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Abstract. Role of disclinations and rotational modes of plastic deformation in fine-grained
materials is discussed. First, we consider disclination models of generation and development of
misorientation bands in severely deformed metals and alloys. The models predict the existence
of the critical external shear stress, above which nucleation of misorientation bands takes place.
The further analysis demonstrates two main regimes of misorientation band development: stable
and unstable propagation, and allows to find another critical stress that controls the transition
between these two regimes. We quote also some results of computer simulations of 2D dynamics
of dislocations in the stress field of a dipole of partial wedge disclinations to elucidate the
micromechanisms of misorientation band propagation. Second, theoretical models of grain
boundary disclination motion in fine-grained materials are considered. This motion leads to
changes in misorientations across the grain boundaries and may explain the rotation of grain
crystalline lattice as a whole. It is demonstrated that motion of grain boundary disclinations may
occur in fine-grained materials through emission of pairs of lattice dislocations into the adjacent
grains or through climb of grain boundary dislocations. We also consider a model of crossover
from grain boundary sliding to rotational deformation which is realized by the transformation of a
pile-up of gliding grain boundary dislocations stopped by a triple junction of grain boundaries,
into two walls of climbing grain boundary dislocations (treated as the dipoles of partial wedge
disclinations). The conditions necessary for such a transformation are determined and discussed.

INTRODUCTION

Appearance in the early 1980s of the first
nanocrystalline materials (NCMs) [1, 2] has stimu-
lated a great interest to disclinations as a powerfull
mean to describe the structure and mechanical
behavior of nano-objects. Geometric and elastic
properties of wedge disclinations were applied to
model the pentagonal symmetry and strained state
in nanoparticles [3-11], to explain the abnormal Hall-
Petch relation [12-17] and various grain-boundary
phenomena [8, 9, 11, 13-27] in NCMs, to study
possible ways of misfit-strain accommodation in
heterogeneous nano-layered structures [28-38], etc.

The aforementioned applications were based on
continual description of disclinations in the frame-
work of the classical theory of elasticity which al-
lows to obtain the solutions of various (sometimes
guite complicated) boundary-value problems for elas-

tic fields of disclinations localized in nano-volumes
(e.g., seereviews [8, 39-41] and original papers [4,
6, 42-49]). However, some components of these
fields are singular at the disclination lines, a fact
that limits the applicability of the classical theory to
consider situations where it is important to know
the strained state near disclination lines. This con-
cerns, for example, disclination models for grain
boundaries and their triple junctions in NCMs where
one deals with high-density ensembles of
disclinations.

To avoid this problem, in recent years much ef-
fort has been spent to describe both the wedge and
twist disclinations within non-classical theories such
as the nonlocal theory of elasticity [50, 51], gradi-
ent theory of elasticity [52-55] and gauge theory of
elastoplasticity [56, 57], all of which allow to dis-
pense with the classical singularities. By using the
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gradient solutions, the short-range elastic interac-
tions between disclinations in an infinite solid were
studied [52, 55], while the gauge solution gave non-
singular elastic fields for a wedge disclination placed
along the axis of a thin cylinder [56]. It is worth
noting that the non-classical solutions obtained
within these quite different theories, totally coincide.
Nevertheless, application of these new results to
the theory of mechanical behavior of NCMs is still
an open question.

Extensive investigations of structure, properties
and fabrication methods of NCMs which have been
carried out during last two decades (e.g., see re-
views [1, 2,9, 16, 17, 58-75], monographs [27, 76-
80] and collections of papers [81-93]), have shown
that NCMs qualitatively differ from conventional poly-
crystals. First, this concerns the structure of grain
(intercrystalline) boundaries whose thickness in
NCMs may achieve 1-2 nm. It means that the grain
boundaries (GBs) themselves are typical nano-ob-
jects — the layers of material which often has the
other atomic structure and sometimes is much more
porous than the material inside the grains (crystal-
lites). Comparison of different experimental data from
Mdssbauer spectroscopy [94], positron lifetime
spectroscopy [95, 96], X-ray diffraction [97], EXAFS
[98], neutron diffraction [99] and HREM [100] al-
lowed to conclude that a significant part of the GBs
in NCMs have severely distorted near-boundary re-
gions with smaller atomic density and higher level
of elastic strains [100]. For example, microstruc-
ture studies [100] of nanocrystalline palladium with
the grain size of 4-9 nm, which was fabricated by
high-pressure-compaction of nanocrystallites con-
densed from the gas phase, demonstrated that it
contains = 40 vol. % of undistorted crystalline ma-
terial, = 25% of stretched or amorphous-type GB
layers, = 25% of highly strained material, and = 10%
of pores. Inside the grains, they observed lamellae
of twins, low-angle boundaries and dislocations lo-
calized near the GBs. Under thermal annealing, this
system was transformed into a conventional poly-
crystalline structure with thin GBs and undistorted
grains.

Besides the GBs, their triple junctions play an
important role in the behavior of NCMs. Indeed, if
the mean grain size is of some nanometers and the
GB thickness equals 1-2 nm, then the volume frac-
tion of the triple junction material is very high (up to
50 % and even more) in such NCMs. In recent years,
it has been definitely recognized that triple junc-
tions of GBs have the structure and properties be-
ing different from those of the GBs that they adjoin
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[101]. From experimental data and theoretical mod-
els [18-20, 101-108] it follows that the triple junc-
tions act as enhanced diffusivity tubes, nuclei of the
second phase segregation, strengthening elements
and sources of lattice dislocations during plastic
deformation, and drag centers of GB migration dur-
ing re-crystallization processes. In particular, the
outstanding diffusional properties exhibited by NCMs
[79, 109-112] are viewed to be related to the effect
of the highly enhanced diffusion along triple junction
tubes [2].

These key features of NCMs (i.e., high density
of GBs and GB triple junctions with their generic
defects like GB dislocations and disclinations) which
mainly determine their mechanical properties, may
stimulate, under special conditions, the generation
and development of rotational mode of plastic flow.
This mainly concerns the NCMs fabricated under
highly non-equilibrium conditions like ball milling and
severe plastic deformation. In the present review we
consider different models of rotational plastic defor-
mation in nano- and polycrystalline materials. In the
first part of the paper we discuss disclination mod-
els for misorientation bands in severely deformed
metals and alloys. The models predict the exist-
ence of the critical external shear stress, above
which nucleation of misorientation bands takes
place. The further analysis demonstrates two main
regimes of misorientation band development: stable
and unstable propagation, and allows to find another
critical stress that controls the transition between
these two regimes. We quote also some results of
computer simulations of 2D dynamics of disloca-
tions in the stress field of a dipole of partial wedge
disclinations to elucidate the micromechanisms of
misorientation band propagation. The second part
of the paper is devoted to the theoretical models of
GB disclination motion which leads to changes in
misorientations across the GBs in NCMs and may
explain the rotation of nanograin crystalline lattice
as a whole. It is demonstrated that motion of GB
disclinations may occur in NCMs through emission
of pairs of lattice dislocations into the adjacent grains
or through climb of GB dislocations. We consider a
model of crossover from GB sliding to rotational
deformation which is realized by the transformation
of a pile-up of gliding GB dislocations stopped by a
triple junction of GBs, into two walls of climbing GB
dislocations (treated as the dipoles of partial wedge
disclinations). The conditions necessary for such a
transformation are determined and discussed.
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Fig. 1. Dislocation-disclination model of a misorientation band propagation with the velocity \V under the
action of external shear stress 1. The front of the misorientation band is modelled as a two-axes dipole of

partial wedge disclinations of strength *w.

2. GENERATION AND
DEVELOPMENT OF
MISORIENTATION BANDS

During the two last decades, the concept of
disclinations has been broadly applied to treat
mesoscopic substructures which are characteris-
tic for metals and alloys under large deformation (e.
g., see [8, 113-116] for a review). Misorientation
bands (MBs) represent one of the typical elements
of such substructures. They are observed as long
straight strips of material having a crystallographic
orientation different from that of neighbouring areas
of the material [8, 113, 115-125]. The boundaries of
such MBs (i.e., the misorientation boundaries) are
oftenillustrated as low-angle dislocation tilt bound-
aries, although they have a finite thickness of about
0.1-0.5 pm depending on the deformation magni-
tude [113], and consist in fact of high-density dislo-
cation arrangements. Works [123, 124] give a re-
view of experimental data on MBs and other differ-
ent rotational structures in various high-strength
materials including submicrocrystalline metals and
alloys. Based on these results as well as on recent
direct atomic-level observations of dipoles of partial
disclinations in mechanically milled, nanocrystalline
iron [126], one can assume the possibility of MB
generation in typical NCMs under large deforma-
tion.

The appearance and development of MBs repre-
sents one of the ways of rotational plastic flow in
heavily deformed metals. MBs were found at the
beginning of the 1960s in TEM experiments [117,
118] (see also [8, 114] for a review). In the 1970s
and 1980s, they were extensively studied and di-
rectly connected with the formation of specific dis-

location structures which may be described through
partial disclinations (see [8, 113-116] and references
therein). Indeed, the presence of two edges of the
misorientation boundaries which border the MB area,
allows to introduce a corresponding dipole of partial
disclinations whose strength is equal to the
misorientation angle characterizing the MB [127].
In Fig. 1, the edges of the tilt misorientation bound-
aries are shown as a two-axes dipole of partial wedge
disclinations of strength w. Such a disclination di-
pole is geometrically related to the MB parameters
through the equation [8], bp =b/I=2tan(w/2), for a
dislocation tilt boundary. Here b denotes the Burgers
vector magnitude of the dislocations composing the
boundary, pis their linear density along the bound-
ary, | is the interdislocation spacing, and w is the
angle of misorientation across the boundary. In the
case of small misorientation angles, w << 1, this
relationship is transformed into p =1/l = w/b. Also,
the width of the MB is equal to the arm 2a of the
disclination dipole (Fig. 1).

In 1978, Vladimirov and Romanov [127] proposed
a dislocation-disclination model to describe the
mechanism of MB propagation. The main idea of
the model is that the elastic stresses created by
the disclination dipole (Fig. 1), divide a statistically
arranged dislocation ensemble in front of the MB
into groups of “positive” and “negative” dislocations.
The terms, “positive” or “negative”, are caught by
the positive or negative disclinations, respectively.
Every event of capturing of a dislocation dipole by
the disclination dipole leads to an elementary act of
the MB conservative motion. The mechanism [127]
has been experimentally approved [8, 113] and used
in modeling the dislocation-disclination kinetics in
metals under large deformation [8, 114-116, 128-
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131]. However, there is a number of questions which
are still open. In particular, details of dislocation
capture by disclination dipoles are still unknown.
Moreover, computer simulations of elastic interac-
tions between partial disclinations and edge dislo-
cations [132] (see also Section 2.4 of the present
paper) have shown that the simple scheme (Fig. 1)
proposed in [127], can not provide complete descrip-
tion of MB propagation and has to be elucidated
further.

Generally speaking, the partial disclinations
which are used in describing MBs, are associated
by definition with terminated misorientation bound-
aries in otherwise perfect crystals [8]. The nature of
such boundaries as well as their atomic structure
may be quite different. They can be low angle dislo-
cation walls, high angle grain boundaries or twin
boundaries. Anyway, the boundary edges may be
described (both geometrically and elastically) as the
lines of partial disclinations of corresponding
strength. Therefore, the long-range elastic fields (far
from the misorientation boundaries themselves) of
displacement, strain and stress of a terminated
misorientation boundary may be calculated with the
help of well-developmed mathematics of wedge
disclinations within the classical [8, 133] or non-
classical [50-56] theories of elasticity.

Itis well documented [8, 113-116, 119, 123, 124]
that possible sites for MB generation in polycrys-
talline metals are various faults (defects) of GBs
including kinks, double and triple junctions of GBs.
In nanocrystalline solids, such GB faults often con-
tain disclinations, even in an initial as-sintered state
[8,9, 11-27, 126]. However, nowadays there is only
one theoretical work [125] containing the models
that allows to describe the MB generation and pre-
dicts appropriate critical conditions as well as re-
gimes of MB propagation. The well-known disloca-
tion-disclination model of MB propagation by
Vladimirov and Romanov [127] represents mainly
geometrical features and needs further development.

In paper [125] the models of initial disclination
configurations at GB kinks and junctions were pro-
posed. It was shown these initial configurations may
serve as sources for MB generation when the ap-
plied shear stress achieves a critical value. Further
development of the generated MB may be stable or
unstable, depending on the level of applied shear
stress. If this level is lower than another critical value,
the stable regime of MB propagation is realized, if
higher — unstable. For the case of stable propaga-
tion, an equilibrium length of the MB was introduced
and studied. All of these results were obtained in
the framework of a quasiequilibrium thermodynamic
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approach when only the necessary (not sufficient)
conditions for MB generation and propagation were
analyzed [125]. To obtain the sufficient conditions,
one should investigate the dynamics of these pro-
cesses which must be based on the dynamics of
complicated dislocation structures, first, at the place
of MB nucleation, and second, in front of the propa-
gating MB. In a general three-dimensional (3D) case
this problem is very hard. However, in a 2D model
case, when the lines of all dislocations and partial
disclinations are assumed to be straight and paral-
lel to each other, it can be solved by means of com-
puter simulation within coupled dislocation-
disclination dynamics [125, 132]. It is worth noting
that computer simulation and modeling of discrete
dislocation ensembles represent nowadays one of
the most popular topics in theoretical materials sci-
ence. Since the late 1980s, 2D and 3D calculations
of the dynamics of interacting dislocations have in-
tensively been developed (e.g., see reviews [134,
135] and some recent papers on 2D [136, 137] and
3D [138, 139] mesoscopic simulations). However,
no other attempts but [125, 132] have been known
to the authors, which would be aimed at a correct
simulation of dislocation-disclination ensembles. The
former computer models [114, 128-131] describing
the coupled evolutional kinetics of dislocations and
partial disclinations practically did not take into ac-
count the elastic interactions between them. In con-
trast, papers [125, 132] contain the first results of
2D computer simulation of the coupled dynamics of
partial disclnation dipoles and edge dislocations
aimed at studying peculiarities of elastic interac-
tion between these defects. These results were
assumed to be used further for checking and refin-
ing the existing theoretical (non-computer) models
of MB development. In the following Sections we
will consider the models presented in [125, 132] in
more detail.

2.1. Initial disclination configurations
at grain boundary junctions

Consider a simple scenario [125], shown schemati-
cally in Fig. 2, which may be applied to initial
disclination configuration formation at a GB. Let
some gliding dislocations with Burgers vectors 61
cross a flat GB (Fig. 2a) and move into the
neighbouring grain where the gliding dislocations
have Burgers vectors 52 (Fig.2b). As aresult, a wall
of difference dislocations having Burgers vectors
3b=b-b, and interdislocation spacing |, appears
at the crossing site together with the GB kink. On a
mesoscale level, when the characteristic scale of
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Fig. 2. A simple model of the formation of an initial grain boundary disclination dipole with the strength .

consideration L is much larger than |, the geometry
and resulting elastic fields for such a difference dis-
location wall may be effectively described as those
of a two-axes dipole of wedge partial disclinations
with strengths +w = £d b/l [8, 133] (Fig.2c).

Such a simple scheme of GB disclination dipole
formation is possible to occur in NCMs with relatively
large grains which are capable to deform by usual
glide of lattice dislocations. This may concern, for
example, both the micro- and nanocrystalline met-
als and alloys fabricated by intensive plastic defor-
mation [23, 25, 27, 126, 140]. In areal conventional

-0 +a +a
+a
-0 -0
b -p
+0
+0 +h +p
a+f=F+ow a+f=0 a+f+0=0

Fig. 3. More realistic models of the formation of
initial grain boundary quadrupole-like disclination
configurations.

polycrystalline material, the initial disclination con-
figurations at GBs result from more complicated
processes which are typical for the stage when
translational deformation modes are replaced by
rotational ones [8, 113]. It is well established [113]
that in the vicinity of GB kinks or junctions, the dis-
location cells have smaller size than far from such
sites as is illustrated schematically in Fig.3a [125].
This means that within these areas, the density of
GB difference dislocations must be much higher than
at straight or smooth segments of GBs. As a corol-
lary, one can assume the formation of initial qua-
drupole-like disclination configurations at GB kinks
or junctions. In Fig. 3b, three possible quadrupole-
like disclination configurations are shown where a,
B, w and 6 denote the disclination strengths. For
simplicity, to catch mostly qualitative features and
make rough estimates, the authors [125] consid-
ered only wedge partial disclinations. It is worth
noting that the sum strength of any such disclination
configuration must be equal to zero or, in other words,
the sum strength of positive disclinations must be
equal to that of negative disclinations within a GB
disclination configuration (Fig.3b).

2.2. Generation of misorientation
bands

2.2.1. Splitting of an initial GB disclination
dipole

Consider the simplest initial GB disclination con-
figuration that is a GB disclination dipole (Fig.4a)
[125]. Let this dipole be under an external shear
stress 1. It is also assumed that around the dipole
is typical dislocation-cell structure. Under the ac-
tion of the internal shear stress (which is caused by
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Fig. 4. Generation of a misorientation band by splitting of an initial grain boundary disclination dipole.

the GB disclination dipole) and external shear stress
1, the dislocations from the cell boundaries nearest
to the disclinations have to glide to them thus form-
ing two dislocation walls, i.e., a new disclination
configuration (Fig.4b) [125]. The latter may be con-
sidered as produced by splitting of the initial GB
disclination dipole. This new split configuration is
characterized by the split distance d, the
interdislocation spacing |, the dipole arm 2a and
the disclination strengths +a and £[3 satisfying the
relationships B = b/l and w=a + 3, where b is the
module of Burgers vector for lattice dislocations and
wis the initial strength of the dipole. In fact, the new
split disclination configuration represents a model
for a MB of finite length which consists of a new
immobile GB disclination dipole having the strength
a (a-dipole), a new mobile disclination dipole with
the strength B (B-dipole), and two misorientation
boundaries of the length d.

To make possible the transition from the initial
GB disclination dipole to the new split configura-
tion, the total energy of the initial dipole must be
larger than that of the new split configuration. Thus,
to find critical conditions for such a transition, one
has to calculate and compare these energies.

The total energy of the initial GB disclination di-
pole may be calculated as the work necessary to
generate this dipole in its proper elastic stress field
[8]. As a result, the energy per unit length of
disclinations reads

R
W, = szaz(ZInz— +1), (1)
a

where D=G/[21(1-V)], G is the shear modulus, v is
the Poisson ratio, and R is a characteristic param-

eter of screening of the disclination long-range elas-
tic fields (e.qg., the size of a sample).

The total energy of the new split configuration
(per unit length of disclinations) was written in [125]
as the following sum

W, =W, +W, +W,_ +2yd -A, (2)

where W_and W, are the elastic energies of a- and
B-dipoles (Fig.4b), respectively, W, is the energy of
their interaction, ythe effective surface energy of the
two new misorientation boundaries, and A the work
by the external shear stress T on the displacement d
of the mobile B-dipole. The terms W, and W are similar
to that given by Eqg. 1 with the replacement of whby a
and 3, respectively. The energy of the dipole-dipole
interaction W, was calculated as the work during
the generation of one dipole in the stress field of an-
other dipole, thus resulting in [125]

W, , = 2Dapa’

2 2 2 2
(InZRZ— dzln‘mjd+l} (3)

4a” +d 4a d
The work A was found in a similar way that gave
A=2tBad.

To estimate vy, the authors [125] used the well-
known approximation for the energy of a dislocation
core [141] W_= Db?/2. Due to geometric reasons
[141], the linear density of “geometrically-necessary”
dislocations [142] P, within a misorientation bound-
ary is equal to 3/b. However, it was necessary also
to take into account the density of “statistically-
stored” dislocations [142] which have different ori-
entations of their Burgers vectors and do not create
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Fig. 5. Energy difference AW via the normalized
misorientation band length d (a, b) and critical shear
stress 1,/D via the normalized grain boundary
disclination dipole strength a (c) for the model of a
misorientation band being generated at a grain
boundary disclination dipole. The plots AW(J) are
given for the external shear stress 1/D=0, 0.001,
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two different values of the parameter g=1 (a) and 10
(b). The plots 1,(a)/D are shown for the initial di-
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any additional misorientation but give theirincome
into the effective surface energy of the boundary.
Let the total dislocation density within the
misorientation boundaries p=qp,, whereqz1lisa
dimensionless parameter which accounts the pres-
ence of “statistically-stored” dislocations. Hence,
the number of dislocation cores, N, within a
misorientation boundary is estimated as N = pd =
gBd/b and the total core energy of a misorientation
boundary is NW_= gDBbd/2. Thus, the approxima-
tion y=NW _/d = qDBb/2 was found [125].

Let us consider now the energy difference [125]

~ ~ T
AW =W, -W, = DBa2{4d(qb —) -
D

~ . 4
20[(1+d?)In(1+d*) -d* Ind”] } @

where the dimensionless quantities d =d/2a and
b =b/2a were introduced. The dependence of AW
on the normalized displacement dis givenin Fig. 5
for b =103, a =17200, and different values of the
external shear stress T and parameter g [125]. De-
pending on T and g, the character of the curves
AW((SI~ ) changes drastically from monotonous de-
creasing (Fig. 5a) to non-monotonous one (Fig. 5b).
In the first case, when g=1 while T and d are small
enough (here 0 < 1<0.007D and oT<1), AW<O for
d >0. This means there is no energy barrier for the
generation of a MB. In the second case, when g=10
with the same values of tand d , AW >0 for d <d_,
where d is determined by the equation
AW(d =d, ) 0, and AW<O for d >d This means
there is an energy barrier for the forma’uon ofaMB
under such a small 1. Following [125], let us intro-
duce a characteristic critical value T, which is de-
termined by the equation d =7, where 7=l/2a is
the normalized spacing between the “geometrically-
necessary” dislocations creating the tilt misorien-
tation angle B. If t <t,, the generation of a MB
nucleus (an initial GB disclination dipole plus one
dislocation dipole joined to this dipole and localized
at the distance / from it) is energetically
unfavourable; if T > T, it i.i favourable. For the situa-
tion illustrated in Fig.5b, / = 0.1 was assumed and
hence 1,~0.005D for g=10.

smg Eq. 4, one can analytically estimate t_ for
the case d <<1 as follows [125]

oafa-o(Eonite])
¢ a2 sl (5)
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Fig. 6. Model of misorientation band generation by
splitting of an initial quadrupole-like disclination con-
figuration at a grain boundary kink.

where d =a/w. The plots 1 (G) are shown in Fig.5¢
for g=10 and various values of the initial dipole
strength w [125]. One can conclude that T, de-
creases when both 0 and wincrease that is in ac-
cordance with physical intuition. When g=10, the
numerical estimate for T, gives the values of order
G/1000-G/400. The lower limit fits well with typical
external stresses at the end of Stage Il of deforma-
tion curves for BCC and FCC metals [113], while
the upper limit corresponds to the level of deforming
stress observed in NCMs [16, 17, 78].

2.2.2. Splitting of an initial quadrupole-like
disclination structure at a GB kink
Consider now a model which seems to be more
realistic than the previous one. Itis a GB kink with
a quadrupole-like disclination structure (Fig.6) [125].
This configuration is characterized by the disclination
strengths -a, +y, -wand +08 which satisfy the equa-
tion: a + w =y + 6. As a result of the dislocation
rearrangements which are suggested similar to
those considered above, the quadrupole-like
disclination structure issues a mobile two-axes di-
pole of partial wedge disclinations having the
strengths =3 and moving under the action of the
GB disclination stress field as well as an external
shear stress 1 (Fig. 6) [125]. In a special simple
case, the new split configuration was suggested to
consist of three two-axes disclination dipoles, one
mobile (B-dipole) and two immobile (a- and 8-dipole).
Again, to find critical conditions for such a splitting
transformation, the total energy, W,, of the initial
quadrupole-like disclination structure and that, W,
of the new split configuration were compared.

The energy difference AW=W _-W, was calcu-
lated as shown above and resulted in [125]
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AW = DBa2{4a (qﬁ —T) -
D

(a+6)[(1+d*)In(+d*) -d”Ind"] ©)

+aW(X,, 7, d) -0W(X,.7,.d) }
where

W(x,y,z) = <(x" +y°)In(x* +y*) +

[x2 +(y —1)2]In|:x2 +(y —1)2] +

[(x-2)" +y*]in(x -2)* +y?] - (7)
[(x-2)" +(y -0 Jin[(x -2)" +(y -2)°].

X =x/2aand y, =y/2a,i=1,2.

The curves AW(d ) are given in Fig.7 for b=10%,
o =1200, 8="17300, X,= -X, =y, = -1, ¥,=2 and
different values of T and q [125]. Depending on T
and q, the curves AW(J) behave in quite different
manners. When q < 5 (e.g., see Fig.7a for g=1),
they are similar to those considered in the previous
section. When q = 7 (e.g., see Fig. 7b for q=10),
some of them increase monotonously. One can
conclude that for the given values of the parameters,
the critical external shear stress T, is higher than
for the case of GB disclination dipole splitting (Sec-
tion 2.2.1).

Introducmg (6) with (7) into the equation
AW(d 7)=0, ford << 1 the authors [125] obtained

where @ =a/wand 6 =6/w. Three-dimensional plots
(@, é;) are shown in Fig. 7c for =10, X,= -X, =,
= -1, y,=2 and two values of the initial strength w
=0a +f+6, w=0.01and 0.05[125]. Itis seen thatT

decreaseswhen @, 6 and wincrease; that is agaln
in accordance W|th intuition. When g=10, the nu-
merical estimate for T,gave again the values of or-
der G/1000-G/400.
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Fig. 7. Energy difference AW via the normalized
misorientation band length d (a, b) and critical shear
stress 1./D via the normalized grain boundary
disclination dipole strengths @ and 6 (c) for the
model of a misorientation band being issued by a
guadrupole-like disclination configuration localized
at a grain boundary kink. The plots AW(d~) are given
for the external shear stress 1/D=0, 0.001, 0.003,
0.005, and 0.007 (from top to bottom) for the two
different values of the parameter g=1 (a) and 10 (b).
The plots Tg(&,@)/D are shown for the initial
disclination strength «w=0.01 (the upper surface) and
0.05 (the lower surface).

2.2.3. Splitting of an initial quadrupole-like
disclination structure at a GB triple junction
Another more realistic model is a GB triple junction
with a quadrupole-like disclination structure of the
geometry shown in Fig.8 with d=0 [125]. Again this
disclination configuration issues a mobile two-axes
dipole of partial wedge disclinations having the
strengths =3 and moving under the action of the GB
disclination stress field as well as external shear
stress T. The new split configuration was suggested
to consist of four two-axes disclination dipoles, one
mobile (B-dipole) and three immobile (a-, 8- and y-
dipole). These three immobile dipoles are formed by
the “central” negative triple-junction disclination hav-
ing the strength -w and three positive disclinations
having the strengths +a, +8 and +yand localized at
the joined GBs. The relation w=a + 0 + ymust be
valid.

The procedure of calculation of the difference in
the total energies of the initial quadrupole-like
disclination structure and new split configuration is
absolutely similar to that described in Section 2.2.1.
The final result is [125]

AW = Dsa2{4(f (qE —T) -
D

(20 +8 +y)[(1+d*)In(L+d”) -d”Ind?] ©)

_ew(iﬂyl’a) - W(iz’ S;z'a) }’

where the W-function is given by (7). The depen-
dences AW(J) are plotten in Fig.9 for b=103, a =1v
300, 6=17100, y=1200, X,= -X,=y, =Yy,=-1, and
different values of T and q [125]. This set of param-
eters gives the curves which are very similar to those
considered in Section 2.2.1 (Fig.5) with the close
values for the critical external stress T when q = 5.
In comparing these plots with those in Fig.7, one
can conclude that both AW(J) and T, depend on
the concrete arrangement of the disclinations within
the initial quadrupole-like disclination structure.

The substitution of (9) with (7) into the equation
AW(d =7)=0 gives for d << 1 the following result
[125]

T, - b(23 +8 +7) b/Q
—2 =hq- ———|1-2In—7+—— |-
D 4(1-a -6 -Y) 1-a-6-y
o~ O = [ ~ b/Q
(1-a-6-y)—=<6¥| x,y,,d =———— |+
4 1-a-06-y
. b/Q
W[Xz’ z’d: ~ T ~)}’
1-a-6 -y (10)
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Fig. 8. Model of misorientation band generation by
splitting of an initial quadrupole-like disclination con-
figuration at a triple junction of grain boundaries.
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Fig. 9. Energy difference AW via the normalized
length d of a misorientation band being issued by a
quadrupole-like disclination configuration localized
at a triple junction of grain boundaries under the
external shear /D=0, 0.001, 0.003, 0.005, and 0.007
(from top to bottom) for the two different values of
the parameter g=1 (a) and 10 (b).

M.Yu. Gutkin and I.A. Ovid'ko

where 0=0/Q, 8=0/Q, y=y/Q, and Q = a+p+8+y
is the strength of the initial quadrupole-like
disclination structure.

Using formula (10), the authors [125] investigated
three-dimensional plots Tg('d ,0) for different constant
values of y, rg('o?, y ) for those of 8, and Tg(é ' Y)
for those of d at the following parameter values: =5,
X, =-X, =y, =Y,= -1, and two values of the initial
disclination strength Q. All the plots turned out to be
very similar to those shown in Fig.7c and hence we
do not represent them here. They demonstrated that
1, decreases when @, 8, § and Q increase [125].
When g=5 - 10, the numerical estimate for T, gave
again values of the order G/1000-G/400.

2.3. Regimes of misorientation band
propagation

In the previous sections, we have considered three
different models of MB generation by using and
analysing energy expressions (4), (6) and (9) for
the limit of d << 1. To study further propagation of
MBs, the authors [125] used the same expressions
but for d > 1. Consider again the simplest model,
i.e., the splitting of an initial GB disclination dipole
(see Section 2.2.1, Fig.4).

The characteristic example of graphical repre-
sentation of Eq. 4 for the case d=1is given in
Fig.10 for a =17200, b = 10®, g = 3, and different
values of the external shear stress 1 [125]. Depend-
ing on the value of 1, the curves AW(OT) behave in
different ways. When t is smaller than some limit-
ing quantity T, (e.g., 1,~0.003D for g=3), the curves
AW(d) are non-monotonous and achieve their
minima, which determine equilibrium values of the
MB length d~eq -When1>1 , the curves AW(d~) goes
with monotonous decrease and d_, is absent.

To find an analytical estimate for T, 0ne can solve
the equation AW(1)=0 for the limiting case d - «
that gives [125]

1, = Dgb. (11)

Obviously this provides the linear relation between
T, and g, where g characterizes the effective sur-
face energy of the misorientation boundaries.

The equilibrium length d~eq is found from the stan-

2

>0and d >1. The

. 0AW ]
dard equation —=—=0with ——~;
od ad

final result reads [125]

~ a

de =, 12
“ gb-1/D (12)
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Fig. 10. Energy difference AW via the normalized
length d of a misorientation band being generated
at a grain boundary disclination dipole and propa-
gating far from it under the external shear stress
1/D=0, 0.001, 0.003, 0.005, and 0.007 (from top to
bottom) for the parameter g=3.

where <T. The dependence of Jeq on T is illus-
trated in Fig. 11 for a=17200, b = 103, and different
g. One can see that cTeq increases with increasing t
and decreasing g.

It was thus shown in [125] that depending on
the external shear stress 1, two main regimes of
MB propagation are possible: stable and unstable
propagation. When 1<t , the MB propagation is
stable and may be characterized by the equilibrium
length Jeq. When T, the MB propagation is un-
stable and there is no equilibrium length. In reality,
this means that the MB will propagate until it meets
an obstacle like a GB or another MB (or some other
defect configurations playing the role of obstacles)
in which case the question of its further propagation
must be considered again.

2.4. Computer simulation of
dislocation-disclination
interactions

To check and refine the models of MB propagation
through an ensemble of edge dislocations as well
as to calculate some important parameters of dis-
location-disclination interactions (e.g., the effective
length of dislocation capturing by a disclination di-
pole; this length was treated as the distance from a
partial disclination line at which the corresponding

d 504

=
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Fig. 11. Normalized equilibrium length, d~eq, of a
misorientation band via the external shear stress
1/D for the different values of the parameter =1, 3,
5, 7, and 10 (from top to bottom).

edge dislocation must be stopped to provide the
conservative motion “ahead” of the partial
disclination), the method of 2D dislocation-
disclination dynamics was used in [132]. This ap-
proach and some results were also quoted in [125].

The computer code objects were straight edge
dislocations and straight wedge disclinations which
could move within a two-dimensional rectangular box
of an infinite elastically isotropic medium (Fig.12).
Periodic boundary conditions were realized. The box
sizes was chosen as 1x1 mm?2 The defect lines
were normal to the box plane. The dislocations were
characterized by their Burgers vectors b _or by, co-
ordinates (x®,y®) and velocities(x ", y "), where i=1

. n and n is the number of dislocations. All
disclinations were arranged in dipole configurations
which were assumed to be immobile and consid-
ered as sources of elastic fields. The dipoles were
characterized by their strengths w?, by the size
and orientation of their arms and by the coordinates
of the arm central points (X9,Y®), wherej=1... N
and N is the number of disclination dipoles.

In such a computer model [132], the disloca-
tions can move by gliding or climbing under the ac-
tion of the total force due to external loading, elas-
tic fields of other defects and dynamic friction. The
dislocation dynamics is than ruled by Newton’s law
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Fig. 12. 2D box for computer simulation of dislocation-disclination ensemble. The parameter | _denotes the
length of dislocation capturing by the disclination dipole.

m®x® = g®

x 1

(13)

m(i)y(i) - F(i), (14)

y

where m@ is the effective mass of the i-th disloca-
tion, X and y* are the x- and y-components of its
acceleration, respectively. The p-component (p=x.y)
of the resulting force on the i-th dislocation, F 9, is
assumed to be a superposition

(i) _ (=def(i) fr(i) ext(i)
FY=F""+F"™ +F (15)
with £ =e_ 0,’b’s"’ being the elastic force
due to all other defects, F"” = ~1(v)b{’ the dy-
namic friction force, and F™ = 1™b” the external

driving force. Here e denotes the permutation sym-
bol, ¢! is the resulting elastic stress due to all
other defects that is measured at the point where
the ith dislocation is located, b’ is the k-compo-
nent of its Burgers vector, and s(m” is the m-compo-
nent of the unit vector tangent to the dislocation
line. All indexes p, m, | and k may denote x- or y-
components. The shear stress 1(v) characterizes
the crystalline lattice friction and depends on the
dislocation velocity v. The external stress 1%is cre-
ated by an external load applied to the solid.
Giving the initial coordinates and velocities of
every defect, the system of motion equations (13)-
(14) with (15) was solved numerically and the de-
pendences of the coordinates x, y and the velocity
components v, and v, on the time t were found.

The above approach was used to consider the
elastic interaction of a gliding edge dislocation with
a two-axes wedge disclination dipole in pure cop-
per [132]. The module of the Burgers vector was
taken as b, =0.256 nm, and hence the correspond-
ing dislocation mass (per unit length of the disloca-
tion) follows as m=pb %2 =1.4-10°kg-m™ (see [143],
p.73). The position of a disclination dipole was fixed
at the central point (X=500 pm, Y=500 pum) of the
simulation box. In obtaining the following results,
the force F:Xt was neglected to catch the main fea-
tures of elastic dislocation-disclination interactions
as they are. The elastic force F =0, b, was calcu-
lated with the disclination elastic stress field o,
taken from [8]. The dynamic friction force Fpfr was
taken as F'(t)=-Bv(t), where B =1.7-10°Pa's that
is characteristic for pure copper [144] (see also
[143], p.76).

Some typical situations were studied for differ-
ent orientations of the dipole arm, initial positions
and velocities of the dislocation [125, 132]. It was
shown that the dislocation behavior may strongly
vary depending on the problem parameters. How-
ever, it is ruled mainly by the elastic stress field of
the disclination dipole.

For example, consider a disclination dipole hav-
ing the strength w=0.01 and the arm 2a = 100 nm.
Let the dislocation move with the initial velocity
v,=0.01 m s* quite far from the disclination dipole in
the manner shown in Fig. 13 [125, 132]. The corre-
sponding plots for the dislocation coordinate x(t)

(dashed line) and velocity v(t)=x (t) (solid line) are



Disclinations and rotational deformation in nanocrystalline materials 91

X L= v (m
M) oo — 150 ™)
b, |
499,51 H 100
/
’ WY 2q . +wW
R a 50
490,04+~ <— S 4 >
T T T T T T 0
0 50 100 150 200 250 300 350
a t(ns)
i g 3:/ 2 gesm

Fig. 13. Accelerated glide of an edge dislocation
along the arm of a disclination dipole. The dashed
and solid curves in plot (a) represent the dislocation
position x(t) and velocity v(t), respectively, when the
dislocation glides in the field of the dipole positive
long-range shear stress o, (b). The calculations have
been carried out for the following values of param-
eters: w=0.01, b, =0.256 nm, 2a=100 nm, s=1000
nm, | =1100 nm, x,=499 um, and v,=0.01 m-s™.

given in Fig.13a. In Fig.13b, the distribution of the
dipole shear stress a,, in units of Dwis shown. The
empty and black circles schematically denote in
Fig.13b the initial and final dislocation positions,
respectively. In fact, the dislocation starts to glide
being under the action of positive shear stress g, of
the disclination dipole (the initial dislocation posi-
tion is at the upper left corner in Fig.13b). As a re-
sult, the dislocation glides with an acceleration and
its velocity becomes very high when it passes over
the disclination dipole (Fig.13a), in the field of stron-
gest disclination stresses (the upper central region
in Fig.13b). At the same time, the friction force also
achieves it maximum value. Therefore, when the
dislocation has passed the region of maximum
stress values over the dipole, its velocity starts to
decrease fast. As a result, the dislocation moves
away from the dipole with a negative acceleration
until the point where the dipole stress turns to zero
(the upper right region in Fig.13b). One can see there
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Fig. 14. Accelerated glide of an edge dislocation
along the arm of a disclination dipole and capturing
of the dislocation by the dipole. The dashed and
solid curves in plot (a) represent the dislocation
position x(t) and velocity v(t), respectively, when the
dislocation glides in the field of the dipole positive
short-range shear stress o, (b). The calculations
have been carried out for the following values of pa-
rameters: w=0.001, b =0.256 nm, 2a=100 nm, s=50
nm, | =1nm, Xx,=500.05 um, and v =0.

is no effect of dislocation capturing by the
disclination dipole in this case.

The question arises: what are the problem con-
ditions at which the dislocation capturing by the
disclination dipole would be possible for a given
defect configuration? The calculations [125, 132]
demonstrated that the dislocation capturing is only
possible when its initial position is just over the cen-
ter of the disclination dipole, at a very small dis-
tance of it, and the disclination strength is very small.
Thus, let the dislocation begin its motion just near
the disclination dipole having the ten times lower
strength w=0.001 and the same arm (Fig.14). The
dislocation is accelerated from v =0 within the re-
gion of the relatively higher positive shear stresses
of the dipole (the initial dislocation position is at the
central part of Fig.14b) and stopped after at the zero-
value stress contour above the dipole, just near the
positive disclination (see Fig.14b). This means that
the disclination dipole has captured the dislocation.
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However, the capturing occurs at very small dis-
tances from the dipole only. This distance (here | =1
nm) is much smaller than the spacing|_=b /w=256
nm between dislocations in the low-angle tilt walls
whose edges are described by the disclination di-
pole (see Fig.12). Therefore, such a small capturing
length can not provide the mechanism of conserva-
tive motion of a disclination dipole in direction nor-
mal to its arm by capturing or issuing edge disloca-
tions.

The computer simulations [125, 132] show that
the dynamics of the edge dislocation is totally ruled
by the elastic field of the disclination dipole. The
dislocation is accelerated when it appears in the
region of increasing disclination stress, while fur-
ther, when this field decreases, the dislocation is
hampered by the force of dynamic friction and al-
ways stopped at the line of zero-level disclination
shear stress. Thus, the dislocation behavior is de-
termined by its initial position with respect to the
disclination dipole and does not depend, in fact, on
its initial velocity (at least for those velocity values
which were used in simulations). The computer
model [125, 132] approved that the two-axes dipole
of wedge disclinations can move conservatively along
the direction parallel to the dipole arm by means of
capturing edge dislocations. However, the dipole
motion along the normal to its arm cannot be ex-
plained correctly within the existing theoretical mod-
els and needs further investigation.

Based on the results of the theoretical models
for MB generation and propagation considered in
Section 2, one can make the following conclusions.

Disclination models of MB generation at GB
faults like kinks and GB junctions predict the
existence of a critical external shear stress T
which is necessary for the MB generation events
take place. The numerical estimate for the criti-
cal stress gives values of the order G/1000-G/
400; the lower limit is in a good accordance with
typical external stresses at the end of Stage Il of
deformation curves for conventional polycrystal-
line BCC and FCC metals, while the upper limit
corresponds to the level of deforming stress ob-
served in NCMs.

The critical shear stress T, depends strongly on

the geometry and strengths of initial GB

disclination configurations, on the misorientation
angle as well as on the effective surface energy
of arising misorientation boundaries. Itincreases
when the initial disclination strength decreases
and the misorientation angle increases. The criti-
cal stress varies in direct proportion to the effec-
tive surface energy of misorientation boundaries.

M.Yu. Gutkin and I.A. Ovid'ko

Disclination models of MB propagation predict
the existence of a limiting external shear stress
T, which separates two main regimes of MB
propagation: stable and unstable propagation.
When the external stress is lower than the limit-
ing stress, the MB propagation is stable and may
be characterized by the equilibrium MB length
which increases when the external stress in-
creases and the effective surface energy of
misorientation boundaries decreases. If the ex-
ternal stress is higher than the limiting stress,
the MB propagation is unstable. The limiting
external stress varies in direct proportion to the
effective surface energy of misorientation bound-
aries.

Computer simulations by means of a 2D dislo-
cation-disclination dynamics code have shown
that the existing models of the disclination di-
pole motion must be reconsidered with taking
into account the conclusion that the disclination
dipole cannot move concervatively along the nor-
mal to its arm by capturing edge dislocations.

3. MOTION OF GRAIN BOUNDARY
DISCLINATIONS

Transformations of GBs often strongly influence both
the structure and the properties of polycrystalline
and nanocrystalline materials, e.g. [8, 20, 26, 74,
75,78,107,114, 145-173]. In particular, changes of
misorientation parameters of GBs, that are capable
of resulting in grain rotations, have been experimen-
tally detected in polycrystalline and nanocrystalline
materials under (super)plastic deformation (see, e.g.
[152-156]). Ke et al. [168, 169] observed in situ that
plastic deformation of nanocrystalline gold films with
the grain size d<25 nm occured through GB sliding
and grain rotation near the tips of opening cracks.
Noskova et al. [170-172] have also reported about
in situ TEM observation of GB sliding and grain ro-
tation in nanocrystalline pure metals (Cu, Niand Ti
with grain size d=20-40 nm) and Fe_, .Cu,Nb,Si . .B,
alloy (with grain size d = 10 nm) under active unidi-
rectional tension with strain rate 10 s2. It is impor-
tant that rotation of grains does not always need to
apply an external mechanical load. Sometimesiitis
enough to carry out a special thermal treatment.
For example, grain rotations have been observed
experimentally in thin films of gold under thermal
treatment [173].

According to contemporary theoretical represen-
tations of GBs, changes of their misorientation pa-
rameters occur via motion of GB disclinations [8,
26, 174]. Such disclinations are intensively gener-
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ated in polycrystals and NCMs under highly
nonequilibrium conditions of their fabrication. These
conditions are typical for the technologies of inten-
sive plastic deformation and ball milling that give
submicro- and nanostructured materials with
nonequilibrium GBs containing GB and triple junc-
tion disclinations [23, 25, 27, 126, 140] (see also
Section 2). It is quite natural that in such NCMs,
like in conventional polycrystals under large defor-
mation, the processes of rotational deformation are
assumed to be realized by means of concervative
motion of disclination dipoles [125, 175-177].

Motion of GB disclinations in plastically deformed
materials is commonly treated as that associated
with absorption of lattice dislocations (that are gen-
erated and move in grains under the action of me-
chanical load) by GBs [8, 156]. This micromecha-
nism, according to paper [156], is responsible for
experimentally observed grain rotations in fine-
grained materials during (super)plastic deformation.
However, the consequent motion of a GB disclination
along a GB requires processes of the dislocation
absorption to be well ordered in space and time. In
particular, lattice dislocations with certain Burgers
vectors have to reach the GB in only vicinity of the
disclination that moves along the boundary due to
acts of absorption of these dislocations. This is in
an evident contradiction with the fact that sources
of lattice dislocations in plastically deformed mate-
rials are commonly distributed in a rather irregular
way within a grain and, therefore, are not capable of
providing the regular flow of dislocations to the
disclination moving along a GB. Moreover, in the
situation with grain rotations in thin films of gold
under thermal treatment [173], absorption of lattice
dislocations by GBs hardly plays an important role
in changes of GB misorientation parameters, be-
cause the dislocation density in grain interiors is
too low to cause grain rotations.

Based on these conclusions, the alternative theo-
retical models [176-179] have been proposed. These
models have used the idea that GB disclinations
can move along GBs due to emission (in contrast
to absorption [156]) of lattice dislocations from GBs
into adjacent grain interiors. It has also been as-
sumed that the GB disclinations are patrtial, i.e. they
may be represented as ragged walls of edge dislo-
cations [8, 133] (this assumption is always valid in
practice), and accordingly wedge in nature. In this
case, a GB disclination can emit a pair of edge lat-
tice dislocations with the Burgers vectors corre-
sponding to the glide systems in the adjacent grains.
The sum of these lattice Burgers vectors are sup-
posed to be equal to the Burgers vector of a GB
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Fig. 15. Grain boundary disclination (black triangle)
separates boundary fragments characterized by dif-
ferentvalues, 8, and 6,, of tilt misorientation.

dislocation from the ragged wall (strictly speaking,
this condition is not necessary and has been taken
for the sake of simplicity; one could also include
into consideration a difference GB dislocation whose
Burgers vector would compensate a possible dis-
parity). The emission of dislocation pairs permits
the GB disclination to move conservatively along
the GB, and the events of dislocation emission are
determined by the conditions at the GB disclination.
We consider below the main results of the models
[176-179] which describe the rotational mode of plas-
tic deformation in fine-grained materials as that which
is realized through conservative motion of dipoles of
GB disclinations emitting pairs of lattice disloca-
tions.

3.1. Changes in grain boundary
misorientation

Following the theory of GBs, two fragments of a GB
that are characterized by different values of tilt
misorientation parameter are divided by the line of a
GB disclination [8, 26, 114, 174]. More precisely,
the line that separates the two boundary fragments
with tilt misorientation parameters 6, and 6,, respec-
tively, is described as the line of a GB wedge
disclination with strength w=6,-6, (Fig.15). In the
framework of the discussed representations, evolu-
tion (in time) of tilt misorientation along GBs is
treated as that related to the motion of GB
disclinations.

In the framework of the model [178, 179], an el-
ementary act of transfer (by distance I) of a GB
disclination with strength w is accompanied by
emission of two lattice dislocations with Burgers
vectors 61 and 62 from the GB into the adjacent
grains | and Il, respectively (Fig.16). The disclination
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Grain Il Grain |

Fig. 16. Displacement of the wedge disclination
(black triangle) with the strength w from its initial
position (dashed triangle) by the distance | is ac-
companied by the emission of two lattice dislo-
cations with Burgers vectors b _and b,. The -
disclination moves along the grain boundary plane
(which is perpendicular to the figure plane and inter-
sects it along the y-axis) towards another disclination
(white triangle) with the strength -w. The x-axis is
normal to the grain boundary plane. The x,y, and
X,y, coordinate systems are associated with the
gliding planes of emitted dislocations. @, and @, are
the angles between the normal to the grain bound-
ary plane and the gliding planes of respectively the
first and the second dislocations. 1, and 1, are the
shear stresses acting along the gliding planes of
the first and second dislocation, respectively. L and
L, are the distances between the disclinations be-
fore and after displacement of the w-disclination.

with strength wcan be treated as that terminating a
ragged wall of periodically spaced GB dislocations
with identical Burgers vectors b and spacing (pe-
riod) |. This dislocation representation is relevant to
both small- and large-angle GBs with GB disloca-
tions having a “large” crystal lattice Burgers vector
in the case of small-angle GBs and a “small” DSC-
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lattice Burgers vector in the case of large-angle GBs
[146, 180]. With the spacing | between such dislo-
cations assumed to be the distance of an elemen-
tary transfer of the disclination, Burgers vectors of
the GB dislocations and strength w of the GB
disclination obey the equations: b, + b, = b and
|b |=b = lw. From the former equation, one finds that
the Burgers vector magnitude b is in the following
relationship with the magnitudes, b, and b,, of
Burgers vectors of the emitted dislocations:

b2
b=Db,|cosq +b—cosq)2 =

b sin(@, + @) (16)

sing,

where @, and @, are the angles between the normal
to the GB plane and the gliding planes of the re-
spectively first and second emitted lattice disloca-
tions (Fig.16). Notice that b < b,, b, in the case of
large-angle GBs (containing dislocations with DSC-
lattice Burgers vectors).

The consequent emission of lattice dislocation
pairs (Fig.16) causes change of GB misorientation
along large fragments of the GB plane. This pro-
cess is capable of giving rise to the rotation of a
grain as a whole.

The above model is approximate. First, the au-
thors [178, 179] have restricted their consideration
to the z-independent situation with a disclination
dipole at a tilt boundary characterized by two mac-
roscopic geometric parameters, the angles ¢, and
@, (Fig.16). However, tilt boundaries which are ef-
fectively described in terms of disclinations [8], rep-
resent the most widespread type of GBs in real ma-
terials, in which case this model covers most real
GBs. Second, the choice of the disclination dipole
as a subject of the theoretical analysis (addressed
the GB disclination motion) in this model has been
related to the two following aspects: (i) the long-
range stress field of the moving disclination should
be screened, and (ii) there is an experimental evi-
dence (see reviews [8, 114] and references therein)
that disclinations form dipole, quadrupole and mul-
tipole configurations in real materials under large
deformation. In principle, one could consider an in-
dividual GB disclination whose elastic fields would
be screened by outer boundaries of the solid as
was the case in works [20, 181-183]. Such a con-
sideration is sometimes reasonable but always sig-
nificantly more complicated. That is why the au-
thors [178, 179] have chosen the simplest way to



Disclinations and rotational deformation in nanocrystalline materials 95

N .
N .
“

~
~

2

D> F [ F e

Fig. 17. Disclinations composing a dipole terminate
aragged wall of periodically (with period |) spaced
grain boundary dislocations with either a crystal-
lattice or DSC-lattice Burgers vector in respectively
small- and large-angle boundaries. An elementary
transfer of a moving disclination, shown in Fig. 16,
is accompanied by the splitting of one of the grain
boundary dislocations into the two lattice disloca-
tions.

screen the long-range stress field of the moving (first)
disclination by using the simplest self-screened
disclination configuration (disclination dipole) among
others which are observed in real materials. Third, it
has been supposed that the disclination dipole con-
sists of mobile (first) and immobile (second)
disclinations (Fig.16). As with the first disclination,
the second disclination may also represent the dis-
continuity of misorientation across the GB, or may
be a triple junction disclination, etc. It may also be
as mobile as the first disclination is. This would not
change results of the model, because the authors
[178, 179] have analysed only the energetic possi-
bility for an elemental displacement of the first
disclination. It would hardly be expected that both
the disclinations must make such elemental
“jumps” simultaneously. Therefore, one can treat one
of them as “mobile” while another one as “immo-
bile”.

Following papers [178, 179], let us consider en-
ergetic characteristics of the GB disclination mo-
tion under discussion (Fig.16). The dipole of the GB
disclinations can be treated as the defects termi-
nating the GB dislocation wall of finite extent (Fig.17),
in which case an elementary transfer of the moving
disclination occurs via the splitting of one GB dislo-

cation belonging to the wall into two lattice disloca-
tions. The motion of the GB disclination occurs un-
der the action of external mechanical load which, in
the framework of the model, causes uniaxial stress
parallel with the GB plane and promotes the motion
of the emitted dislocations (Fig.16). The elemen-
tary transfer of a GB disclination by distance |, ac-
companied by emission of two lattice dislocations,
is energetically favourable, if the energy (per unit
disclination length) W, of the defect configuration
resulted from the transfer is lower than the energy
W, of the pre-existent configuration (before the trans-
fer): AW = W ,-W, <0.

The pre-existent configuration represents a di-
pole of GB disclinations with the distance L (the
dipole arm) between them. The energy W, of this
system is given by

W, =E

1 d

Dw’L’ [ R 1) .

= In—+—| +NE, (17)
2 L 2

where the first term is the strain energy of the
disclination dipole (see formula (1) in Section 2.2.1)
and the second term is the sum energy of cores of
the N GB dislocations which compose the ragged
wall (Fig.17). The core energy is approximated as
[141] E; = Db?/2.

The energy density W, of the dipole configura-
tion resulted from the elementary transfer (Fig.16)
can be written as follows [178, 179]:

W, =E, +E, +E, +E, +E)" +

18
E) +E +E. (18)

Here E; denotes the strain energy of the resultant
disclination dipole characterized by the dipole arm
L,=L-, E,, (Ey,) the self energy of the first (second)
emitted dislocation, Ejl (E:Z) the energy that char-
acterizes elastic interaction between the first (sec-
ond) emitted dislocation and the disclination dipole,
EE; the energy that characterizes elastic interac-
tion between the emitted dislocations, and E.* (E.?)
the work of the external stress o spent to transfer
the first (second) dislocation to its position shown
in Fig.16.

The strain energy E, of the disclination dipole
with the arm L, is given by formula (17) with the
substitution of L for L, and N for (N-1).

The self energies of the dislocations read [141]

Db’( R
Eb‘ :—2 In—+1] (19)

r

c
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where i=1,2, and r_is the dislocation core radius
(which is assumed to be the same for both the dis-
locations under consideration).

Calculation of the other terms of the sum (18) is
given in paper [179]. The final expressions for the
energies E', E,’, and E," are as follows:

v D

R*+L" +2RLsing
E :zwbicoscpl Lin -

p” +L" +2pLsing

d

n R® +1° +2RIsing (20)
p*+1” +2pising |

2

b, _ D
Eb =;b1b2 1+

p’ +R? +2pRcos(@, + @)
2ep”[1+ cos(o, + @,)]

cos((p1 + (pz)ln

(21)
_ 2pRsin’*(@, + @)
p* +R’ +2pRcos(p, + @) )
" =-Zppsi
« TS psin 20, (22)

where e is the base of the natural logarithm and o is
the external normal stress (Fig.16). With formulae
(17)-(22), the authors [178, 179] have found the dif-
ference AW:

r

D R
AW :E{(bf +b22)(ln— +1) -
> O . .
b —Ep(bls|n2¢l+bzsm2(p2)+

p’+R*+2pR cos(@, +@ )
2ep’[1+cos(g, + @ )]

) 2pRsin’(@, + @)
p’ +R* +2pRcos(@, + @)

./, R 1 )( R 1
twl|In—+—-—In—+— ||+
L 2 LU L 2

2 R*+L° +2RLsing
w) b, cos | Lin—— _ %
i1 p°+L +2pLsing

R* +1° +2RIsing
IIn—— : .
p°+I" +2pising

bb, (l +cos(@,+@)In

(23)

Formula (23) has allowed to numerically investi-
gate the dependences of AW on parameters, p, @,
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Fig. 18. Dependence of AW on the distance p moved
by each of the emitted lattice dislocations, for
L=30b, 0 =103G, R=10°b, w=0.1, and the following
values of the characteristic angles: ¢,=@,=45° (curve
1), @,=30° and @,=40° (curve 2), ¢, =20° and @,=30°
(curve 3), and @,=@,=2° (curve 4).

®,, 0, R, and L, of the system under consideration.
Thus, the dependences AW(p) are shown in Fig.18
for various values of characteristic angles ¢, and @,
related to the crystallography of the adjacent grains
[179]. These dependences indicate that angles ¢,
and g, crucially influence elementary transfer of a
GB disclination. In fact, the disclination transfer is
energetically facilitated at low angles and hampered
with rising @, and @,. At large values of ¢, and @,
(tentatively >50 °) there exists an energetic barrier
for motion of the emitted lattice dislocations, and
the disclination transfer is energetically unfavourable.
In the range of @, and @, from 0° to tentatively 20 °,
the dislocation motion has a barrier-less character
with AW (<0) decreasing with rising the dislocation
path p (Fig.18). In the range of ¢, and ¢, from tenta-
tively 20° to 50°, the disclination transfer is either
favourable or unfavourable, depending on other pa-
rameters (L, w, o) of the system. In this situation,
the characteristic energy difference AW(p=b) at the
starting point of the dislocation motion is highly
sensitive to both the distance L between the
disclinations and their strength magnitude w (see
Figs.19 and 20) [178, 179].

At the same time, AW(p=b) weakly depends on
the external stress o (see Fig.21) [179]. The influ-
ence of the stress o on the characteristic energy
difference AW(p) increases with rising the disloca-
tion path p at some intermediate values (close to
45°) of angles @, and @,. The energy difference
AW(p) at low values of angles @, and @, is weakly
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Fig. 19. Dependence of AW on the distance L be-
tween grain boundary disclinations at the initial stage
of the dislocation emission (at p=b), for 6 = 103G,
R=10°b, w=0.1, and the following values of the char-
acteristic angles: @¢,=@,=45° (curve 1), ¢,=30° and
@,=40° (curve 2), ¢,=20° and ¢,=30° (curve 3), and
©,=¢,=2° (curve 4).

sensitive to g, as is shown in Fig. 22 [179]. This
naturally follows from the geometry of the system
(Fig.16).

Thus, probability of splitting of a GB dislocation
into a pair of lattice dislocations, their emission and
corresponding motion of the GB disclination in-
creases with decreasing values of angles @, and @,,
and with growth of the dipole arm L and disclination
strength w. The GB disclination motion has been
proved to be an energetically favourable process in
rather wide ranges of parameters that characterize
the defect configuration under consideration. In con-
trast to the previously considered situation with
disclination motion associated with (ordered in
space and time) absorption of dislocations by GBs
[8, 156], the model of disclination motion associ-
ated with emission of dislocation pairs [178, 179]
does not require any correlated flux of dislocations
from grain interiors to GBs. The suggested
micromechanism for the disclination motion (Fig.16)
can be responsible for experimentally observed ro-
tations of grains in fine-grained materials under
(super)plastic deformation and thermal treatment.

3.2. Motion of dipole of grain
boundary disclinations

The model of motion of a GB disclination [178, 179]
(discussed in the previous Section) is easily to ex-
tend to the case of conservative motion of a dipole
of such disclinations under the action of external

AW(p=b) / Gb?

0.05\
w
A2 0.14 6 0.18 0.2
1

Fig. 20. Dependence of AW on the disclination
strength wat the initial stage of the dislocation emis-
sion (at p=b), for 0=103G, R=10°h, L=30b, and the
following values of the characteristic angles:
@,=@,=45° (curve 1), ¢,=30° and ¢,=40° (curve 2),
@,=20° and ¢,=30° (curve 3), and @,=@,=2° (curve 4).
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Fig. 21. Dependence of AW on the distance p moved
by the emitted dislocations, for ¢ =30° and ¢,=40°,
R=10%b, L=30b, «w=0.1, and the following values of
the applied stress 0/G=10*, 102 and 102 (curves 1,
2 and 3, respectively).
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Fig. 22. Dependence of AW on the distance p moved
by the emitted dislocations, for @ =¢,=2°, R=10°b,
L=30b, w=0.1, and the following values of the ap-
plied stress 6/G=10"%, 103 and 102 (curves 1, 2 and
3, respectively).
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Fig. 23. Motion of a disclination dipole may be con-
sidered as similar to the motion of a (super)dislo-
cation.

loading [176, 177]. Motion of dipoles of the GB
disclinations may be considered as similar to the
motion of (super)dislocations and essentially con-
tributes to high-strain deformation (Fig.23) [8]. Re-
member that experimental evidence of the existence
of disclination dipoles in typical NCMs has recently
been demonstrated in direct atomic-level HREM
observations by Murayama et al. [126].

Following the model [176, 177], one can assume
that the rotational deformation in a fine-grained ma-
terial occurs via the stress-induced motion of a di-
pole of GB disclinations. In the framework of the
model, the dipole consists of two GB disclinations
with the strengths +wand -w, respectively, and has
the arm L. The disclination of the strength +w (+w-
disclination) transfers by the distance | due to the
emission of two lattice dislocations with the Burgers
vectors b and 61 into the adjacent grains (Fig.24)
[176, 177]. The dislocation with the Burgers vector
b moves along its gliding plane towards the
disclination of the strength -w (-w-disclination). This
disclination moves by the distance | in the same
direction as the +w-disclination due to the emis-
sion of two lattice dislocations with the Burgers vec-
tors -b and 62 into the abutting grains. The disloca-
tions with the Burgers vector b and -b emitted by
the +w- and -w-disclinations, respectively, meet each
other and annihilate.

Of course, this model is very ideallistic, even more
than that considered in Section 3.1. In areal NCM
fabricated by severe deformation method, the GB
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Fig. 24. Motion of a dipole of grain boundary
disclinations is accompanied by emission of lattice
dislocations from the grain boundaries into the ad-
jacent grains. The dislocation slip planes are inclined
at the angles @, @, and @, to the x-axis.

disclinations with various values of strength are dis-
tributed in a rather disordered manner along non-
equilibrium GBs and the emitted lattice dislocations
do not necessary annihilate. In addition, grain inte-
riors of a fine-grained material contain many lattice
dislocations generated during severe plastic defor-
mation. These dislocations are capable of interact-
ing and annihilating with the dislocations emitted
by GB disclinations. Thus, real processes occur-
ring during motion of GB disclinations can be very
complicated and different from those described by
the model [176, 177]. However, this simplified model
is convenient for a strict mathematical analysis and
effective for understanding the key peculiarities of
the GB disclination motion accompanied by emis-
sion of lattice dislocations. Also, it can serve as a
basis for further detailed consideration of evolution
of GB defects in plastically deformed NCMs.

The cooperative motion of the GB disclinations
composing the dipole causes the plastic deforma-
tion of a NCM. The dipole motion is energetically
favourable, if the difference between the system
energies (per unit disclination length) after (W,) and
before (W,) the dipole elementary transfer is nega-
tive: AW=W,-W <0. The corresponding calculation
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of AW is very similar to that described in Section
3.1, so we give below only several intermediate for-
mulae and the final result. The full calculation pro-
cedure is represented in paper [176].

The energy of the system in its initial state (be-
fore the dipole transfer) W, is the strain energy of
the disclination dipole which is given by the first
term in formula (17).

The disclination dipole motion is accompanied
by the emission of the lattice dislocations, in which
case the energy density W, of the defect system
consists of the five following terms [176, 177]:

W, =E, +E, +E, +E, +E

int *

(24)

Here E =W, is the strain energy of the disclination
dipole which does not change during its correlated
motion, E,, and E,, are the self energies of the emit-
ted dislocations with the Burgers vectors b, and b,,
respectively; E, is the self energy of the disloca-
tion dipole consisting of the emitted dislocations
with Burgers vectors b and -b , and E,, is the sum
energy that characterizes all the interactions be-
tween the defects composing the system (Fig.24)
(except between both the disclinations whose in-
teraction energy is included in E , and between the
b - and b -dislocations whose interaction energy is
included in E, ), and between the defects and the
applied stress 0. The last component can be decom-
posed into nine terms as follows [176]:

_h b, bb b,
Eim_Ed +Ed +Ed +Eb2 +

25
E% +E% +E% +E% +EY. (25)

Here E;', E," and E," denote the energies that
characterize the interaction of the disclination di-
pole with respectively the 51- and Bz-dislocations,
and the dipole of +b -dislocations; Ele is the energy
of the interaction between the b, - and b, -disloca-
tions; E,* and E,? denote the energies that charac-
terize the interaction of the dislocation dipole with
these dislocations; E*, E” and E_" are the ener-
gies that characterize the interaction of the applied
stress o with respectively the emitted 61- and 62-
dislocations, and the dislocation dipole. Consider
the energies figuring on the r.h.s. of formula (24)
with account for (25).

The self energies of the 51- and Bz-dislocations
are given by formula (19).

The self energy of the dipole of + b -dislocations
is calculated as the work spent to generate these
dislocations in their sum elastic field that finally gives
[176]
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L-2p-r
| r—+l), (26)

[

E,, = Dbz(ln

where the last term “1” is added to take into ac-
count the contributions of the dislocation cores.
The energies of interaction between the
disclination dipole and the lattice dislocations are
calculated in a similar way, as the work spent to
generate these dislocations in the stress field of
the disclination dipole. In doing so, one has to use
the different coordinate systems shown in Fig.24.
These quite cumbersome calculations result in [176]

Dwb
E, = 71W(p1,<p, ), (27)
Dwb
E, = ) 2W(p,,-0,-9,), (28)
ew __Dobl
2

(L-p) +1* +2(L -p)’I*cos2¢  (29)

cos @ln y— =
p-+[1 +2p°l° cos2¢

where the following function

W(p,o @) =[/cos @ +Lsin( g+ @] x
L+ R”+/” +2LR cos(@+q) +2L/sin @2R/sin @

n
L*+p? +” +2Lp, cos(@+q ) +2LIsin @-2x/sin @
R* +1° - 2Rising,

2

p’ +1° -2pIsing,

—-lcos@, In (30)

is introduced. Here | denotes the distance between
the GB dislocations which compose the ragged dis-
location walls with the disclinations at the edges
(Fig.24). This distance may be written through the
magnitude of the Burgers vector B of the GB dislo-
cations and the disclination strength w as

l=B/w. (31)

In its turn, the Burgers vector B is connected with
other geometric parameters of this defect configu-
ration by the relations: B =b,cos@ +bcos@ and b,/
b =sin@/sing,. Their substitution into equation (31)
gives

bsin(e+ q)
l=————. (32)
wsin @
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Fig. 25. ¢-dependence of the angles @, and @,(=¢,)
corresponding to the minimum of the energy differ-
ence AW, for the following parameters of the model:
w=0.1, p,=p,=p=b, 0=5-10°G, R=10"b and
L=1000b.

The energy of interaction Efi between the 61- and
Bz-dislocations is also calculated as the work spent
to generate one dislocation in the stress field of the
other. The result is [176]

b, SS, R
E, =-Dbpb, o +cos(@, —@)In— |, (33)

P

where the following denotations

S, =p,sin(g, - @) —Lsin( 9+ @),
S, =p,sin(e, - @) +Lsin( @+ @),
P’ =L"+p’ +p. +2p,p,cos(@ —@) +
2Lp, cos(@+ @) +2Lp, cos( ¢+ @)
are used.
The energy of interaction E;‘J of the Bi -disloca-

tion with the dipole of +D -dislocations is determined
in a similar way that results in [176]

(34)

. Dbb

Ep = T¢(pi,<n @), (35)

where i=1, 2 and

®(p, @ @) = cos( ¢+ @)

(L=p)" +p/ +2(L -p)p, cos(@ + @) _
p* +p; +2pp, cos(¢+¢) (36)
2p,(L-2p)(p° +p -Lp)sin’(¢+q)

[(L—p)z +p; +2(L-p)p, COS(w+<9)][p2 +p; +2pp,cos( ¢+ g)|

xIn
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Fig. 26. Dependence of the energy difference AW
on the disclination dipole arm L, for the following
parameters of the model: w=0.1, p,=p,=p=b,
0=5-10°G, R=10"b and @=30° (curve 1), 40° (2) and
50° (3).

The energies of interaction of the lattice disloca-
tions with the external stress ¢ are given by simple
formulae

E* =-Zhp sin2
s E P, SINzQ, (37)
E* = -Zppsin2
. = ) psinZa. (38)

Thus, all terms of sums (24) and (25) are ob-
tained. The energy difference AW=W,-W, may then
be written in the following final form [176]:

Di,. .. R
AW = {(b1 +b, )(In +1j +
2 r

L-2p-r
2b2(ln ‘# + 1)
r

-2bb £+cos( - )In5 -
12 Pz (pl (pz ‘P‘ (39)

%(pr sin2@+b,p,sin2q +b,p,sin2 @) +

b[b.®(p,.@ @) +b,®(p,. ¢ 9)] +
w[b,W(p,, @ @) +b,¥(p,.~ ¢ 9)] -
(L-p)* +1* +2(L-p)’I° cos2¢
p* +1" +2p°I* cos 2¢ }

whl cos @In
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The results of numerical calculations carried out
by using formula (39) are presented in Figs. 25 and
26 [176, 177]. Thus, the dependences of the char-
acteristic angles @, and @, on the angle @are shown
in Fig.25, in the case with ¢=@,. These depen-
dences, for the given values of ¢, indicate the angles
@, and @, at which the disclination dipole motion
(Fig.24) is characterized by the lowest value AW __
(where AW<0) of the energy difference (39) that cor-
responds to the start of the disclination dipole mo-
tion. (In other words, AW _ is the largest energy
gain due to the start of motion of emitted lattice
dislocations, associated with the process in ques-
tion). As it follows from Fig.25, these angles ¢, and
@,(=@) increase with rising from 0° to =15°, have
the constant value of =11° in the range of ¢ from
=15° to =30°, and decrease from =11° to =4° with
rising @ from =30° to =55°.

The angles @, and @,(=¢@,), which correspond to
the minimum of the energy difference AW, depend
weakly on other parameters L, g, and w of the sys-
tem. At the same time, the minimum value AW__
of this characteristic energy difference is sensitive
to the parameters discussed. In Fig. 26, the depen-
dences of AW . on the disclination dipole arm L
are presented for various values of the angle @[177].
It follows from Fig. 26 that the disclination dipole
motion is energetically favourable (AW . <0) if the
dipole arm L exceeds a critical value L, which is ¢
dependent and close to about 150b = 50 nm. In the
range of ¢ from 1° to tentatively 30°, the depen-
dences AW __ (L) coincide; they are presented as
curve 1 in Fig. 26. The dependences AW __ (L) at
@=40° and 50° (see curves 2 and 3 respectively in
Fig.26) are different from those at ¢ <30°. They indi-
cate that AW__ (L) slightly decreases with rising ¢
from 30° to 50°. To summarize, AW_. <0, that is
the disclination dipole motion (Fig.24) is an ener-
getically favourable process within rather wide
ranges of parameters that characterize the defect
configuration under consideration.

Thus, in papers [176, 177], it has been theoreti-
cally revealed that the rotational mode of plastic flow
in the fine-grained materials produced by severe plas-
tic deformation can effectively occur via the GB
disclination dipole motion associated with the emis-
sion of lattice dislocation pairs into the adjacent
grains (Fig.24). In contrast to the previously consid-
ered [8, 156] situation with the disclination motion
associated with the absorption (ordered in space
and time) of lattice dislocations by GBs, the
disclination dipole motion associated with the emis-
sion of lattice dislocation pairs does not require any
correlated flux of dislocations from grain interiors to
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GBs. This micromechanism for the disclination
motion can be responsible for the rotations of grains
experimentally observed [152-156, 168-173] in the
fine-grained materials under (super)plastic deforma-
tion and thermal treatment.

3.3. Crossover from grain boundary
sliding to rotational deformation

In the previous Sections we have considered the
motion of partial disclinations which is realized by
absorption (Section 2) or emission (Sections 3.1
and 3.2) of lattice dislocations. Thus, cooperative
action of the translational (dislocation gliding) and
rotational (disclination motion) modes of plastic
deformation in NCMs has been assumed. However,
as we have already mentioned above, with grain re-
finement below a critical grain size d* the gliding of
lattice dislocations stops to play any significant role
in NCMs, and new micromechanisms of plasticity
as GB sliding and diffusion mass transfer are acti-
vated. The question arises how the rotational mode
of plasticity can develop in these conditions. In the
present Section we discuss the results of recent
theoretical investigation of relation between the
micromechanisms of GB sliding and diffusion, and
rotational deformation which occurs through gen-
eration and motion of partial GB disclinations by
means of the climb of GB dislocations along GBs
in NCMs [184]. It is demonstrated that under spe-
cial conditions of plastic deformation, the crossover
from the translational micromechanism of plasticity
(GB sliding) to the rotational one (grain rotation) is
possible.

3.3.1. Splitting of gliding grain boundary
dislocations at triple junction into
climbing dislocations (small-scale view)

GB sliding which is treated to be the dominant mode

of superplasticity in nano- and microcrystalline

materials occurs via motion of gliding GB disloca-
tions. They have Burgers vectors that are parallel
with corresponding GB planes along which these
dislocations glide. Triple junctions of GBs, where
GB planes change their orientations, serve as ob-
stacles for the GB dislocation motion. In these cir-
cumstances, splitting of gliding GB dislocations can
occur at triple junctions, resulting in the formation
of sessile dislocations and gliding dislocations pro-
viding the further GB sliding along the adjacent GBs

[185]. However, in general, GB dislocations stopped

at a triple junction are also capable of being split

into climbing GB dislocations (Fig.27) [184]. When
this process repeatedly occurs at a triple junction,
it results in the formation of two walls of GB dislo-
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Fige 27. Combined action of grain boundary sliding
and rotational deformation mode. (a) Nanocrystalline
specimen in a non-deformed state. (b) Grain bound-
ary sliding occurs via motion of gliding grain boundary
dislocations under shear stress action. (c) Gliding dis-
locations split at triple junction O of grain boundaries
into climbing dislocations. (d) The splitting of gliding
grain boundary dislocations repeatedly occurs caus-
ing the formation of walls of grain boundary disloca-
tions whose climb is accompanied by crystal lattice
rotation in a grain. (e) Climbing dislocations reach triple
junction O’ where they converge into gliding disloca-
tions causing further grain boundary sliding.
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cations climbing along the GBs adjacent to the triple
junction. The climbing GB dislocation walls cause
the rotational deformation, in which case the repeat-
edly occurring splitting of gliding GB dislocations at
the triple junction provides the crossover from the
GB sliding to the rotational deformation mode. This
process can be spread over the grain which has to
rotate on an angle as a whole. Thus, the stopped
GB sliding can stimulate plastic rotation of the
neighbour grain. Obviously this mechanism may only
be effective under the condition of intensive GB dif-
fusion of vacancies which must be capable to pro-
vide the necessary velocity of GB dislocation climb.

The reality of the model [184] may be estimated
from the viewpoint of thermodynamics (by analysing
the energetic favoritism of this process and obtain-
ing only the necessary conditions of its realization)
or kinetics (which allows to find its sufficient condi-
tions). In the framework of the first approach, which
has already been demonstrated many times through
this review, the problem is solved relatively simply
and gives new results (see below). The second ap-
proach means the necessity to state and solve a
very complicated problem of GB diffusion for vacan-
cies in a system with many sources and sinks, with
account for highly inhomogeneous field of elastic
stresses of the dislocation-disclination structure that
evolves in space and time. Such a problem have
neither been stated nor solved yet. Using the first
approach, the authors [184] have considered the
very beginning of the transition from the GB sliding
to the formation of final disclination structure, when
the “head” GB dislocation in a pile-up splits into a

1
------ T
b X

Fig. 28. Splitting of the (a) head dislocation of a grain boundary dislocation pile-up at a triple junction into (b)
two dislocations that climb along the adjacent grain boundaries. Coordinate systems Oxy, Ox’y’ and O"x"y”

are shown which have been used in calculations.
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pair of new GB dislocations (small-scale view; see
the current Section 3.3.1), and the very end of this
transition, when two pile-ups of GB dislocations at
the opposite sides of a grain are totally transformed
into a system of GB disclination dipoles (large-scale
view; see Section 3.3.2).

Following the model [184], consider a pile-up of
n, GB dislocations having the Burgers vectors b
near a triple junction of GBs under the action of
external shear stress 1 (Fig.28a). Assume that the
head GB dislocation splits into the two new GB dis-
locations with Burgers vectors 61 and 62, which can
climb along the adjacent GBs (Fig.28b). The split-
ting process may be characterized by the difference
AW=W -W, between the energies of the final (W,,
Fig.28b) and initial (W, Fig.28a) states of the de-
fect configuration. The splitting is energetically fa-
vorable (unfavorable), if AW<0 (AW>0, respectively).
The equation AW=0 gives a set of critical values of
parameters for the defect configuration, at which the
splitting becomes energetically favorable.

The total energy W, of the initial defect configu-
ration (per unit dislocation length) consists of two
terms [184]

W, =EM +E.° (40)

1
where E” is the sum of the self energies of n_GB
dislocations composing the pile-up, and E?" is the
energy that characterizes pair interactions between

all these dislocations.
The first term is written at once as [141]

" Db* (R
EX=n ——|In—+1|. (41)
2 b

In order to find the second term, let us first cal-
culate the energy E"® that characterizes elastic
interaction between the ith and jth GB dislocations
of the pile-up, with the distance (x-x;) between them
(Fig.28a). The positions x, and X of these disloca-
tions may be calculated [186] with the help of the
Laguerre polynomials L (x) which are determined as
solutions of the differential equation

Ay dy . _
X o (1 x)dx ny =0. (42)
The first derivative of the Laguerre polynomial L (x)
is a solution of the equation

d’ d
Z +(2 —x)—y +(n -1)y =0 (43)
dx dx

X
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and is given by the following formula

nt ni(-x)"

L,(x) = ‘Z ki(k +2)1(n -k -2)1’

(44)

Eshelby et al. [186] showed that the roots of the
first derivative of the Laguerre polynomial L’ (x) de-
termine the equilibrium positions of dislocations in
a discrete dislocation pile-up. Thus, by calculating
numerically the positions of the GB dislocations in
the pile-up for the given values of n_and 1 (Fig.28a),
one can also find the energy of elastic interaction
between two GB dislocations as the work spent to
transfer one dislocation from a free surface of a solid
to its current position in the stress field created by
the other dislocation. A similar approach has been
used for analysing dislocation interactions within a
GB dislocation pile-up in work [185]. In doing so,
the energy Eijb‘b of interaction between the i-th and
j-th GB dislocations has been found as [184]

b-b _ 2

E, = Db |I’1X . (45)

i i

The energy E." that characterizes pair interac-

tions between all GB dislocations belonging to the

pile-up (Fig.28a) is the sum of energies E " over
the GB dislocation indices i and j (i # j) [184]:

n -1 ng n.-1 n; R

E,.’=) DE 7 =Db’) >in

i=1 j=i+l i=1 j=i+l

X, =X, ' (46)
The energy of the defect configuration (Fig.28b)

resulted from the splitting of the head dislocation

belonging to the GB dislocation pile-up consists of

nine terms [184]:

W, =E}" +E." +E] +E +

32

b, -b, +Er—b‘ +E'[—b2 (47)

El" +EL™ +E
where E;" is the sum of all self energies of the GB
dislocations belonging to the pile-up after the split-
ting, E.." the energy of pair interactions between all
GB dislocations composing the pile-up, E:1 and
E." are the self energies of the two GB disloca-
tions resulted from the splitting of the head disloca-
tion, E.” and E..™ are the energies that charac-
terize interaction between GB dislocations of the
pile-up and the GB dislocations resulted from the
splitting and characterized by Burgers vectors 51
and b, respectively; E” ™ is the energy of interac-
tion between these latter (climbing) dislocations; and
E"™ and E"™™ are the effective works of the shear
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stress T, spent to transfer these two GB disloca-
tions along the GBs adjacent to the triple junction.

The pile-up after the splitting of its head disloca-
tion (Fig.28b) contains (n_-1) GB dislocations. To
simplify the calculations of the energy characteris-
tics of these dislocations, the authors [184] have
assumed that the dislocation positions remain un-
changed during the splitting of the head disloca-
tion. This assumption is reasonable in at least the
situation where the GB dislocations resulted from
the splitting are close to the triple junction (Fig.28b).
Then the first term of the sum (47), E*, is directly
obtained from formula (41) through replacement of
n by (n_-1). The second term, E;b, yields from for-
mula (46) with substitution of i=1 for i=2 in the lower
limit of the first sum.

The self energies of the new climbing GB dislo-
cations, E* and E.",are well known [141]. They
are given by the r.h.s. of equation (19) with replace-
ment of the cut-off radius r by b, and b,, respec-
tively.

Calculation of the energies of interaction between
the GB dislocations of the pile-up and the climbing
GB dislocations has been carried out in the follow-
ing way [184]. First, the energy of interaction be-
tween the climbing dislocation and an arbitrary dis-
location of the pile-up has been found. This proce-
dure is quite cumbersome because it includes the
determination of the shear stress created by the
climbing dislocation, which acts in the plane of the
pile-up, with further calculation of the work spent to
generate a dislocation from the pile-up in this shear
stress field. For example, the energy of interaction
of the b,-dislocation with the i-th dislocation from
the pile-up has been obtained as [184]

) _ p’ +Rpcos®
E; ™ = Dbb, sing —, —
R°+2Rpcos@+p

p° +X.pcos@

X7 +2x,pcos@+p’

Eln R’ + 2Rpcos @ +p°
2 x’+2xpcos@+p’ )

(48)

where 2@is the angle between the GBs along which
the b,- and b, -dislocations climb, p the path of the
b, -dislocation, and x; the coordinate of the i-th dis-
location in the pile-up (Fig.28b). In a similar way,
the energy E"*2 of interaction of the Bz-dislocation
with the i-th dislocation in the pile-up is calculated.
Therefore, the total energy that charactrizes inter-
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AWIGh?

p/b

Fig. 29. Dependences of AW (in units of Gb?) on
distance p (in units of b) moved by climbing 61- and
b,-dislocations, for 2¢ =40, 60, 80 and 120° (from
top to bottom).

action of both the b,- and b, -dislocations with GB
dislocations of the pile-up reads [184]

E +E"” = nzc(El”l +E™), (49)
i=1

The energy E ™™™ of interaction between the climb-
ing dislocations is also calculated as the work on
generation of one dislocation in the stress field of
the other. Omitting intermediate results, we give the
final formula [184]:

gov - _ Dbb, 2R’ .\
2 (R%cosec’ 9-4Rpctg ¢+4p°
R? - 2Rpsin2¢@+4p®sin’ @ (50)
cos20In S .
4p°sin" @

The work E™™ spentto transfer the b, -dislocation
by distance p under the shear stress T is equal to

E™ = -b ptsin2e. (51)

Thus, we have all terms figuring in the energy
difference AW=W,_-W, that characterizes the split-
ting (Fig.28) considering as an elementary act of
the crossover from the GB sliding to the rotational
deformation mode in NCMs. The numerical results
for the dependences AW(p), which have been ob-
tained for b,=b,=b/(2sing), n =5, R=10"b, 1=G/200
and different values of the angle 2¢, are presented
in Fig.29 [184]. These curves show that the split-
ting - an elementary act of the crossover from the
GB sliding to the rotational mode — is energetically
favorable at large values (80°-120°) of the angle 2¢.
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In paper [185] it has been demonstrated that the
splitting of the head GB dislocation of a pile-up
stopped at a triple junction into two, gliding and
sessile, GB dislocations is energetically favorable
at low values of the angle 2¢. That version of the
splitting serves as an elementary act of the GB slid-
ing at triple junctions.

Thus, the crossover from the GB sliding to the
rotational deformation (Figs.27 and 28) occurs ef-
fectively at triple junctions with large values of the
angle 2¢, while the GB sliding itself occurs effec-
tively at triple junctions with comparatively low val-
ues of the angle 2¢.

3.3.2. Cooperative action of grain boundary
sliding and rotational deformation mode
in nanocrystalline materials (large-scale
view)

Consider, how the system of defects described in

the previous Section can develop in time under an

external shear stress [184]. After the head GB dis-
location has split into the 51- and Bz-dislocations

(Fig.28h), their stress fields prevent movement of

the second GB dislocation of the pile-up towards

the triple junction where the splitting has occurred.

When the climbing b,- and b,-dislocations move far

from the triple junction, their effect on the second

GB dislocation of the pile-up becomes weak. In this

case the second dislocation of the pile-up moves to

the triple junction where it splits into two GB dislo-

cations climbing along the adjacent GBs. Such a

splitting process repeatedly occurs transforming GB

dislocations of the pile-up into the climbing GB dis-
locations (Fig.27). These climbing dislocations form
dislocation walls of finite extent at the two GBs ad-
jacent to the triple junction. The geometric and elastic
properties of these two ragged dislocation walls are

similar to those of the corresponding two-axes di-

poles of partial wedge disclinations [8, 133] (see

also Sections 2 and 3.1).

Now assume that similar splitting processes
occur at two opposite triple junctions of GBs sur-
rounding a nano-sized grain. The GB dislocation pile-
ups located near the opposite triple junctions con-
sist of dislocations with the Burgers vectors of op-
posite signs, which tend to move under the shear
stress action towards each other and are stopped
by the triple junctions. Such a pile-up consisting of
n_ dislocations in its initial state may be represented
effectively as a superdislocation with the Burgers
vector J_ré:incﬁ (Fig.30a). Following the model
[184], these two superdislocations split and are
transformed into four GB dislocation walls of finite
extent, which are effectively represented as four di-
poles of disclinations (Fig.30b).
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Fig. 30. Large-scale model of crossover from grain
boundary sliding to rotational deformation mode. (a)
Two superdislocations (models of pile-ups of grain
boundary dislocations) are stopped at the opposite
triple junctions. (b) Four disclination dipoles (mod-
els of climbing dislocation walls) are located at the
grain boundaries adjacent to the triple junctions.

In calculating the energy characteristics of evo-
lution of the GB dislocation ensemble, causing grain
rotation, for definiteness and simplicity, the authors
[184] have made the following model assumptions:
(i) The grain is a hexagon with the angles 2@ char-
acterizing the splitting processes at the opposite
triple junctions being the same. (ii) Magnitudes of
the Burgers vectors of all GB dislocations belong-
ing to the dislocation pile-ups are the same. (iii)
The plane of the shear stress action is parallel with
planes of GBs where the GB dislocation pile-ups
are located. (iv) All the disclinations modeling the
walls of the climbing GB dislocations have the same
strength magnitude w. Also the total number 2n_of
GB dislocations participating in the transformations
have believed to be constant. It is worth noting that
all these assumptions are not necessary and may
be omitted in a more general model.

Following the authors [184], consider the condi-
tions which are necessary for realization of the total
transformation of two initial pile-ups of GB disloca-
tions (Fig.30a) into four ragged walls of climbing GB
dislocations modeled by four dipoles of GB
disclinations (Fig.30b). The transformation of the GB
dislocation ensemble may be characterized by the
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difference AW =W,-W, between the energies of the
final (W,) and initial (W,) states of the ensemble.
The transformation is energetically favorable (unfa-
vorable), if AW <0 (AW >0, respectively).

In the framework of the model discussed, the
energy of the dislocation ensemble in its initial state
(Fig.30a) consists of the three terms [184]:

W, = 2E™ +2E!" +E2® (52)

1 int 7

where the two first terms are already known — they
describe the sum of self energies of the GB disloca-
tions in the pile-ups (2E;*) and the sum of all ener-
gies of pair interactions between the GB disloca-
tions within their pile-ups (2E’"). They are deter-
mined by formulae (41) and (46), respectively. The
third term, E;’;B, is the energy that characterizes
pair interactions between GB dislocations belong-
ing to the different pile-ups. In the first approxima-
tion, this energy may be estimated as the energy of
elastic interaction of two superdislocations with the
Burgers vectors +B [184]:

E.° =-DB’ InE, (53)
P

where P is the distance between the opposite triple

junctions.

Thus, the energy (52) of the system in its initial
state is approximated by the sum of three terms.
The two first terms strictly take into account the
fine structure of the dislocation pile-ups (i.e., the
specific distributions of dislocations within the pile-
ups), while the third one is approximated by equa-
tion (53), which does not account for this fine struc-
ture. However, this approximation (when a pile-up is
treated as a superdislocation) gives rather good re-
sults if the distance P (Fig.30a) is much larger than
the pile-up length [141]. The latter must be smaller
than S/2, and S is assumed to be always smaller
(two or more times, see below) than P in the model
[184]. Therefore, the pile-up length must be four or
more times smaller then P, and the approximation
of superdislocations in calculating the term (53) is
thus proved.

The energy of the GB dislocation ensemble in
its final state (Fig.30b) consists of the six terms
[184]:

W, = 4E” +4E" +2E™ +2E17 +

- (54)

int !

2E,° +2E

where ESA denotes the self-energy of a disclination
dipole, Ef the work spent to transfer the GB dislo-
cations resulted from the splitting under the shear
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stress T, E™ the work spent to transfer all GB dis-
locations belonging to the pile-ups from their initial
positions up to the corresponding triple junctions
under the shear stress 1, and E; ' the energy of
interaction between the i-th and j-th disclination di-
poles (i #j; i=1,2,3; j=2,3,4).

The total self energy ESA of the disclination di-
pole with the arm (L-p) and strength wis given by
formula (17) with replacement of L by (L-p), N by n,,
and b by b,.

The shear stress T acts on the climbing GB dis-
locations which compose the disclination dipoles.
The work Ef spentto climb of n_dislocations within
one disclination dipole is [184]

-1)b
n.(n, -1) 1)- (55)

E’ = -1b, sin 2(p(p +
2w

This work is the same for all the disclination dipoles
under consideration (Fig.30b).

The GB dislocations of each pile-up conse-
guently move under the shear stress t action from
their initial positions x=x,, to the new positions at
the triple junctions (x=0). The work E™ spent to the
transfer of all the GB dislocations of a pile-up is
[184]

EF = -t x| (56)

The energy Eiin:j of elastic interaction between
the i-th and j-th disclination dipoles is calculated as
the work spent to generate one dipole in the stress
field of the other. Omitting cumbersome intermedi-
ate calculations, we give the final results [184]:

int

D 2
En’ = Tm{‘“-(x'*"*o'o’yl’(p) B

(57)

W (x',p.00.y Q.55
1-3 sz
Eim = {q{(X',L,T,T',y',(p)—

: (58)
w(x,p T Ty @) o,

D 2
EX = {w,(x'T"T,Ly"0) -

4 (59)

x'=R
x'=0

y=L

W (x',T'.T,p,y',0)}

y'=p?

where,
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Fig. 31. Dependences of AW (in units of Gb?) on
disclination strength win the range of values of the
triple junction angle 29 =60, 80, 100, 120 and 160°
(from top to bottom).

W (x', Lty @) =
{(x'+t)2 +1° +(y'—t") +21(y' ") cos 2¢

F21(x'+t)sin 29}
><In{(x'+t)2 +17 +(y'~t)" £2i(y't)cos2¢ (60)

F21(x'+t) sin 29}

and T=Psing, T '=Pcos2¢.

Thus, all terms figuring in formulae (52) for the
energy W, and (54) for the energy W,, which com-
pose the characteristic difference AW =W, -W , have
been found. If AW is negative (positive), the trans-
formation of the defect configuration is energetically
favorable (unfavorable, respectively). The authors
[184] have analysed numerically the dependence of
AW on the disclination dipole strength w (Fig.31).
The calculations have been carried out for b,=b_=b/
(2sing), n =5, R=10"b, 1=G/200, L=200b, P=400b
and different values of the angle 2¢that character-
izes geometry of the triple junction. The plots
AW (w) show that the transformation is most favor-
able in the range of 2¢from 100° to 160°. Also, the
magnitude of AW (that is, the energy gain due to
the transformation when AW <0) decreases with an
increase of the disclination strength w (ranging from
0.05t00.1).

3.3.3. Critical stress of crossover from grain
boundary sliding to rotational
deformation

The equation AW =0 allows one to calculate the

critical shear stress t1_ at which the crossover from

GB sliding to rotational deformation (Fig.30) occurs.
This equation may be written as follows [184]:

W~2 _\A71(Tc)
" -1)b | (61)
2b%y x,(t,)] + 4b, sin 2(p{p +n(n)bl}
2w

i=1

where VVZ' is given by formula (54) for VV2 with terms

4E! and 2E" removed.

Let us consider how T, changes depending on
the values of the angle 2¢ and grain size P. The
authors [184] have used the following characteristic
values of parameters of a NCM and defect configu-
ration under consideration. The Poisson ratio v has
been equal to 0.3. Moduli of the GB dislocation
Burgers vectors and disclination strength have been
taken as follows: b=0.1 nm and w=0.1 (=5.7°). The
number n_has been varied from 3 to 20 together
with the distance L to keep the disclination strength
wconstant. The distance p has also been assumed
to be constant and equal to |. These assumptions
are considered reasonable based on the informa-
tion available. As we will see later, actual form of
the curves is not too sensitive on the values.

Now express the distance L through S and P,
whose ratio g=S/P<1. Then we have [184]

1-
L= q

= P.
2cos@ (62)

With formulas under discussion, for the above
characteristic values of parameters, the depen-
dences of the critical shear stress 1_on the grain
size (diameter) P have been calculated in [184].
These dependences are shown for q=0.5 (Fig.32a)
and g=0.1 (Fig.32b), for different values of the triple
junction angle 2¢. The curves 1_(P) lie, in general,
in different ranges of P because the disclination
strength w is taken constant here. Therefore, in-
crease in P leads to increase in both L and n_, and
this relation depends on the angle 2¢. For the sake
of convenience, the points corresponding ton_=3
(triangles), 5 (pentagons) and 15 (circles) are at-
tached to every curve. The upper ends of the curves
correspond to n =20. As a result, one can addition-
ally trace how t_ depends on the angle 2¢ when
both the L and n_keep constant.

From Fig.32 it follows that T_ decreases with the
decrease of P (grain refinement) [184]. This is the
main result of this section. It demonstrates that the
smaller grains are rotated easier (they are rotated
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Fig. 32. Dependence of the critical shear stress 1,
on the grain size P, (a) for g=0.5 and (b) for g=0.1,
for different values of the triple junction angle 2@
given by figures at the curves. The numbers of grain
boundary dislocations n_are shown by the triangles
(n_=3), pentagons (n_=5) and circles (n_=15).

under the action of smaller critical stress 1) than
the larger ones. Moreover, T_strongly depends on
the grain shape (i.e., on g and 2¢). Increase in q
leads to decrease in 1, because larger q (for the
fixed values of P and 2¢) needs smaller number n_
of GB dislocations to spread along the GB (or smaller
dipole arm L-p). The dependence of T_on the angle
2@ is more complicated. For the fixed L and n_, in
the range of relatively small angles, 2¢< 100°, the
critical stress t1_decreases with increasing 2¢ and
achieves its minimum at 2¢= 100° . In the range of
relatively large angles, 2¢> 100°, the critical stress
T_ increases with rising 2¢.

Thus, one can conclude that the smaller grains
that are characterized by the larger g and 2¢p=100°,
need the smaller critical stress 1_to rotate [184].

The theoretical models for motion of GB
disclinations considered in Section 3 allow us to
conclude the following:
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Motion of GB disclinations is an effective mecha-
nism of rotational deformationin NCMs.
Motion of GB disclinations may be realized
through the micromechanisms of emission of
lattice dislocations or climb of GB dislocations.
Realization of these micromechanisms are pos-
sible in wide ranges of values of the main geom-
etry and force parameters of the system.
Motion of GB disclinations by means of lattice
dislocation emission is effective until the usual
dislocation plasticity is possible in nanograins.
When the glide of lattice dislocations is replaced
by the GB sliding, appearance of GB disloca-
tion pile-ups at the GB triple junctions and fur-
ther transformation of these pile-ups into the
walls of climbing GB dislocations (the dipoles of
GB disclinations) serve as a possible way to
activate the rotational mode of plastic deforma-
tion in NCMs.

The transition from the GB sliding to the rota-
tional deformation becomes energetically favor-
able when the external shear stress achieves
its critical value which depends on the elastic
properties of the NCM, structure of its GBs, grain
size and shape. The smaller grains need the
smaller critical stress to rotate.

4. GENERAL CONCLUSIONS

The rotational mode of plastic deformation in NCMs
occurs through nucleation and development of spe-
cific (rotational) defect structures which consist of
lattice and/or GB dislocations and may be described
effectively by means of partial disclinations. Rota-
tional structures are generated in NCMs at various
imperfections of GBs (kinks, double and triple junc-
tions, etc.) where the misorientation angle sharply
changes. Development of rotational plasticity de-
pends on the mechanisms of translational plastic-
ity which dominate in the given NCM. Domination of
lattice gliding may result in appearance of
misorientation bands (or other disclination structures
which are typical for conventional metals and al-
loys, but have not been considered here) inside the
grains or motion of GB disclinations through emis-
sion of lattice dislocations. Domination of GB slid-
ing may lead to formation and motion of GB
disclinations through climb of GB dislocations. In
both the latter cases, the motion of GB disclinations
along their GBs changes the misorientation of crys-
talline lattices across the GBs and may serve as a
mechanism of grain rotation in the process of exter-
nal mechanical loading.
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