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Abstract. A theoretical model is proposed which describes the generation of nanocracks at
grain boundary disclinations in a nanocomposite material. The equilibrium (critical) length of the
nanocrack is calculated and studied in dependence of the system parameters. It is shown that
the nanocrack can change its direction at the nanoinclusion/matrix interface or propagates straight
into the bulk of the nanoinclusion. The probability of nanocrack generation increases near the
nanoinclusions with negative (compressive) dilatation eigenstrain. The decrease in size of a
nanoinclusion diminishes the probability of nanocrack growth along the interface, if the eigenstrain
is negative, and increases this probability, if the eigenstrain is positive (tensile).

1. INTRODUCTION

It is well known that strength and hardness of
nanocrystalline and nanocomposite materials ex-
ceed those of their coarse-grained counterparts [1-
6]. However, these materials often demonstrate
brittle behavior at low and room temperatures, which
limits their practical application. Investigation of the
failure processes in nanocrystalline and nanocom-
posite materials thus seems to be very important.

As was reported by many authors (see,e. g.,
[2, 5, 7-11]), the mechanisms of intercrystaline frac-
ture dominate in fine-grained nanocrystalline and
nanocomposite materials. Therefore, the most prob-
able sites for crack generation must be the defects
and stress concentrators located at grain bound-
aries (GBs). GBs in such materials often have non-
equilibrium structure which manifests itself in jumps
of the misorientation angle across the GBs. The

misorientation jumps are effectively described in
terms of GB disclinations [6, 12, 13] which are pow-
erful sources of elastic stresses and therefore favor-
able sites for crack embryo nucleation. Nowadays
there are a number of theoretical models which con-
sider the heterogeneous crack generation at super-
dislocations [14, 15], dislocation pile-ups [14],
wedge disclination loop [16], individual straight wedge
disclinations [17-19], their dipoles [20] and more
complicated arrangements of wedge disclinations
[17, 21].

Nanocomposite materials commonly consist of
a micro- or nanocrystalline matrix and nanoscopic
inclusions (nanoinclusions). Due to differences in
crystalline structure and physical properties of the
matrix and nanoinclusions, there exist residual elas-
tic (misfit) stresses in such materials. The misfit
stresses may stimulate or hamper the propagation
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of the micro- or nanocracks generated in the vicin-
ity of nanoinclusions. As a result, the equilibrium
(critical) size of a growing crack must depend on
characteristic lengths of the nanocomposite, which
are the matrix grain size, nanoinclusion sizes, and
spacing between the nanoinclusions. An example
of theoretical examination of microcrack generation
at the phase boundaries between a matrix and a
mesoscopic inclusion is given in Ref. 22. When a
nanocomposite material contains GB disclinations,
one should take into account the effect of both the
nanoinclusion and disclination stress fields on
nanocrack nucleation and further propagation.

The main aim of the present paper is to develop
a theoretical model describing the generation and
propagation of a nanocrack in the sum stress field
of a dipole of wedge GB disclinations and a misfitting
nanoinclusion.

2. MODEL

Consider a nanocrack of the length R
1
 which is gen-

erated at a negative partial wedge disclination with
the strength � ω belonging to a two-axes dipole of
GB disclinations with the arm L (Fig. 1). Let γ

1
 be

the specific surface energy characterizing the
nanocrack borders. It is assumed that the nanocrack
propagates along the GB ÀÎ and achieves an inter-
phase boundary separating a nanoinclusion from the
matrix. The disclination dipole is a low-energy self-
screened defect configuration which is directly ob-
served in severely deformed solids (e. g., see Refs.
12, 13, 23) and often used in theoretical modeling
of various GB phenomena (e. g., see Refs. 6, 13,
24-32). The nanoinclusion is modeled as a long elas-
tically isotropic parallelepiped with a cross section
2a×2b in an infinite elastically isotropic solid. Both
the shear modulus G and Poisson ratio ν are sup-
posed to be the same for the matrix and nanoinclu-
sion. The nanoinclusion domain is characterized by
a uniform dilatational eigenstrain ε∗ caused by the
differences in the crystalline lattice parameters and
coefficients of thermal extension of the matrix and
nanoinclusion.

After the nanocrack has achieved the nanoin-
clusion boundary, it is assumed to propagate fur-
ther by the distance R

2
. In the framework of the

model, the nanocrack may propagate either into the
bulk or along the boundary of the nanoinclusion. In
the first case, the intracrystallite crack borders OB
are both characterized by a specific surface energy
γ

2
, while in the second case, the interface crack

borders OC are supposed to have approximately
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Fig. 1. Generation of nanocrack in the stress field
created by both disclination dipole and nanoinclu-
sion.

the same specific surface energy γ
3
 (Fig. 1). The

azimuthal angle θ determines a deviation of the
nanocrack from its initial plane. Below we examine
the most probable way of the nanocrack propaga-
tion inside the nanoinclusion or along the matrix/
nanoinclusion interface.

At the first stage AO of its propagation, the
nanocrack opens under action of the normal,
σθθ

d (r,θ=π+α) and σθθ

i (r,θ=π+α), and shear,
σ θr

d (r,θ=π+α) and σ θr

i (r,θ=π+α), components of the
disclination dipole (σ θi

d
) and nanoinclusion (σ θi

i
)

stress fields. At the next stages, OB or OC, the
nanocrack also grows in the field of normal, σθθ

d (r,θ)
and σθθ

i (r,θ), and shear, σ θr

d (r,θ) and σ θr

i (r,θ), stresses
of the dipole and nanoinclusion. All of the stress
components are written in the cylindrical coordinate
system (r,θ,z) with its origin at the point O (Fig. 1).
To calculate these components, we use a rectan-
gular coordinate system (x,y,z) and the well-known
nonvanishing stress components of the disclination
dipole [13]
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where D=G/[2π(1-ν)], x
0
=Lsinβ, y

0
=Lcosβ and

x
1
=R

1
sinα, and nanoinclusion [33]:
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where x
2
=a(1-2k) and y

2
=b. When the parameter k

varies from 0 to 1, the point O (where the GB  ÀO
contacts with the nanoinclusion) shifts from left to
right along the bottom boundary of the nanoinclusion
(Fig. 1).

Using formulae (1)-(3), (5-7) and the coordinate
transforms x=rcosθ and y=r sinθ, we can rewrite the
stress components σθθ

d (r,θ),σθθ

i (r,θ), σ θr

d (r,θ), and
σ θr

i (r,θ) as follows:
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where  j=d,i.
To characterize quantitatively the conditions of

the nanocrack generation, let us calculate in the
first approximation the equilibrium (critical) length,
R=R

1
+R

2
, of the nanocrack. This may be done by

means of the configurational-force method [14] which
was effectively exploited earlier in works [14-17,19,
21, 22]. Following Indenbom [14], the configurational
force F is defined as the strain energy released when
the crack moves over a unit distance. In the case
under discussion, it can be written in its general
form as [14]:

F
R

G
r

=
−

+
π ν

σ σθθ θ
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2 2b g  (11)

where σθθ
 and σ θr  are the mean weighted values of

the sum stress components σθθ=σθθ

d +σθθ

i  and
σ
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d +σ θr

i , respectively. With equations (9) and
(10), these mean weighted values are determined
by
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In the first approximation in use, the equilibrium
length R of the nanocrack is derived from the bal-
ance, F=2γ, between a release F of strain energy
and the formation of two new nanocrack surfaces
characterized by the mean surface energy density,
γ =(γ1R1+γi R2)/(R1+R2), i=2,3, per unit area. We take
here the mean value for γ because the first, AO,
and the second, OB or OC, segments of the curved
nanocrack are characterized by different surface
energies, γ

1
 and γ

i
, respectively. With the balance,

F=2γ, and use of equation (11), we have the follow-
ing equation with respect to the equilibrium length
R:

8

1

2 2G

R
r

γ

π ν
σ σθθ θ

( )
.

−
= +  (14)

In a general case, Eq. (14) can be solved only
numerically. With this equation, let us consider the
equilibrium length R of the nanocrack as a function
of the system parameters. It is worth noting that
the equilibrium (critical) length of the nanocrack
corresponds to an unstable equilibrium of the sys-
tem which is characterized by its maximum total

energy. Therefore, the increase of the equilibrium
length R diminishes the probability of its generation
under the given conditions, while the decrease of
R increases this probability.

4. RESULTS AND DISCUSSION

Let us fix the length R
1
 of the first segment AO of

the nanocrack, and calculate the equilibrium length
R

2
 of the second segment (OB or OC) of the

nanocrack in dependence of the angle θ. For defi-
niteness, we assume that R

1
 is equal to the arm L

of the disclination dipole, and let d≈L≈R
1
=30 nm.

As a nanoinclusion, we take a long rod having the
square cross section 10 nm × 10 nm, which is char-
acterized by the purely dilatation eigenstrain ε*=-
0.01. Let the GB ÀÎ be inclined by the angle α=45°
to the bottom boundary of the nanoinclusion, and
the angle β, determining the orientation of the di-
pole arm, be equal to zero: β=0° (Fig. 1). For the
specific surface energies, we use the following esti-
mates: γ

1
≈ γ

3
≈ 0.05GB and γ

2
≈0.07GB [34], which

are typical for such FCC metals as Cu, Al, Ni, etc.
Here G is the shear modulus, and B is the crystal-
line lattice parameter. The other parameters of the
model are assumed to have the values typical for
nanocrystalline materials [6]:  ω≈0.1, ν≈0.3 and
B ≈0.3 nm.

Fig. 2 shows the results of calculation of the
equilibrium length R

2
 of the second nanocrack seg-

ment, for different values of the angle θ, in the cases
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Fig. 2. Equilibrium lengths R
2
 of the second segment of the nanocrack for the angles θ = 0, 20, 45, 70, and

90° (from bottom to top) at k=0 (à) and k=0.5 (b).
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where the GB AO contacts with the nanoinclusion
in its corner, at k=0 (Fig. 2a), and in the middle of
its face, at k=0.5 (Fig. 2b). It is seen that in the first
case, the nanocrack must change its direction, and
the most probable way of its propagation lies along
the nanoinclusion bottom face, where the equilib-
rium length R

2
 is minimal. As a result, the nano-

inclusion exfoliates from the matrix and shears along
the interface. In the second case, the nanocrack
must propagate straight into the bulk of the
nanoinclution, thus cleaving and shearing it. The
reason of such a different behavior is the strong
concentration of the nanoinclusion shear stress at
the corners and along the interface. Therefore, when
the GB AO contacts with the nanoinclusion in its
corner, at k=0 (Fig. 2a), the nanocrack propagates
mainly under the action of this stress component.
In opposite, the nanoinclusion shear stress vanishes
at the middle point of the interface, and the
nanocrack propagation is mainly ruled by the nor-
mal (tension) stress component which is maximum
at this point of the interface (Fig. 2b).

With taking as an example the situation shown
in Fig. 2a, let us consider the influence of the sign

of the dilatation eigenstrain ε* upon the equilibrium
length R

2
. Fig. 3 demonstrates the dependence of

R
2
 on the angle θ for the cases of compressive ε*

(Fig. 3à) and tensile ε* (Fig. 3b). It is seen that the
nanocrack generation is more favorable near an in-
clusion which is characterized by a compressive
eigenstrain (ε*<0). This is so because the compres-
sive eigenstrain produces the tensile elastic strain
within the nanoinclusion. (For example, if the
nanoinclusion has the coefficient of thermal exten-
sion higher than that of the matrix, then under a
temperature decrease, the nanoinclusion tries to
shrink stronger than the matrix and occurs to be
elastically stretched.)  Therefore, the elastic fields
of the nanoinclusion stimulate the nanocrack to
open. In the opposite case, when ε*>0, the elastic
fields of the nanoinclusion hamper the nanocrack
opening, and the nanocrack propagates only under
the stress field of the disclination dipole.

Let us now discuss the effect of the nanoinclusion
size 2a on the value of the equilibrium length R

2

(i.e., the probability of the nanocrack propagation
along the interface). Here we consider again the situ-
ation of a negative eigenstrain ε*=-0.01.  As shown

45°
3 nm

3,6

4

4,8

9,3

10

10

(a)

ε∗
<0

(b)

45° 4,1 nm

9,2

11,8

13

14,4

10

10

ε∗
>0

Fig. 3. Equilibrium lengths R
2
  of the second segment of the nanocrack for the angles θ = 0, 20, 45, 70, and

90° (from bottom to top) and the nanoinclusion eigenstrain ε*=-0.01 (à) and ε*=0.01 (b).
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in Fig. 4, the decrease of 2a from 10 to 5 nm leads
to increasing R

2
 (and decreasing the probability of

such propagation, Fig. 4a), while the increase of 2a
from 10 to 15 nm also decreases R

2
 (and increases

the probability of such propagation, Fig. 4b). These
results seem to be rather natural because the val-
ues of the nanoinclusion stresses increase with its
size 2a. As is evident, changing the sign of the
eigenstrain will give just an opposite situation, when
a decrease of the nanoinclusion in size will increase
the probability of nanocrack propagation along the
interface.

5. CONCLUDING REMARKS

Thus, in this paper a theoretical model has been
elaborated which describes the generation of a
nanocrack at grain boundary disclinations in a
nanocomposite material. In the framework of the
model, a nanocrack is nucleated at a two-axes di-
pole of partial wedge disclinations near a misfitting
nanoinclusion having the shape of a long parallel-
epiped, and propagate along a grain boundary to
the nanoinclusion. Depending on the point of con-
tact with the nanoinclusion, the nanocrack can
propagate along the nanoinclusion/matrix interface
or into the bulk of the nanoinclusion. It is shown,
that the probability of nanocrack generation increases

Fig. 4. Equilibrium lengths R
2
 of the second segment of the nanocrack for the angles θ = 0, 20, 45, 70, and

90° (from bottom to top) and the nanoinclusion sizes 5 nm × 5 nm (à) and 15 nm × 15 nm (b)

at the nanoinclusions having negative (compressive)
dilatation eigenstrain. The decrease in size of a
nanoinclusion diminishes the probability of nanocrack
growth along the interface, if the eigenstrain is nega-
tive, and increases this probability, if the eigenstrain
is positive (tensile).
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