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Abstract. A theoretical model is suggested which describes quantum dot ensembles of the new
type, namely the quantum dot arrays with defects. These defects represent local violations of the
geometry of 2D arrays formed by quantum dots on crystalline substrates. The elastic moduli of
strained arrays of quantum dots are estimated, in which case strains describe deviations of spatial
positions of quantum dots from nodes of ideal square arrays. The formulas for characteristic energies
of dislocations, disclinations and point defects in 2D arrays of quantum dots are derived. It is shown
that point defects are characterized by comparatively low values of the formation energy and, therefore,
are capable of being intensively formed in quantum dot arrays fabricated at highly non-equilibrium
conditions.

1. INTRODUCTION

The rapidly growing scientific and technological in-
terest in semiconductor nanoislands — quantum dots
(QDs) — has arisen from the unique properties as-
sociated with their nanoscale structure and self-as-
sembly; see, e.g., [1-16]. The outstanding optoelec-
tronic properties of spatially ordered ensembles of
QDs on crystalline substrates are the subject of in-
tensive theoretical and experimental study due to both
their use in device applications and significance for
understanding the fundamentals of nanoscale effects
in solids. Highly desired, from an applications view-
point, functional characteristics of self-assembled
QDs crucially depend on their spatial arrangement
and distributions in size and form. In particular, free
standing QDs commonly form a regular 2D array on
the substrate free surface (due to elastic interactions
between the dots [1,15] and/or between the dots and
regularly arranged stress sources in the substrate [17-
19]), in which case the geometry of the array of QDs
strongly influences their properties. In this context,
knowledge and control of geometric parameters of
QD arrays are very important for fabrication and de-
sign of self-assembled QDs with desired functional
characteristics.

QD arrays are conventionally described as ideal
(defect-free) lattices with nodes occupied by QDs (Fig.
1 a); see, e.g., review article [1]. We think that, as
with conventional crystalline lattices of solids, QD
arrays may contain topological defects, such as dis-
locations (Fig. 1 b), disclinations (Fig. 1 c), vacan-
cies and interstitial QDs (Fig. 1 d). In this event, the
new geometry of defected arrays of QDs strongly af-
fects the structure and properties of QDs. Actually,
QD arrays with defects (Fig. 1 b,c and d) are charac-
terized by irregularities in spatial arrangement of QDs
at the defect cores and deviations of interspacing
between QDs from that inherent to the ideal array
shown in Fig. 1 a. Such irregularities and deviations
cause the differences in the stress fields (sensitive
to interspacing between QDs) in QDs and their vi-
cinities in the situations with ideal (Fig. 1 a) and de-
fected (Fig. 1 b,c and d) arrays. At the same time,
the stress fields crucially influence the structure (in
particular, formation of conventional misfit disloca-
tions at interphase boundaries between dots and the
substrate [12-14]), composition and shape [1-9] of
QDs, that affect the outstanding optoelectronic prop-
erties of such dots. This causes interest to analysis
of defects and effective strains (associated with de-
viations of QDs from their equilibrium spatial posi-
tions) in QD arrays. Recently, such an analysis has
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been performed for the case of misfit dislocation lat-
tices [20]. The main aim of this paper is to suggest a
theoretical model which describes defects (Fig. 1 b,
c and d) in QD arrays, with emphasis on their elastic
and energetic characteristics.

2. ELASTIC CHARACTERISTICS OF
    STRAINED ARRAYS OF QUANTUM
    DOTS

Let us consider a model heteroepitaxial system
consisting of an array of QDs and a thick substrate.
In the framework of our model, QDs represent iden-
tical free standing pyramidlike nanoislands, each
characterized by the base length 2a and the contact
angle θ of its free surface with the substrate (Fig. 1).
The nanoislands and the substrate are assumed to
be isotropic solids having the same values of the
shear modulus G and the same values of Poisson
ratio ν. The geometric mismatch at the nanoisland/
substrate boundaries is characterized by the misfit
parameter f=2(a

s
-a

i
)/(a

s
+a

i
), where a

i
 and a

s
 are the

Fig. 1. States of 2D array consisting of free standing
quantum dots on crystalline substrate. (a) Ideal (de-
fect free) array. Array with (b) edge dislocation, (c)
wedge disclination (triangle), and (d) vacancy and
interstitial quantum dot.

crystal lattice parameters of the nanoislands and the
substrate, respectively. Following [17], the stresses
induced by the nanoislands in the substrate due to
the geometric mismatch at the nanoisland/substrate
boundaries will be modeled here as quadrupoles of
concentrated forces acting perpendicular to the sub-
strate free surface. Owing to the quadrupole-quadru-
pole interaction associated with such stresses,
neighbouring nanoislands (QDs) repel each other.

With the elastic interaction between QDs taken
into account, one finds that they form a regular array
whose symmetry depends on the orientation and elas-
tic anisotropy of the substrate [15]. In this paper, for
definiteness and simplicity, we restrict our consider-
ation to square 2D arrays of QDs. The results of our
consideration can be directly generalized to the situ-
ations with other symmetries of 2D arrays of QDs.

Let us examine elastic properties of a regular
square ensemble of QDs with a period p. In the coor-
dinate system shown in Fig. 1, the nodes of the ideal
(non-strained) QD array (Fig. 1 a) have coordinates
(x

k
, y

l
), where x

k
 = kp, y

l 
=l p, with k and l being inte-

gers. In order to describe effective elastic strains of
the nanoisland array, we will model it as a two-di-
mensional elastic medium. In these circumstances,
the displacements of QDs from array nodes are de-
scribed by a two-dimensional vector displacement field
u

i
(x,y). The corresponding effective strains of the

nanoisland array are characterized by the strain tensor:

ε
ij i j j iu u i j x y= + =

1

2
( ), , , .

, ,  (1)

Let us represent the effective stresses in strained
array of QDs as the sums of eigenstresses σ

ij

0  asso-
ciated with repelling of QDs in non-strained array and
“deviation” stresses σ

ij
 occurring due to deviations of

QDs from their equilibrium spatial positions realized
in the non-strained state of QD array. (The stresses
σ

ij

0  occur as a result of the elastic interaction between
QDs, which provides repulsion of QDs from each
other. A balance between this interaction of the re-
pulsion type and a release of the energy of the
heteroepitaxial system due to nanoislanding deter-
mines the period p of the QD array.) In general, the
stresses σ

ij
 are in a non-linear relationship with the

strains ε
mn

. For definiteness and simplicity, hereinaf-
ter we restrict our consideration to the situation with
low strains (ε

mn
<<1). In doing so, the linear depen-

dence of the stress tensor σσσσσ on the strain tensor εεεεε is
realized with a good accuracy. It can be found as the
first-order term of expansion of the tensor σσσσσ into power
terms of εεεεε. In the discussed case of a square array of
QDs, the three following elastic constants, c

11
, c

12
 and

c
44

, figure in the linear relationship between compo-
nents of the tensors σ

ij
 and ε

ij
:
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 (2)

 (3)

 (4)

Here c
11

, c
12

 and c
44

 are the 2D elastic moduli whose
units differ from those of bulk elastic moduli. From
formulae (2)-(4) it follows that c

11
=∂σ

xx
/∂ε

xx 
(εεεεε=0), c

12
=

∂σ
xx

/∂ε
yy  

(εεεεε=0), and c
44

=(1/2)∂σ
xy

/∂ε
xy

 
 
(εεεεε=0).

The elastic energy density (per unit substrate area)
ωsurf that characterizes the strained array of QDs is
defined as follows:

ω σ σ εsurf

ij ij ij
= +

1

2

0� � ,  (5)

where the summation over repeated indices is per-
formed. From (2)–(5), we get:

1

2

0σ σ
∂ω

∂εij ij

surf

ij

+ = . ,  (6)

σ
∂ω

∂εij

surf

ij

0 2 0= =( ),ε  (7)

and, as a corollary,

σ
∂ω

∂ε

∂ω

∂εij

surf

ij

surf

ij

= − =( ) ( ).ε ε 0  (8)

It should be noted that the stresses σ
ij

0  and σij, given
by formulas (7) and (8), play the role of 2D stresses,
and their units differ from those of bulk stresses.

Let us numerate nanoislands located in the ideal
(non-deformed) state at array nodes having coordi-
nates (x

k
, y

l
) by indices (k, l). Then the surface en-

ergy density ωsurf of the strained array of QDs can be
re-written as:

ωsurf isl isl

ij

i j

i j

p
W r= −

=−∞

+ ≠

+∞

∑1

2 2

0
2 2

( )
,

, (9)

where W isl-isl(r
ij
) denotes the energy that character-

izes the elastic interaction between the (0, 0)– and
(i, j)-nanoislands, and r

ij
 the distance between these

nanoislands. In doing so, the energy W isl-isl(r) of the
elastic interaction between two nanoislands distant
by r from each other is calculated using the following
general formula:

W
G V

f f f

f f

isl isl

rr rr

− =
−

∈ + + ∈ + ∈ + +

∈ + − +

α

ν
ν

ν

ϕϕ

ϕϕ

1
2

2 1

2

2 2

� � � �� �

� � � � .
 (10)

Here α (<1) denotes the factor taking into account
stress relaxation in nanoislands, ∈

rr
 and ∈

jj
 are the

strains induced by one nanoisland in the base center
of another nanoisland. V=(4/3)a3 tanθ is the pyramidlike
nanoisland volume.

The strains ∈
rr
 and ∈

jj
 figuring in formula (10) are

given as [17]:

∈ =
rr

Cf

r 3
, � ����

∈ = −ϕϕ

Cf

r2 3
, � ����

where C=(4β/π) tanθ (1+ν)a3, and β ≈ 1. With formulas
(11) and (12) and the condition C/r 3 <<1, formula (10)
can be re-written in the following form:

W
M

r

isl isl− =
3

,  (13)

where

M f Ga=
+

−

16 1

3 1

2

2 6 2αβ ν

π ν
θ

( )

( )
tan .  (14)

In doing so, the term a6 tan2θ, which is proportional to
the product of two nanoisland volumes, appears in
formula (14), because it characterizes the pair inter-
action between nanoislands, dependent on the vol-
ume of each nanoisland involved into the interaction.

In order to calculate the elastic moduli c11, c12 and
c

44
, let us consider the QD array characterized by a

spatially uniform strain ε=ε
xx

e
x
e

x
 + ε

yy
 e

y
e

y
+ ε

xy
(e

x
e

y
+

eyex) (Fig. 2). In this situation, rij=p[i2(1+εxx)
2+j2

(1+ε
yy

)2+4ij ε
xy

]1/2. Then, with formulas (9) and (13),
we have:

ω

ε ε ε

surf

xx yy xy
i j

i j

M

p

i j ij

=

+ + + +=−∞

+ ≠

+∞

∑

2

1

1 1 4

5

2 2 2 2 3 2

0
2 2

,

( ) ( )
.

/
,

 (15)

From formulas (7), (8) and (15), with the conditions
that c

11
=∂σ

xx
/∂ε

xx
 (εεεεε =0), c

12
= ∂σ

xx
/∂ε

yy 
 (εεεεε =0) and c

44
=

(1/2)∂σ
xy

/∂ε
xy 

 (εεεεε =0) , we find:

σ σ σ σ
xx yy xy

S M

p

0 0 0 1

5

03
0= = = − =, ,  (16)

c
S M

p
c

S M

p
c c
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2

5 12

3

5 44 12

15

2

15

2
2= = =, , ,  (17)

where M is given by formula (14), and

σ ε ε ο ε

σ ε ε ο ε

σ ε ο ε

xx xx yy
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xy xy
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c c
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11 12
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3. DISLOCATIONS, DISCLINATIONS
    AND POINT DEFECTS IN QUANTUM
    DOT ARRAYS

Let us examine energetic characteristics of defects
(Fig. 1 b, c and d) in 2D arrays of QDs, using c

11
 and

c
12

 calculated. In doing so, in our approximation treat-
ing the QD array as an elastically isotropic system,
its elastic properties are characterized by the aver-
aged shear modulus G

i
 and Poisson ratio ν

i
. Formu-

las (2)-(4) and the following 2D analog of Hooke’s
law:

σ
ν

ν ε ν ε δ
ij

i

i

i ij i kk ij

G
=

−
− +

2

1
1( )  (19)

(where i,j=x,y; ε
kk

=ε
xx

+ε
yy

, and δ
ij
 is the Kronecker sym-

bol) result in the following expressions: ν
i
 =c

12
/c

11
 ≈

0.2 and G
i
 = γ(c

11
-c

12
)/2 ≈ 0.4 γ c

11
. Here γ is the fac-

tor taking into account anisotropy (γ ~ 1). It should be
noted that equation (19) formally coincides with
Hooke’s law for a 3D medium in the plane stress state.

The energy of a defect in a QD array, by analogy
with the energy of a defect in conventional crystal
lattice, is defined as the difference between energies
of this QD array with and without the defect. In order
to calculate the energy of a defect, it is necessary to
rigorously define the transformation of QD array from
its initial non-defected state into a defected state. In
the situation with a conventional crystal lattice, a trans-
formation from a non-defected state into a defected
state is associated with addition of extra atoms to the
lattice or removal of atoms from the lattice, with con-
sequent elastic relaxation [21]. The transformation
discussed does not lead to a dramatic change of the
atomic density, because elastic relaxation is caused
by a balance between interatomic interactions of both
repulsion and attraction types. The attraction-type
interaction is absent in QD arrays, in which case the
interspacing between QDs is determined  by a bal-
ance between their elastic interaction of the only re-

pulsion type and the nanoislanding. A detailed analy-
sis of the balance is beyond the scope of this paper
focusing on elastic properties of QD arrays. There-
fore, for definiteness, hereinafter, we assume that
transformations from the non-defected state (Fig. 1 a)
of a 2D array of QDs to its defected states (Fig. 1 b,c
and d) occur with the proviso that the mean density of
QDs is the same in the non-defected and defected
states.

With the above assumption, the transformation can
be treated as the following imaginary two-step proce-
dure. At the first step, a 2D array consisting of N QDs
is uniformly strained, in which case the mean density
of QDs changes by factor (N+u n)/N, where n is an
integer, and u=±1. That is, the QD array undergoes
uniform compressive or tensile deformation. At the
second step (which is identical to conventional trans-
formation of non-defected crystal lattice to defected
one [21]), a defect is introduced into the uniformly
strained QD array by removing (if u=1) n QDs from
the array or adding (if u=-1) n extra QDs to the array,
with consequent elastic relaxation of the defected ar-
ray of QDs. n and the sign of u depend on the type of
defect. The mean density of QDs is the same before
and after the two-step transformation.

Fig. 2. (a) Non-strained and (b) uniformly strained
arrays of quantum dots.
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As a result of the first step of the transformation
discussed, the QD array is still non-defected and
strictly periodic, but its period changes by the factor
√N/(N+un), giving rise to the following change W

I
 of

the elastic energy of the QD array:

W W p
N

N un
W p

I
N

=
+

−
→∞

�
��

�
	


�

�



�

�
�lim ( ) .

0 0  (20)

Here W0(t) is the sum energy that characterizes elas-
tic interaction between QDs forming the square-lat-
tice-type array with period t. It is calculated using for-
mula:

W t
N

W t i jisl isl

i j

i j

0

2 2

0

2
2 2

( ) ( ).
,

= +−

=−∞

+ ≠

+∞

∑
 (21)

Substitution of (13) and (21) into formula (20) gives:

W
unMS

p
I

=
3

4
4

3
.  (22)

Here S
i ji j

i j

4 2 2 3 2

0

1
8 96

2 2

=
+

=
= −∞

+ ≠

+∞

∑
( )

. .
/

,

The QD array with a defect (e.g., dislocation,
disclination, vacancy, interstitial QD), resulting from
the second step of the transformation from a non-
defected state to a defected state, is characterized
by the energy density (per unit area) wsurf defined by
formula (5). This energy density can be represented
as the sum of the proper elastic energy (self-energy)
density (1/2)σ

ij
ε

ij
 of the defect and the energy density

(1/2)σ
ij

0 σ
ij
 of the interaction between the defect and

the stress field σσσσσ0 acting in the non-strained state of
the QD array due to QD repulsion.

The self-energy W
self

d  of an edge dislocation (Fig.
1 b) in the center of a QD array (where the plane
stress state is realized) occupied the surface of a circle
of radius R is given by the formula similar to the gen-
eral expression [21] for the elastic energy of an edge
dislocation in a three-dimensional lattice, with ν

i
 re-

placed by ν
i
 /(1+ν

i
) [22]. In doing so, we get:

W
D p R

p
Z

self

d = +�
�

�
	

'
ln .

2

2
 (23)

Here D’=G
i
(1+ν

i
)/(2π), p plays the role of the disloca-

tion Burgers vector modulus (equal to period of the
QD array), and Z (≈1) denotes the factor taking into
account the contribution of the dislocation core to the
energy W

self

d .
As with conventional dislocations in real crystals

[23], the energy W d

int
 that characterizes interaction

between the dislocation and the stress field σσσσσ0 is cal-
culated using formula:

W pu Rd

int
= σ0 .  (24)

The total energy Wd of the dislocation being equal to
the sum W

self

d +W d

int
+W

I
 is derived from formulas (16),

(18), (22)-(24) and the condition n=R/p as follows:

W
D p R

p
Z

u R

p

d = + −
�
��

�
	


'
ln . .

2

2
6 3

γ
 (25)

Similar to dislocations (see above), the energy W ∆

of a wedge disclination in a 2D array of QDs (Fig.1c)
is represented as the sum W

self

∆ +W
int

∆ +W
I
, where W

self

∆

denotes the proper energy of the disclination, W
int

∆  the
energy that characterizes interaction of the
disclination and the stress field σσσσσ0, and W

I
 the energy

that characterizes uniform strains due to the first
(imaginary) step of the formation of the defect.

Following the general theory of disclinations in
solids [24], the self-energy of an isolated wedge
disclination of strength ω, located in the center of QD
array occupying a disc-like free surface of the sub-
strate of radius R, is given as:

W
D R∆ =

'
.

ω2 2

8
 (26)

The energy W
int

∆  that characterizes interaction be-
tween the disclination and the stress field σσσσσ0 is calcu-
lated using formula [23]:

W
R

int

∆ = −
ωσ0 2

2
.  (27)

Here the disclination strength ω > 0 ( ω < 0, respec-
tively), if the disclination formation is associated with
addition of extra QDs (removal of QDs, respectively)
at the second stage.

From formulas (16)-(18), (22), (26) and (27) and
the condition n =-ωR2/(2up2), we find the total energy
W∆ of the disclination in the QD array to be:

W
D R∆ = +

�
��

�
	


' .
.

ω
ω

γ

2

8

12 6
 (28)

Since W∆ ∝  R2, the formation of isolated disclinations
(Fig. 1 c) is highly unfavourable in real QD systems.
In general, however, as with conventional disclinations
in solids (e.g., [24-28]), disclinations in QD array can
form configurations with screened stress fields. In this
case they can exist as (quasi)stable defects in QD
arrays.

In spirit of conventional models [21] treating point
defects in three-dimensional solids as elastic balls
with extra or deficient free volume in three-dimen-
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sional elastic media, we will model elastic relaxation
of QD ensembles with point defects (Fig. 1 d) as be-
ing induced by inserting elastic disks into initially
empty disc-like regions in thin plate. (Here and in the
following, we restrict the term “point defect” to va-
cancies and interstitial QDs, although dislocations and
disclinations in a two-dimensional QD array can be
considered as point defects as well). In doing so, va-
cancies and interstitial QDs are characterized by re-
spectively negative and positive difference ∆r between
the radii r

0
+∆r and r

0
 of the inserted disc and empty

disc-like region. In the framework of the model dis-
cussed, the self-energy W

self
 of a point defect can be

written as follows:

W G r
self

p

i
= 2 2π ( ) .∆  (29)

The energy W
int

 that characterizes the interaction of a
point defect with the stress field σ0 can be calculated
[23] as

W
G r r

i

int

p =
πη

γ
0
∆

,  (30)

where η = |γσ0/G
i
|=1.21.

In the case of vacancies and interstitial QDs, with
formulas (22), (29) and (30), we have the total en-
ergy W  = W

self
+W

int
+W

I 
(n=1) of a vacancy or an in-

terstitial QD to be given as:

W G p
r

p
u

r r

p

uS

S

p

i
= − +

�
��
�
	


�

�

�

��
2

2

0

2

4

2

2
4

π πη
γ γ

∆ ∆| |
.  (31)

Dependences W p(|∆r/p|), for a vacancy (with r
0
=p and

u=1) and interstitial QD (with r
0
=p/√2 and u=-1) are

shown in Fig. 3 for the case γ=1. From Fig. 3 it fol-
lows that the energy of a vacancy with |∆r|=(0.2-0.4)
p is in the range of W p=(0.35-0.5)G

i
p2. The energy

of an interstitial QD strongly depends on ∆r. For ∆r/p
=(0.2-0.4), it is in the range of W p=(0.2-1.5) G

I
 p2.

It should be noted that the energy of a vacancy in
2D array of QDs is close to the energy of a conven-
tional vacancy in real crystals. Actually, the elastic
energy W

3D
 of a point defect in a crystal, modeled as

an elastic ball with radius r
0
+∆r, inserted into a ball-

like pore with radius r
0
, is as follows: W

3D
=8pG r (∆r)2.

For characteristic values of r
0
 =b, ∆r = -0.2 b, p=100

b (with b being the interatomic distance in a crystal),
r

0
=-0.2 p, θ=11° and 2a/p=0.4-0.8, we have: Wp/

W
3D

=0.04-2.5. A similar situation is with interstitial
QDs in QD arrays and interstitial atoms in real crys-
tals. As a corollary, similar to conventional point de-
fects in real crystals, vacancies and interstitial QDs
can be intensively formed in QD arrays fabricated at
non-equilibrium conditions.

Following experimental data [16, 29, 30], large
dome-like QDs are formed in arrays of small pyrami-

p

p

p p p

p

p

p

~

~ ~

~

dal QDs. Their formation breaks uniformity of QDs in
size and shape, leading to degradation of their func-
tional properties [16, 29, 30]. Recently, Ref. [8] has
reported on experimental observation of the forma-
tion of small pyramidal QDs in arrays of large dome-
like QDs. In terms of point defects, minority QDs
(dome-like QDs in arrays of pyramidal QDs and py-
ramidal QDs in arrays of dome-like QDs) can be
treated as impurity-like defects. In the first approxi-
mation such defects are described as point dilatation
centers with positive or negative dilatation, depend-
ing on their size. The elastic energy of an impurity-
like defect is equal to the sum W

self
+W

int
. It should be

taken into account in analysis of experimentally de-
tected [16, 29, 30] shape transformations of QDs.

4. CONCLUDING REMARKS

Thus, in this paper, we have theoretically examined
QD ensembles of the new type – the QD arrays with
defects (Fig. 1 b, c and d) – with focuses placed on
their elastic characteristics, such as elastic moduli
and elastic energies of defects. It is shown that va-
cancies and interstitial QDs (Fig. 1 d) are character-
ized by energies whose values are close to those of
conventional point defects in real crystals. As a cor-
ollary, vacancies and interstitial QDs, similar to their
counterparts in real crystals, can be intensively formed
in QD arrays fabricated at highly non-equilibrium con-
ditions (which are rather conventional in real tech-
nologies). Defects (Fig. 1 b, c and d) cause irregu-
larities in spatial arrangement of QDs and, therefore,
the conventional stress distribution in QD/substrate
composite, which, in its turn, strongly affects diffu-
sion, Ostwald ripening, conventional misfit (lattice)
dislocation formation and shape transformations in

Fig. 3. Dependences of energy W p (in units G
I
 p2) of

vacancy (curve 1) and interstitial quantum dot (curve
2) in 2D array of quantum dots on parameter |∆r/p|,
for γ = 1.

p p
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QDs. The processes discussed strongly influence the
outstanding functional properties of QD ensembles.
In this context, of special importance will be experi-
mental identification of the structural and behavioral
features of QD arrays containing defects (Fig. 1 b, c,
and d). These features should be definitely taken into
consideration in further experimental and theoretical
study of QD ensembles, because of their fundamen-
tal significance and potential use in technological
applications. The results of the theoretical analysis
of this paper can be used also in studies of ordered
ensembles of vortices in superconductors, superflu-
ids, ferromagnetic materials, etc.
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