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Abstract. A theoretical model is suggested which describes formation and convergence of
nano-scale cracks along grain boundaries in nanocrystalline materials under quasistatic
mechanical loading. In the framework of the suggested model, the convergence of cracks is
described as a percolation process consisting of independent elementary events each being the
formation of a nano-scale crack along one grain boundary. The effect of a distribution in geometric
parameters (length, orientation) of grain boundaries in a mechanically loaded nanocrystalline
solid on the convergence of nano-scale cracks, leading to the macroscopic crack formation, is

analysed.

1. INTRODUCTION

Nanostructured solids showing unique physical,
chemical and mechanical properties represent the
subject of intensive experimental and theoretical
study; see, e.g., [1-3]. Of particular interest are
outstanding mechanical characteristics exhibited
by nanocrystalline (nano-grained) solids due to the
nano-scale and interface effects [4-6]. In particular,
such mechanisms of plastic and superplastic flow
in nanocrystalline materials as the grain boundary
sliding [7-9], rotational deformation mode [10-12],
grain boundary diffusional creep (Coble creep) [13-
15] and triple junction diffusional creep [16] are as-
sociated with the active role of grain boundaries (for
areview, see [17]). A very high strength and super-
hardness of nanocrystalline coatings are also re-
lated to the specific behavioral peculiarities of en-
sembles of grain boundaries in the nanocrystalline
matter under mechanical load [18,19]. For instance,
cracks in mechanically loaded nanocrystalline sol-
ids are commonly formed at grain boundaries whose
nanoscopic dimensions cause very high values of
the critical stress for their formation (see [18] and
references therein). Following [18], this specific fea-

ture of the formation of nano-scale cracks, which
hereinafter will be denoted as nanocracks, is the
key factor responsible for extremely high strength
characteristics of nanocrystalline bulk materials and
coatings. However, together with the formation of
nanocracks, the convergence of nanocracks, result-
ing in catastrophic failure, crucially influences the
strength of nanocrystalline solids. The main aim of
this paper is to suggest a theoretical model describ-
ing both the formation and convergence of
nanocracks in a nanocrystalline solid under
quasistatic tensile deformation. In the framework of
the model, the formation of a macroscopic crack
(leading to failure of the solid as a whole) is de-
scribed as a percolation process consisting of the
elementary events of the formation and convergence
of isolated nanocracks.

2. FORMATION OF MACROSCOPIC
CRACK AS A PERCOLATION
PROCESS ASSOCIATED WITH
CONVERGENCE OF NANOCRACKS

Let us consider a nanocrystalline solid under ten-
sile stress o,=0,e e (Fig. 1). The stress causes
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Fig. 1. Nanocrystalline solid under uniaxial tensile stress.

nanocracks to be formed in the mechanically loaded
nanocrystalline solid. Following [18], we assume
that nanocracks are only formed along grain bound-
aries. In doing so, with nanoscopic scales of
nanocracks at grain boundaries and large angles
made by adjacent grain boundary planes at triple
junctions, we assume that the formation of a
nanocrack at a grain boundary is independent on
the events of the formation of nanocracks at any other
grain boundaries. As a corollary, the formation of a
macroscopic crack — a carrier of the catastrophic
failure —results from elementary independent events
of the formation of nanocracks at grain boundaries of
a quasistatically loaded nanocrystalline solid.

The macroscopic crack formation under consid-
eration is a partial case of percolation described by
the standard mathematical methods of the theory
[20-23] of percolation in physical systems. This al-
lows us to use these methods in a theoretical de-
scription of evolution of the nanocrack ensemble in
a deformed nanocrystalline solid. In this context,
according to the general representations of the per-
colation theory [20-23], the macroscopic crack is
formed when the concentration n of nanocracks
reaches some critical value n_. (The nanocrack con-
centration by definition is the ratio of the number of
grain boundaries at which nanocracks are formed
to the total number of grain boundaries.)

A stable nanocrack of length 2a is formed at a
grain boundary with length 2a and normal n to the
grain boundary plane, if > o (a). Here g, is the
stress tensor component at the boundary, and o (a)
is the critical normal stress characterizing the
nanocrack formation. The critical stress 0 (a) in the
first approximation is given as [18, 24]:

oc(a):k\/E, (1)
a

Here y denotes the specific surface energy of the
solid, E the Young modulus, and k the factor taking
into account the nanocrack geometry. For a grain
boundary (and, therefore, a nanocrack formed at this
boundary) whose plane has the normal n making
the angle a with axis x, we have: o, =0, cos’a. In
this situation, the condition o, >0 (a) can be re-writ-
ten in the following form: Va cos?a > M, where
M=kw/y_E/00. (Here, for simplicity, we consider only
the normal failure mode |, neglecting the shear fail-
ure mode Il. Analysis of the shear mode contribu-
tion to the macroscopic crack formation in strained
nanocrystalline materials is the subject of further
investigations of authors.

3. DISTRIBUTIONS OF GEOMETRIC
PARAMETERS OF GRAIN
BOUNDARIES AND THEIR EFFECT
ON FORMATION AND
CONVERGENCE OF NANOCRACKS

Let us calculate the nanocrack concentration, us-
ing the criterion (1) for their formation. To do so, let
us consider distributions in length and orientation of
grain boundaries (at which nanocracks are formed).
First, let us assume that orientation of grain bound-
ary is random. That is, the distribution in grain bound-
ary orientations is described by the distribution func-
tion p (a)=1/(2m), -n< a <m. With designation
t=cos’a, the function p _(a) can be re-written in terms
of t as follows:

f = 4p,(a) _ 1

PO = it rdal wftd-t) (2)

Here we take into account the fact that one value of
tin the range 0<t<1 corresponds to four values of a
in the range -Tt<a < 1L
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Following [13], grain boundary length is assumed
to be log-normally distributed:

(Ina-Ina)’
- : (3)

1
p,(a) = exp
@ av/27s? ( 2s’

Here Ina and s are the mean value and standard
deviation of In a, respectively.

With u=va, we consider the following distribu-
tion function p (u):

p.(a)
u) = =
. (1) du / da
J2 (2Inu =Tna)’ (4)
expl ——————— |
U~ Tis? 2s
With the equation:
a= Tap (a)da = exp| Ina +S—2 (5)
0 ’ 2

formula (4) can be re-written as follows:

(2Inu -Ina +s*/ 2)?
- - (6)

p,(u)= V2 exp(
’ ux/g 2s°

In these circumstances, the nanocrack concentra-
tion is given as:

n :jpu(u)P(t>M/u)du, (7)

where P(t >M/u) is the probability of the fact that
t >M/u. This probability by definition is

P(t>M/u)=0(1-M/u) [p,(t)dt =

Miu

2 M (8)
—O(1-M /u)arccos | —.
1 u

Here ©(p) is the Heaviside function (0(p)=1, if p=0,
and =0, if p<0).

With u=M/v? and expressions (6) and (8) sub-
stituted into formula (7), we have:

32
m s’
t1 (4Inv +2In[o, /o (a)] - s°/2)°
[=exp| - 2 X (9)
% 2s
arccos v dv.
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In formula (9) it is taken into account that vM/a = o,/
o (a)

Thus, we have the nanocrack concentration n
given by formula (9). The condition that the macro-
scopic crack, a carrier of the catastrophic failure, is
formed represents the following inequality: n>n_.
Here n_denotes the critical nanocrack concentra-
tion determined by geometry of the system [20-23].
After some analysis based on the percolation theory
[20-23,25], in the discussed situation with
nanocrystalline solids, we have: n_=0.125.

Dependences of non ¢ /o (@) at different values
of s, given by formula (9), are shown in Fig. 2. The
dashed horizontal line in Fig. 2 shows value of n_(n,
= 0.125). The macroscopic crack formation occurs
in the range of parameters corresponding to the re-
gion above the horizontal line n=n_in Fig. 2. As it
follows from Fig. 2, when parameter s increases at
fixed value of the mean grain size a, the critical
(minimum) external stress necessary for the forma-
tion of a macroscopic crack just slightly increases.
This critical external stress is larger by only a small
value than the stress o (@). As a corollary, the crite-
rion for the macroscopic crack formation in a
nanocrystalline solid characterized by conventional
distributions (say, given by formulas (2) and (3)) in
both grain size and grain boundary plane orienta-
tion is close to that for the formation of an isolated
nanocrack at one grain boundary with favoured ori-
entation of its plane relative to the normal tensile
stress.

Let us consider the situation with two types of
grain boundaries: conventional and highly failure-
resistant boundaries. A high resistance to the
nanocrack formation at a part of grain boundaries

a/o @)

Fig. 2. Dependences of the concentration n of grain
boundaries with nanocracks on parameter o,/c (&),
for s=0, 1 and 1.5 (curves 1, 2 and 3, respectively).
Dashed horizontal line shows value of the critical
concentration n_ = 0.125.
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Fig. 3. Dependences of the concentration n’ of grain
boundaries with nanocracks on parameter o,/c (@),
for s=1, k,/k,=5, and ¢,=0.5, 0.7 and 0.9 (curves 1,
2 and 3, respectively). Dashed horizontal line shows
value of the critical concentration n_= 0.125.

can occur, for instance, due to compositional inho-
mogeneities of a nanocrystalline solid containing
grain boundaries with two sorts of chemical compo-
sition. Such compositional inhomogeneities of the
grain boundary phase, leading to different failure
resistances of grain boundaries with different com-
positions, can be formed in nanocrystalline coat-
ings deposited at a low current plasma density and
subjected to energetic ion bombardment [19].

In the framework of our model, the existence of
conventional and highly failure-resistant grain bound-
aries in a nanocrystalline solid is described as the
existence of two types of grain boundaries charac-
terized by two values of coefficient k. More precisely,
we assume that grain boundaries whose total vol-
ume fraction is ¢, (c,, respectively) are character-
ized by parameter k=k, (k=k,, respectively). In
these circumstances, the critical normal stress for
the formation of nanocracks of the first type is
0,,(a)=kVyE/a, while the critical normal stress for
the formation of nanocracks of the second type is
is ocz(a)=k2\/ﬁ. Then the nanocrack concentra-
tion is given by the following formula:

n'=cn(k =k,)+(1-c)n(k = k,). (10)

Dependences of n’on ¢ /0_,(a), for s=1, k,/k,=5 and
different values of c,, are presented in Fig. 3. As it
follows from Fig. 3, the existence of a part of grain
boundaries with a high failure resistance in a
nanocrystalline solid gives rise to enhancement of
the critical applied stress for the formation of a mac-
roscopic crack. However, this critical stress does

not run parallel with the volume fraction (c, ) of highly

failure-resistant grain boundaries. For instance, for
¢,=0.5 (when the number of grain boundaries with
high failure resistance is equal to that of conven-
tional grain boundaries), the critical value of the ra-
tioo/o_(a)=1.8.Forc,=0, we have g /o (a)=1.05.
That is, the strength of a nanocrystalline solid with
grain boundaries of two types increases. The above
conclusion is indirectly supported by experimental
data [19] indicating a tentatively two-fold increase
of the microhardness of a nanocrystalline coating,
occurring due to compositional inhomogeneities in
its grain boundary phase [19].

4. CONCLUDING REMARKS

To summarize, conventional distributions of grains
in size and boundary orientation, inherent to a real
nanocrystalline solid, do not essentially influence
the conditions for the microscopic crack formation
in the solid. At the same time, if a part of grain
boundaries becomes highly failure-resistant (due to
changes in composition), the failure resistance of a
nanocrystalline solid increases. In doing so, the
critical applied stress for the formation of a macro-
scopic crack does not run parallel with the content
of highly failure-resistant grain boundaries. It reflects
the percolation nature of evolution of nanocracks in
mechanically loaded nanocrystalline solids.
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