence of ∆W of the
angle α between facets (at f = 0.003, B = b, H ≅  700 nm).
Since both the elastic and relaxation terms in ∆W
depend on the angle between facets (the latter term van-
ishes at α = 180°), the ∆W(α) dependence exhibits a
minimum corresponding to the most favorable angle
between facets.

5. CONCLUSIONS

Thus, in this work, we have theoretically studied a
new mechanism of misfit-stress relaxation in polycrys-
talline films, namely, the formation of faceted grain
boundaries whose facets are asymmetric tilt bound-
aries. We have constructed a model to describe a fac-
eted grain boundary in a film placed on a semi-infinite
substrate in the presence of misfit stresses. Using this
model, we calculated the difference between the ener-

gies characterizing the states of the film with a faceted
boundary (Fig. 1b) and a symmetric tilt boundary (Fig.
1a). The parameters of the system that exhibit a signif-
icant effect on the formation of faceted grain bound-
aries in films are the misfit parameter, facet asymmetry
(which is characterized by the Burgers vector of a
superdislocation), film thickness, and the angle
between facets. Within the model proposed, the ranges
of the system parameters were found in which faceted
grain boundaries are energetically favorable. The
model agrees with the experimental data (see review
[21] and references therein) on faceted grain bound-
aries observed in superconducting films. The results
obtained within the model can be used to prepare poly-
crystalline films with a given (faceted or nonfaceted)
structure of grain boundaries, which significantly
affects the physical (in particular, superconducting [25,
26]) properties of films.
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