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Abstract. We give a brief overview of the analytical solutions for the elastic fields of inclusions in
composite solids with an emphasis placed on nanocomposites. Besides, we describe the most
popular analytical procedures used in calculations of the elastic fields of inclusions in
nanocomposites. These procedures include the Green function method, the method of surface
dislocation loops, integration of the equations of equilibrium, and the method of infinitesimal
inclusions. Also, we discuss and compare the solutions for the elastic fields of nanoinclusions,
derived within linear elasticity, with those obtained using atomistic simulations. With this com-
parison, it is shown that the linear elasticity approach is valid down to extremely small inclusion
dimensions.

1. INTRODUCTION

Nanocomposite solids represent a wide class of
solid composite materials consisting of at least one
component with dimensions in the nanometer (1
nm = 10-9 m) range. These advanced materials have
become increasingly important both in fundamen-
tal and applied research because of their unique
mechanical, electronic and optical properties [1-4].
For example, nanocomposites may have higher
strength and hardness, higher thermal stability and
better electrical conductivity than their conventional
counterparts. Of special importance are both
nanotube-reinforced composites [5] and
nanocomposites with ensembles of quantum dots
and wires, which have unique optoelectronic prop-
erties [6-9].

The outstanding mechanical and electronic prop-
erties of nanocomposite solids are dramatically in-
fluenced by elastic fields of their inclusions. The
knowledge of the elastic strains and stresses ex-
isting in nanocomposites is necessary in calcula-

tion of their mechanical strength, determination of
the conditions for their fracture, and computation of
the critical parameters for the formation of linear
defects in nanocomposites. In the case of quantum
dots and wires, their elastic fields crucially affect
their electronic properties and influence the spatial
arrangement, size and shape of the self-assembled
nanostructures growing on the surface of a
nanocomposite solid with quantum dots or wires.

The elastic fields acting in nanocomposite sol-
ids depend on a number of factors, which include
material and geometric parameters of nanocompo-
sites (types and parameters of the inclusion and
matrix crystal lattices, inclusion size and shape,
surface energy of the matrix-inclusion interface), and
mutual diffusion of the matrix and inclusion.

In the nanocomposites having the structure of a
solid solution, their elastic fields may also be influ-
enced by the segregation of the atoms of the same
kind. In spite of an essential mutual diffusion of the
matrix and inclusions in nanocomposites [10-21],
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the calculation of the elastic fields, acting in nano-
composites, with an account of a real spatially in-
homogeneous concentration distribution of different
components is a very complicated problem. There-
fore, for the calculation of elastic fields of nanoscopic
inclusions, atomic diffusion is commonly neglected.

The elastic fields acting in nanocomposites are
computed using different approaches. These ap-
proaches include the methods of classical linear
elasticity [22-47], atomistic calculations [26,39,48-
57], and the methods that combine elastic con-
tinuum models of nanocomposites with atomistic
calculations (e.g., [58]). In the continuum models
based on the elasticity theory, inclusions in
nanocomposites are described using the tensor of
eigenstrains, which are associated with the differ-
ence (misfit) of the matrix and inclusion crystal lat-
tices. Within the continuum approaches, the elas-
tic fields acting in nanocomposites are calculated
using analytical methods [22,23,25,27�29,34�
37,41,43,47], or numerical techniques (finite element
method [22,24,30,32,33,38,39,42,44�46], boundary
integral method (e.g., [40]), finite difference method
(e.g., [26]), etc.).

In contrast to atomistic calculations, the use of
continuum models for the calculation of inclusion
elastic fields in nanocomposites allows one to ob-
tain the solutions applicable for nanocomposites with
different chemical composition. At the same time,
classical linear elasticity may give inaccurate val-
ues of the inclusion elastic fields in the cases where
the inclusion is facetted, its sizes are very small, or
the misfit of the crystal lattice parameters of the
matrix and inclusion is very high.

In the case of a facetted inclusion, the applica-
tion of linear elasticity may lead to inexact values of
inclusion elastic fields due to the singularity of some
strain tensor components at the facetted inclusion
edges. Therefore, in the regions near the inclusion
edges, the linear elasticity theory is inapplicable.
However, the sizes of these regions are very small,
and so their existence is not essential.

In the case of a very small inclusion, the linear
elasticity theory may fail when the smallest of the
inclusion sizes is comparable to the size of an atom.
To estimate the lower limit where linear elasticity is
still valid, the elastic fields obtained in its frame
should be compared to the results of atomistic cal-
culations. Such a comparison has recently been
carried out for spherical inclusions by Makeev et al.
[54]. They have shown that the inclusion strains
calculated within the two approaches coincide, if
the inclusion radius exceeds 5 interatomic distances,

and have small discrepancies for the inclusion ra-
dius of 4-5 interatomic distances. A perfect coinci-
dence of the elastic fields of nanoscopic inclusions
with different shapes, calculated within the con-
tinuum and atomistic approaches, has also been
demonstrated in Refs. [38,50]. A discrepancy in the
results provided by the continuum and atomistic
calculations arises only in the case of a very high
misfit between the matrix and inclusion crystal lat-
tice parameters [26] and is, apparently, associated
with the errors given by the linear elasticity theory
at high strains.

Thus, the comparison of the results obtained
within linear elasticity with atomistic calculations
testifies to the opportunity of using the linear elas-
ticity theory for the calculation of the elastic fields
acting in nanocomposites. A brief review of the avail-
able analytical solutions for the elastic fields of
nanocomposites will be given in the next section. In
the following sections, we will also describe the most
popular analytical techniques that allow one to cal-
culate the displacement, strain and stress fields in
nanocomposites.

2. ANALYTICAL SOLUTIONS FOR
ELASTIC FIELDS OF INCLUSIONS

Consider a domain in a solid (nano)composite, which,
in addition to elastic strains, is subjected to the ac-
tion of inelastic strains (eigenstrains). Such inelastic
strains may appear as a result of thermal expansion
or contraction, arise due to the misfit of the crystal
lattice parameters of the matrix and inclusion or origi-
nate in the course of phase transitions or plastic de-
formation. Following Mura [59], we will call such a
domain an inclusion if its elastic constants are equal
to the elastic constants of the rest of the material
(matrix), and an inhomogeneity if its elastic constants
differ from the elastic constants of the matrix. In the
following, we will mainly consider the simpler case
where the difference between the elastic constants
of the different phases of the composite is not very
large and the domain with an eigenstrain may be mod-
eled as an inclusion.

The exact analytical solutions for the elastic fields
of inclusions are available for isotropic and anisotro-
pic inclusions situated in an infinite or semi-infinite
medium, finite-thickness plate, cylinder, infinite plane
or semiplane. First, examine the papers that ad-
dress elastic fields of isotropic inclusions in an infi-
nite medium. One of the pioneering works in this
area is the work by Goodier [60]. In this work, the
eigenstrains arose due to the thermal expansion,
and elliptic and rectangular inclusions in a thin infi-
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nite plate were considered. More recently, Miklestad
[61] and Edward [62] examined the problems about
the thermal stresses induced by an ellipsoidal in-
clusion and uniformly heated semi-infinite circular
cylindrical inclusion. The solution for an ellipsoidal
inclusion with arbitrary eigenstrains in an isotropic
infinite medium was originally obtained in the works
by Eshelby [63-65], which were later collected in
book [66]. Eshelby, in particular, showed that elas-
tic strains and stresses were uniform inside an el-
lipsoidal inclusion situated in infinite medium. The
partial cases of an ellipsoidal inclusion are the cy-
lindrical and spherical ones. The expressions for
the elastic fields of an elastic cylindrical inclusion
with a three-axis dilatation were derived in Ref. [67]
using the equations of mechanical equilibrium. In
Ref. [68] the elastic displacements, strains and
stresses of a spherical inclusion with a one-axis
dilatation were obtained through a continuous dis-
tribution of circular dislocation loops over the sphere
surface. Recently, the stress fields of the inclusions
having the shape of a semi-sphere [69] and finite-
height cylinder [70] have been calculated using the
Green function method.

In the above solutions [61-68] for ellipsoidal in-
clusions their elastic strains and stresses had no
singularities. It is not the case, however, for facet-
ted inclusions. The first solution by Goodier [60] for
a rectangular inclusion in a thin plate already dem-
onstrated  that in the vertices of the rectangular
boundary, the shear strains and stresses were sin-
gular. An extension of Goodier�s solution to the case
of a heated parallelepipedic inclusion was done by
Ignachek and Nowacki in 1958 and published in book
[71]. The thermal stresses created by a finite num-
ber of parallelepipedic inclusions were calculated in
Ref. [72], whose results were also published in book
[73]. The elastic fields of isotropic parallelepipedic
inclusions with an arbitrary eigenstrain were derived
in Refs. [74-77]. In particular, Faivre has shown [75]
that if the inclusion eigenstrain is a pure dilatation,
then the elastic dilatation is uniform inside the in-
clusion and equal to zero outside it. As a result, the
strain energy of such an inclusion does not depend
on its shape.

Last years a few problems for isotropic inclu-
sions with a shape of polygons and polyhedrons
have also been solved [25,29,78-84]. In particular,
using the Green function approach, Pearson and
Faux have obtained the stress field of a truncated
pyramidal inclusion in an isotropic infinite medium
[29]. Faux et al. have calculated the strain field of a
wire inclusion with an arbitrary cross section [25].

Gosling and Willis have calculated the elastic fields
of wire inclusions with a trapezoidal cross section
[78]. Although in general, elastic strains inside po-
lygonal and polyhedral inclusions are not uniform
[79,81], Mura has shown [82,83] that there are in-
clusions having the shape of polygons of special
kind, which create inside themselves a uniform strain
field. Thus, it has appeared that the ellipsoidal in-
clusions are not the only kind of inclusions, which
create uniform elastic strains in their internal regions.

Most of the solutions for isotropic inclusions in
an infinite medium have also been extended to the
case of inclusions in a half-space. Apparently, the
first problem about an inclusion in a semi-infinite
medium was solved by Mindlin and Cheng [85] for a
spherical inclusion with a uniform eigenstrain in-
duced by the difference in the thermal expansion
coefficients of the inclusion and the matrix. More
recently, this solution has been generalized to the
case of an arbitrary eigenstrain [86]. Seo and Mura
have obtained the solution for an ellipsoidal inclu-
sion with a dilatational eigenstrain [87]. Yu and
Sanday have solved the problem about an
axisymmetric  inclusion with a dilatation and a uni-
form tensile strain [88]. The interaction of a spheri-
cal inclusion with a free surface has been exam-
ined by Maradulin and Wallis [89] and Loges et al.
[90]. Maradulin and Wallis [89] have also analyzed
the interaction of dilatation centers near a flat free
surface. Finally, the solution for a semispherical in-
clusion in a half-space has recently been obtained
by Wu [91].

Apparently, the first calculation of the elastic fields
of a facetted inclusion in a half-space was performed
by Chiu [92]. Chiu considered a parallelepipedic in-
clusion lying in such a way that one of its facets
was parallel to a free surface. The inclusion was
supposed to have an arbitrary dilatational
eigenstrain, and the solution for its elastic fields was
obtained in terms of the Legendre polynomials. More
recently, Hu obtained an alternative solution [93] for
the stress field of a dilatational parallelepipedic in-
clusion outside this inclusion. The solutions of Chiu
[92] and Hu [93] were extended by Glas [94], who
calculated not only the elastic stresses and strains
but also the displacements of a dilatational
parallelepipedic inclusion in a half-space, as well
as the strain energy of such an inclusion. In con-
trast to the solution of Hu [93], the explicit solution
given by Glas [94] describes the elastic fields both
outside and inside the inclusion. The solution of Hu
[93] was obtained by integrating the elastic fields
created by point sources of expansion over the in-
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clusion volume. The solution of Glas [94] for a
parallelepipedic inclusion was obtained using the
expressions (also derived in Ref. [94] ) for the elas-
tic displacements of a platelike dilatational inclu-
sion whose eigenstrain varied in one direction in an
oscillatory manner. Such a platelike inclusion may
model, in particular, a film with an alternating chemical
composition, embedded into a matrix. As a limiting
case of the parallelepipedic inclusion, Hu [93] and
Glas [94] also calculated the elastic fields of a wire
inclusion with a rectangular cross section, parallel
to a free surface. The expressions for the stress
field created in a half-space by an infinite wire inclu-
sion with a rectangular cross section were also ob-
tained by Gutkin in 1987 using the solution [95] for
the stress field of such an inclusion in a finite-thick-
ness plate. These expressions are given in Ref. [96].
Finally, the displacement field created by an array
of infinite rectangular wire inclusions in a half-space
was derived by Kaganer et al. [47].

Using the expressions [94] for the displacements
created by a parallelepipedic inclusion in a half-
space, Glas [35,36] calculated the elastic fields of
the inclusions with the shapes of a truncated pyra-
mid and infinite trapezoidal wire. (A partial case of
the first of these problem has been considered in
Ref. [43] where the average normal stress and dila-
tation created by a subsurface pyramidal inclusion
at a flat free surface were calculated). More recently,
Glas [37] used the solution for a single trapezoidal
wire inclusion for the calculation of the elastic fields
of an array of such inclusions and generalized this
solution to the case of arbitrary facetted wire inclu-
sions of infinite length. As a limiting case of the
solution for the trapezoidal wire inclusions in a half-
space, Glas derived the explicit expressions for the
elastic fields of such inclusion in an infinite medium
[37]. For the calculation of the elastic fields of pyra-
midal and wire inclusions in a half-space, the latter
were modeled by continuous distributions of infinitely
thin parallelepipedic inclusions [35,36]. The same
approach was used for the calculation of the dis-
placements and strains induced by a finite-length
circular cylindrical inclusion parallel to a flat free
surface [41]. As a limiting case of solution [41], Glas
obtained the elastic fields induced by a semi-infi-
nite and infinite cylindrical inclusion in a half-space
and by a finite-length cylindrical inclusion in an infi-
nite solid. Solution [41] for a cylinder of finite length,
parallel to a free surface, amplified the previous so-
lutions for the finite-length cylinder perpendicular to
a flat free surface [97-99].

The solutions of many problems on inclusions
in an infinite or semi-infinite medium are also ex-
tended to the case of a two-phase infinite medium
with a flat interphase boundary. In these problems,
both phases are supposed to be elastically isotro-
pic but have different elastic moduli. When consid-
ering two-phase mediums, one distinguishes two
kinds of interphase boundaries: coherent and glid-
ing ones. For both kinds of interphase boundaries,
all the displacements and the stresses normal to
the boundary must be continuous at the interface.
Besides, at the coherent boundary, the stress com-
ponents tangential to the boundary must be con-
tinuous, whereas at the gliding interface these stress
components have to vanish. Most of the problems
on inclusions in two-phase mediums are solved for
coherent interfaces, although there are also solu-
tions for gliding interfaces. The simplest problems
about inclusions in a two-phase medium include the
problems about a dilatation center [100,101], spheri-
cal inclusion with an arbitrary homogeneous
eigenstrain [102], and deformation center [103].
Following Mindlin [104], Yu and Sanday [103] de-
fine the deformation center as a unit point force, a
dipole of such forces, or a dilatation center. On the
basis of the solution for a deformation center, Yu
and Sanday derived a general solution for a uniform
inclusion of arbitrary shape near a flat interface [105].
The solution was obtained for both a coherent and a
gliding interface. In the limiting case where the elas-
tic moduli of one of the phases were set to equal
zero and the inclusion shape was assumed to be
ellipdoidal or axisymmetrical, Yu and Sanday ob-
tained the known results [88,90] for inclusions at a
free surface.

Yu and Sanday obtained the general solution
[105] for an arbitrary inclusion in a two-phase me-
dium by integration of the elastic fields, created in
such a medium by a deformation center, over the
inclusion volume. Shortly before Yu and Sanday,
Hu applied a similar technique for the calculation of
the stresses induced by a parallelepipedic inclu-
sion in a half-space [93]. Note that, similar to the
case of an infinite medium, the elastic fields of an
arbitrary inclusion in a half-space or two-phase
medium may be obtained using the Green function
method, that is, through integration of the elastic
fields created by a unit point force over the inclu-
sion volume. The Green function method was used
in Ref. [106] for the calculation of the elastic fields
and strain energy of a cylindrical and a spherical
inclusion as well as for the solution of the problem
about an arbitrary axisymmetric inclusion near an
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interface [107]. Along with the problems on inclu-
sions in a two-phase 3D medium, the solutions of
2D problems for arbitrary inclusions in a two-phase
plane were also derived [108,109]. These problems
were solved using the conformal mapping approach.

Besides the problems on inclusions in a one- or
two-phase infinite medium or half-space, several
authors solved the problems about inclusions in a
finite-thickness plate and infinite cylinder. For ex-
ample, Malyshev et al. [95] calculated the stress
field of an infinite wire with a rectangular cross sec-
tion, whose axis is parallel to the plate surfaces.
The solution of this problem was obtained on the
basis of the expressions for the stress field of such
an inclusion in an infinite medium using the virtual
surface dislocation method [110]. In this approach,
the stress field of the inclusion in a plate was pre-
sented as the sum of the stress field of such an
inclusion in an infinite medium and the stress fields
of virtual dislocations continuously distributed over
the plate free surfaces. The dislocation distribution
densities were found from the boundary conditions
at the plate free surfaces by solving appropriate in-
tegral equations.

Another problem for an inclusion in a finite-thick-
ness plate is the problem about a dilatation center.
The solution of this problem was given by Yu and
Sanday [111] and amplifies the previous solution of
these authors for a deformation center in a two-phase
medium [103]. Using the solution for the dilatation
center, Yu and Sanday obtained the general solu-
tion for an arbitrary dilatational inclusion in a plate
[111]. As an illustration of the general solution ob-
tained, they also examined a spherical inclusion in
a plate [111]. More recently, Chang et al. [112] solved
the problem about another kind of inclusion in a plate,
namely about cylindrical inclusion perpendicular to
the plate surfaces. This solution supplements with
the solutions for such a cylindrical inclusion in a
half-space [97-99]. Besides the solutions for inclu-
sions in a plate, note the solution for an infinite cy-
lindrical inclusion with a uniform dilatational
eigenstrain, lying in a cylindrical matrix and coaxial
to this matrix [113].

Many solutions for inclusions in isotropic solids
were also generalized to the case of elastic anisot-
ropy. In particular, the elastic fields of cylindrical
inclusions in anisotropic infinite solids were obtained
in Refs. [114,115] using the complex potential
method. Willis extended solution [114] to the case
of cubic symmetry [116]. The subsequent analysis
was also performed for elliptic inclusions in an
orthotropic medium [117,118] and a medium with

one symmetry plane [119]. The problem on an ellip-
soidal inclusion in an infinite anisotropic medium
was examined by Asaro and Barnett [120], Mura
[59], and Kunin and Sosnina [121]. Andreev et al.
obtained in an integral form the strain field created
in an infinite cubic crystal by a spherical, cubic,
pyramidal, semispherical, truncated pyramidal and
finite-length cylindrical inclusion [27]. Holy et al.
considered the problem about a dilatation center in
an anisotropic semi-infinite cubic crystal [28]. Yang
and Chou derived the solutions for the generalized
plane [122] and antiplane [123] 2D problems about
elliptical inclusions in an infinite anisotropic medium.
More recently, solution [123] of the antiplane prob-
lem for an elliptical inclusion in an anisotropic infi-
nite medium was extended to the case of an aniso-
tropic half-space [124] and two-phase anisotropic
medium [125]. Recently, Ru obtained a general so-
lution for an inclusion of arbitrary shape in an aniso-
tropic plane or half-plane [126].

Thus, at present, there are a large number of
analytical solutions for the elastic fields of inclu-
sions of different shapes in isotropic and anisotro-
pic infinite and semi-infinite mediums, cylinders and
plates. Apparently, the most powerful tool for deriv-
ing the elastic fields of inclusions in infinite and semi-
infinite solids is the Green function method. Since
this method is widely used for the calculation of the
elastic fields of nanocomposites, we will describe it
in the next section.

3. GREEN FUNCTION METHOD

Following Kröner [127], present the total strain ∈
ij

acting in a solid as the sum of the elastic strain ε
ij

and inelastic strain (eigenstrain) ~ : ~ .
* *ε ε ε
ij ij ij ij

∈ = +  If
the solid contains an inclusion that occupies a 3D
domain Ω, the eigenstrain ~*ε

ij
 may be presented as

~ ( ),* *ε ε
ij ij

g= x  where x=(x
1
, x

2
, x

3
) is a point in a co-

ordinate space, g(x)=1 if the point x lies inside the
region Ω, and g(x)=0 otherwise. The relation
~ ( )* *ε ε

ij ij
g= x  means that the eigenstrain is equal to

ε
ij
*  inside the inclusion and to zero outside the in-

clusion.
The Green function method allows one to calcu-

late the elastic fields of an inclusion using as an
input the inclusion eigenstrain ε

ij
*  and its size and

shape (which are charaterized by the function g(x)).
According to [59], the displacements u

i
, created by

an inclusion in a composite solid, are given by

u x C G d
i j mn mn

V

ij
( ) ~ ( ) ( , ) .*= ′

′
′ ′z l
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ε
∂

∂
x

x
x x x  (1)
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In formula (1) x '=(x
1
', x

2
', x

3
') is a 3D vector,

dx '=dx
1
'dx

2
'dx

3
', V is the region occupied by the com-

posite solid in the coordinate space (x
1
', x

2
', x

3
'), C

jlmn

is the tensor of elastic moduli, and G
ij
(x, x ') is the

elastostatic Green tensor of a medium. If the inclu-
sion eigenstrain is uniform (that is, ε

mn

* = const), for-
mula (1) may be written as

u C
x

G d
i j mn mn ij
( ) ( , )*
x x x x=

′
′ ′zl

l

ε
∂

∂Ω

 (2)

or presented through an integral over the inclusion
boundary |Ω| [59]:

u C G n dS
i j mn mn ij l
( ) ( , ) ( ) ( ).*
x x x x x= ′ ′ ′zl

ε
Ω

 (3)

In formula (3) n denotes the external normal to the
surface |Ω|.

The values of the Green functions G
ij
, appearing

in formulae (1)�(3), are numerically equal to the dis-
placements ~u

i
, created at the point x by a unit point

force acting at the point x� in the direction of the x
j
-

axis. In the case of an infinite medium, the Green
tensor depends on the difference x-x� only. The ex-
pressions for the Green functions for an infinite iso-
tropic medium were originally derived by Kelvin [128]
and have the following form [59]:

G

v R
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3
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')2]1/2, δ

kl
 is the Kro-

necker delta, equal to 1 if k=l and to 0 if k ≠ l, µ is
the shear modulus, and ν is the Poisson ratio. The
Green functions for different infinite anisotropic me-
diums were also obtained in different forms [129-
143].

The Green tensor for a semi-infinite isotropic
medium x3 ≥ 0 was obtained by Mindlin [104]. No-
tice that the expressions for the Green functions
given in Ref. [104] contain a sign error, which was
corrected by Mindlin in 1975 in a private communi-
cation. In the corrected form, the expressions for
the Green functions of a semi-infinite isotropic me-
dium x3 ≥ 0 are given in Mura�s book [59] and have
the following form (in units of 1/[16πµ(1-ν)]):
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It should be noted that the Green functions given
by formulae (5) provide the displacements created
by a unit point force inside a semi-infinite solid. The
problem of finding the displacements induced by
such a force in a semi-infinite solid is called the
Mindlin problem. Another problem refers to the situ-
ations where a point force is applied at the surface
of a semi-infinite solid from outside. This problem is
called the Boussinesq problem. For both classes
of problems, the functions relating the applied force
and the displacements induced by it are referred to
as Green functions. However, here we will not dis-
cuss the Green functions arising in the Boussinesq
problem and restrict ourselves to the Green func-
tions for the Mindlin problem. For a detailed consid-
eration of the Boussinesq problem for anisotropic
solids, the reader is referred to recent review [144].

(5a)

(5b)

(5d)

2
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The Green functions for anisotropic semi-infinite
solids have been obtained in an integral form by
Portz and Maradulin [145] for the case of cubic crys-
tals. Later, the Green functions for anisotropic half-
spaces have been derived by Walker [146] and by
Pan [147].

For the isotropic case, the Green tensors are
also obtained for a two-phase medium with a coher-
ent interface [148] and gliding interface [149]. The
expressions for the Green tensors of such medi-
ums are also given in book [59].

After the calculation of the inclusion displace-
ments u

i
 using formula (1), it is easy to derive the

expressions for the inclusion total strains ∈
ij
 and

stresses σ
ij
. The total strains ∈

ij
 are written in terms

of the displacements u
i
 as

∈ = +
ij i j j i

u u
1

2
( ).

, ,  (6)

With the aid of Hooke�s law and the relation
ε ε

k k kl l l
=∈ −~ ,*

 the stresses σ
ij
 are presented in terms

of the strains ∈
ij
 as

σ ε ε
ij ijk k ijk k k

C C= = ∈ −
l l l l l

( ~ ).*  (7)

In the mediums where exact closed-form ana-
lytical expressions for the Green functions exist,
the inclusion displacements, strains and stresses
may be directly calculated using formulae (1), (6),
and (7). However, for most of anisotropic solids, the
Green functions may be obtained only in the form of
integrals or series. Therefore, in many cases, es-
pecially for anisotropic solids, it is more convenient
to use the expressions for the Fourier images of the
Green functions.

For an infinite medium, the Green functions de-
pend on the coordinate difference x-x� only. This al-
lows one to apply the convolution theorem to the
right-hand side of formula (1). Using this theorem,
3D Fourier images $u

p
 and $∈pq  of the inclusion dis-

placements and strains are written in terms of 3D
Fourier images $G

pq
 of the Green functions G

pq
(x-x�).

(Here and in the following the 3D Fourier transforms
of arbitrary functions f(x) are defined by the relation

$( ) ( ) exp(i ) ,f f x dk x k x= ⋅zzz  where i = −1). For this

purpose, we modify formula (1), replacing in this
formula G

ij
(x, x�) by G

ij
(x-x�) and put V to be an un-

bounded 3D region. Applying the convolution theo-
rem to the resulting equation and accounting for the
relation ~ ( ),* *ε ε

mn mn
g= x  formula (6) and equality

ε ε
pq pq pq

g=∈ − * ( ),x  one obtains:

$ ( ) i $ $ ,*u C gG
p j mn mn pj
k k= −

l l
ε  (8à)

$ ( )
i

( $ $ ) $.*ε ε
pq q p p q pq

u u gk k k= − + −
2

 (8b)

From the definition of the function g(x) (equal to 1 in-
side the region Ω and to 0 outside it) it follows that the
expression for the Fourier image $( )g k  of this function

has the following form: $( ) exp(i ) .g dk k x x= ⋅zΩ  Now

the displacements u
p
 and elastic strains ε

pq
 are cast

using the reverse Fourier transform as

u u dV
p p

V

k

k

( )
( )

$ ( ) exp(i ) ,x k k x= ⋅ ′z
1

2 3π

u dV
p pq

V

k

k

( )
( )

$ ( ) exp(i ) ,x k k x= ⋅ ′z
1

2 3π
ε  (9)

In formula (9) dV
k
� is the volume element of the Fou-

rier space, and integration is performed over the
whole infinite volume Vk of this space.

For an isotropic infinite medium, we have [59]:

C
jlmn jl mn jm ln jn lm

= + +λδ δ µ δ δ δ δ( ),  (10)

$
( ) ( )

( )
,G

k k k

k
ij

ij i j=
+ − +

+

λ µ δ λ µ

µ λ µ

2

2

2

4  (11)

where λ=2νµ/(1-2ν) and k2=k .k.
For an infinite cubic crystal characterized by 3

elastic moduli, c
11

, c
12

 and c
44

, the tensor of elastic
moduli and the Green tensor follow as [27,59]

C c c c
ijkl ij kl ik jl il jk an ijkl

= + + +
12 44

δ δ δ δ δ δ δ( ) ,  (12)

$

( )

( )( )

( ) ,

G
c k c k

c c k k

c k c k c k c k

c c
k

c k c k

ij

ij

an i

i j

an i an j

p

an pp

=
+

−

+

+ +
×

+ +
+=

−

∑R
S
T

U
V
W

δ

44

2 2

12 44

44

2 2

44

2 2

12 44

2

44

2 2
1

3
1

1

 (13)

where δ
ijkl

=1 for i=j=k=l and δ
ijkl

=0 otherwise, and
c

an
=c

11
-c

12
-2c

44
.

Thus, for a specified medium characterized by
the tensor $G

pq
, the displacements and elastic strains

induced by inclusions of different sizes and shapes
are calculated in the same manner using formulae
(8) and (9). In these formulae, the size and shape of

+∞

-∞
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the inclusion that occupies the region Ω are ac-
counted for in the expression for the function $( )g k

only.
Recently, Andreev et al. have calculated the elas-

tic strains created by the inclusions of different
shapes in infinite isotropic and cubic crystals [27].
For the calculation of strains induced by inclusions
in cubic crystals, they also calculated the functions
$( )g k  for the case of a cubic crystal and different

inclusion shapes: sphere, cube, pyramid, truncated
pyramid, semisphere and finite-length cylinder. For
the inclusions with high symmetry these functions
have a simple form. For example, for a spherical
inclusion of radius R, whose center lies at the origin
of the coordinate system (x

1
, x

2
, x

3
) (Fig. 1a),

$( )
(sin cos )

.g
kR kR kR

k
k =

−4
3

π
 (14)

For a cubic inclusion with the center at the origin of
the coordinate system, faces parallel to the coordi-
nate axes x

1
, x

2
, and x

3
, and the lengths of the cor-

responding sides a
1
, a

2
, and a

3
 (Fig. 1b),

$( ) sin sin sin .g
k k k

k a k a k a
k =

F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ

8

2 2 2
1 2 3

1 1 2 2 3 3

 (15)

For a cylindrical inclusion of length L and diameter
D

c
, with the center at the origin of the coordinate

system whose x
3
-axis coincides with the cylinder

axis (Fig. 1c),

$( ) sin( / ) ( / ),
||

||
g

D

k k
k L J D kc

c
k =

2
2 2

3

3 1

π
 (16)

where k
ll
=(k

1
2+k

2
2)1/2 and J

1
(t) is the Bessel func-

tion of the first kind of the first order.
The simple inclusion shapes analyzed by

Andreev et al. [27] are convenient to study the ef-
fect of elastic anisotropy on inclusion elastic fields.
Andreev et al. [27] have shown that in the case of
composite solids with cubic symmetry elastic
anisotropy essentially influences the strains created
by a spherical inclusion but does not seriously af-
fect the strains created by a cubic or a pyramidal
inclusion. Thus, the effect of elastic anisotropy on
the inclusion elastic fields is essential for an inclu-
sion with an isotropic shape. However, as the inclu-
sion shape becomes more anisotropic, the effect of
elastic anisotropy on the inclusion elastic fields di-
minishes.

In some cases, the use of the Fourier images of
the Green functions is convenient for the calculation
of the inclusion displacements, strains and stresses
not only in infinite, but also in semi-infinite compos-
ite solids. For a semi-infinite solid occupying the re-
gion x

3
 ≥ 0 the Green functions depend on the coordi-

nates x3 and x3' as well as on the coordinate differ-
ences x

1
-x

1
' and x

2
-x

2
'. In other words, in the situation

discussed, the Green functions G
pq

(x,x�) may be pre-
sented as G G x x x x x x

pq pq
( )

~
( , , , ).x, x ′ = − ′ − ′ ′

1 1 2 2 3 3

Consequently, instead of the 3D Fourier transform
employed for the calculation of the inclusion elastic
fields in an infinite medium, the inclusion elastic
fields in a half-space may be calculated using the
2D Fourier transform in the coordinate space (x

1
,

x
2
). The procedure of calculation of the inclusion elas-

tic fields in a half-space, exploiting the 2D Fourier
transform, is similar to the calculation technique
applied in the case of an infinite medium. This cal-
culation procedure works in the cases where the ex-
pressions for 2D Fourier images, $ ( , , , )G k k x x

pq

D2

1 2 3 3
′ =

~
( , , , ) exp[ i( )] ,G x x x x k x k x dx dx

pq 1 2 3 3 1 1 2 2 1 2
′ − +zz  of

the Green functions are available. The exact ana-
lytical expressions for the 2D Fourier images of the
Green functions are obtained, for example, for a
semi-infinite cubic crystal [145]. These expressions
have been applied in the calculation of  the elastic
interaction of quantum dots (nanoscopic semicon-
ductor inclusions) in semiconductor nanocomposites
[8,150].

Fig.1. Geometry of model inclusions in a cubic crys-
tal. (a) Spherical inclusion. (b) Cubic inclusion. (c)
Finite-length cylindrical inclusion.

+∞

-∞
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4. INTEGRATION OF EQUATIONS OF
EQUILIBRIUM

In some simple problems about inclusions, their
elastic fields may be derived through a direct solu-
tion of the equations of the elasticity theory written
in terms of displacements. These equations are
obtained by the substitution of Hooke�s law and
strain-displacements relations to the equations of
mechanical equilibrium. Such an approach was
used, in particular, for solving the problem about the
thermal stresses arising after the contact of two
solids with different thermal expansion coefficient
[59,151] and for the calculation of the stresses cre-
ated by an infinite cylindrical nanoinclusion with a
dilatational eigenstrain in an infinite nanocomposite
[67]. In the present section, we illustrate this ap-
proach with an example of the problem about misfit
stresses in an infinite two-phase composite nanowire.

Consider a two-phase nanowire of radius R,
which consists of a cylindrical substrate (inclusion)
of radius R

0
 and a film of thickness H (H=R-R

0
) (Fig.

2). The film and substrate are assumed to be iso-
tropic solids with equal shear moduli µ and Poisson
ratios ν but different crystal lattice parameters. The
dilatational misfit of the parameters, af and as, of
the film and substrate crystal lattices is character-
ized by the parameter f=2(a

f
-a

s
)/(a

f
+a

s
) and creates

elastic strains and stresses in the composite
nanowire.

Let ε
ij

k*( )  be the tensor of misfit strain in the k-th
region, where k=1 for the wire substrate and k=2
for the film (Fig. 2). Let us suppose that ε

ij

*( )2 =0. In
the simple case of a dilatational misfit we assume
ε

ij

*( )2 =fδ
ij
. The total strain ∈

ij

k( )  in the wire composite
is the sum of the misfit strain ε

ij

k*( )  and elastic strain
ε

ij

k( ) :

∈ = +
ij

k

ij

k

ij

k( ) ( ) ( )* .ε ε  (17)

In the cylindrical coordinate system whose z-axis
coincides with the cylinder axis, the total strain ten-
sor components are expressed via displacement as
follows [151]:

∈ =

∈ =

∈ = =
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k r
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k r
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zz
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r
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( )

( )

,

,

.

∂

∂

∂

∂

θθ

0

 (18)

Fig. 2. Two-phase misfitting nanowire.

The stress tensor can be written using Hooke�s law
[151] as

σ µ ε ε
ij

k

ij

k kv

v

( ) ( ) ( ) ,= +
−

F
H

I
K

2
1 2

 (19)

where ε(k)=ε
ii

k( ) . In the cylindrical coordinate system
the components of the stress tensor are as follows:

σ µ
rr rr

v

v

v

v
f( ) ( ) ( ) ,1 1 12

1 2

1

1 2
= ∈ +

−
∈ −

+

−
F
H

I
K  (20a)

σ µθθ θθ

( ) ( ) ( ) ,1 1 12
1 2

1

1 2
= ∈ +

−
∈ −

+

−
F
H

I
K

v

v

v

v
f  (20b)

σ µ
zz

v v f

v

( )

( ) ( )
,1

1

2
1

1 2
=

∈ − +

−
 (20c)

σ µ
ij ij

v

v

( ) ( ) ( ) ,2 2 22
1 2

= ∈ +
−

∈F
H

I
K  (20d)

where ∈(k)= ∈
ii

k( ) . From the equation of mechanical
equilibrium [151]

∂σ

∂

σ σθθrr rr

r r
+

−
= 0  (21)

and formulae (18) and (20) we obtain the following
differential equation for displacements:

d u

dr r

du

dr

u

r

r

k

r

k

r

k2

2 2

1
0

( ) ( ) ( )

.+ − =  (22)

The solution of this equation is
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u A r
B

r
r

k

k

k( ) ,= +  (23)

where the constants Ak and Bk are derived from the
boundary conditions

u r

u r R u r R

r R r R

r R

r

r r

rr rr

rr

( )

( ) ( )

( ) ( )

( )
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( ) ( ),

( ) ( ),

( ) .

1

1

0

2

0

1

0

2

0

2

0

0
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= = =

= = =

= =

,

σ σ

σ

 (24)

The solution of system (24) yields

A
v

v

f R v R

R
B

A A
v

v

f
B

v

v

f
R

1

2

0

2

2 1

2 1 2 0

2
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1
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=
+
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=

+

−

( )
, ,

, .
 (25)

The stresses σ
ij
f in the two-phase nanowire, hereaf-

ter referred to as misfit stresses (equal to σij
(1) at

r<R
0
, and to σ

ij
(2) at r>R

0
), follow from formulae (18),

(20), (23) and (25) as
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σ

rr
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R R
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2 2
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2
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* ( ) ( ) ,Θ Θ  (26c)

where σ*=µf (1+ν)/(1-ν) and Θ(x) is the Heavyside
function (Θ(x)=1 for x>0, and Θ(x)=0 for x<0).

The above expressions for the misfit stresses in
a composite nanowire have been used for the cal-
culation of the conditions for the formation of differ-
ent misfit defects in such a nanowire [113,152,153].

5. METHOD OF SURFACE
DISLOCATION LOOPS

In the previous sections we have considered the
methods for the calculation of the elastic fields of
inclusions, based on the use of the Green tensor or

 (26a)

 (26b)

direct integration of the equations of equilibrium.
Another approach alternative to these methods rests
on the concept of virtual surface dislocations. In a
general form, this approach has first been formu-
lated by Kroupa and Lejèek [110]. It is based on the
continuous distribution of virtual dislocations and/or
dislocation loops over the inclusion boundary. If the
total tensor of eigenstrains induced by such defects
equals to the inclusion eigenstrain tensor, then the
inclusion displacements, strains and stresses are
equal to the total displacements, strains and
stresses, respectively, created by virtual surface
dislocations and/or dislocation loops.

Examples of the distributions of surface dislo-
cations and dislocation loops that model inclusions
with dilatational eigenstrains are given in Fig. 3. Fig.
3a illustrates the film inclusion on a substrate, which
is characterized by the only nonvanishing compo-
nent ε

xx
* =ε* of the eigenstrain tensor. The eigenstrain

of such an inclusion is modeled by an array of edge
dislocations continuously distributed over the film-
substrate interface with the linear density ε*/b, where
b is the dislocation Burgers vector magnitude. In
Fig. 3b the spherical inclusion with a one-axis
eigenstrain ε

zz
*  is modeled by a continuous distribu-

tion of circular prismatic dislocation loops over the
sphere surface [68]. Lastly, in Fig. 3c the
parallelepipedic inclusion with a three-axis dilata-
tional eigenstrain ε

ij
* (=ε*δ

ij
 is modeled by three or-

thogonal ensembles of rectangular prismatic dislo-
cation loops distributed with the linear density ε*/b
[154]. In the case where such an inclusion lies in
an infinite isotropic solid, the inclusion stress field
(equal to the total stress field of the virtual disloca-
tion loops distributed over the inclusion surface) is
given by [154]:

σ
ij

ij

x y z

C x x y y z z
x x
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y y
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z z
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( , , ) ,

=

− ′ − ′ − ′
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1
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Fig. 3. Distributions of dislocations (a) and dislocation loops (b,c), which model the eigenstrains induced
by a film on a substrate (a), spherical inclusion (b) and parallelepipedic inclusion (c).
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C=µε*(1+ν)/[2π(1-ν)], x x x= − ′,  y y y= − ′,
z z z= − ′, R x y z

1

2 2 2 2= + + ,and x
k
, y

k
, z

k
 (k=1,2)

are the parallelepiped facet coordinates. For the par-
allelepiped shown in Fig. 3c, x

1
=-a, x

2
=a, y

1
=-b,

y
2
=b, z

1
=-c and z

2
=c.

6. METHOD OF INFINITESIMAL
INCLUSIONS

The methods of the Green functions and surface
dislocation loops described in the previous sections
are based on the construction of the solution for the
inclusion elastic fields as the superposition of the
known basic solutions. The same approach is used
in the method of infinitesimal inclusions. In contrast
to the methods of the Green functions and surface
dislocation loops, where the basic solutions are those
for the elastic fields of point forces, dislocations or

dislocation loops, in the infinitesimal inclusion
method the basic solutions are formed by infinitesi-
mal inclusions. In this method, the displacements,
strain and stress fields created by a real inclusion
with a preset eigenstrain tensor are presented as
the sum of the respective fields induced by infini-
tesimal inclusions with the same total eigenstrain
tensor. If the inclusion eigenstrain is a pure dilata-
tion, ε

ij
* (=ε*δ

ij
, the elastic fields of the inclusion of

interest may be presented as the sum of the corre-
sponding elastic fields created by dilatation center.
Thus, the existing solutions for the dilatation cen-
ters in an isotropic infinite medium, half-space [85],
two-phase mediums [100,101] and finite-thickness
plate [111] provide an opportunity of obtaining the
solutions for the elastic fields of inclusions with a
purely dilatational eigenstrain, situated in such
mediums. As an example, we write down the dis-
placement field of a dilatation center in an isotropic
half-space. Let the dilatation center be located at
the point (x�,y�,z�) of an isotropic half-space z ≥ 0
(Fig. 4). Then the displacement field u *(x,y,z)  of
this dilatation center follows as [85]
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Fig. 4. Dilatation center in an isotropic half-space.

Fig.5. Truncated pyramidal inclusion in a semi-infi-
nite composite solid (a) and its decomposition into
parallelepipedic inclusion of infinitesimal height (b).
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In formula (30) R
1

= ( , , ),x y z  R
2

= ( , , $),x y z

x x x= − ′,  y y y= − ′,  z z z= − ′, $ ,z z z= + ′  e
z
 is

the unit vector directed along the z-axis,
R x y z z

1 2

2 2 2 2

,
( ) ,= + + ′m  A = + −( ) / [ ( )],*1 4 1ν ε π ν

P = A dx dydz, and dx, dy, dz is the volume of the
dilatation center.

Formula (30) for the displacements created by a
dilatation center in an isotropic semi-infinite solid
has been used by Hu [93] for the calculation of the
stresses induced by a parallelepipedic inclusion out-
side it. These stresses have been calculated by in-
tegration of the stress field of the dilatation center
over the parallelepiped volume [93]. Afterwards, the
expressions for the displacements and strains in-
duced by such a parallelepipedic inclusion in an
arbitrary point of a composite solid have been de-
rived by Glas [94]. Glas also applied the solution
obtained the calculation of the displacements and
strains created in an isotropic semi-infinite solid by
a truncated pyramid [35] and finite-length cylinder
[41] with the dilatational eigenstrain ε

ij
* (=ε*δ

ij
 (Figs.

5a and 6a). For this purpose, the cylindrical and
truncated pyramidal inclusions were modeled by a
continuous distribution of parallelepipedic inclusions
with an infinitesimal height and varying cross sec-
tion (Figs. 5b and 6b). The displacements created
by the pyramidal and cylindrical inclusions were then

obtained through single integration of the displace-
ments of the infinitesimal-height parallelepipedic
inclusions. In general, the expressions for the dis-
placements and total strains of the truncated pyra-
midal and finite-length cylindrical inclusions are very
cumbersome. However, the solution for the cylindri-
cal inclusion is considerably simplified if the cylin-
der length becomes infinite. In this case, the dis-
placements u

i
c and total strains ∈

ij
 of the infinite

cylindrical inclusion are as follows [41]:
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Fig. 6. Finite-height cylindrical inclusion in a semi-
infinite composite solid (a) and its decomposition
into parallelepipedic inclusion of infinitesimal height
(b).
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where R is the cylinder radius, (x=0, z=ζ
0
) are the

cylinder axis coordinates, κ
0
= 4ν-3, F=(1+ν)ε*/[2

(1-ν)], z
0±

=ζ
0
±z, Q

1±
=x2 + z

0±
, Q

2±
=x2 - z

0±
, Γ

c
=1 inside

the cylinder and Γ
c
=0 outside the cylinder, and Γ

c
=1 -

Γ
c
.

7. SUMMARY

In summary, we have provided a brief review of the
solutions for the elastic fields of inclusions in com-
posite solids and described the most popular ana-
lytical procedures for the calculation of the elastic
fields of such inclusions: Green function method,
surface dislocation method, the solution of equa-
tions of equilibrium, and infinitesimal inclusion
method. We have shown that in spite of a small
inclusion size in nanocomposites, their elastic fields
may be effectively calculated using the methods of
linear elasticity. The presence of a large number of
solutions for the elastic fields of inclusions in com-
posite solids with different geometrical and elastic
characteristics gives an opportunity of studying the
elastic behavior of a wide class of nanocomposites.
At the same time, there are a few techniques that
allow one to obtain new solutions for the elastic fields
of nanoinclusions in nanocomposites on the basis
of the existing basic solutions. The elastic fields
acting in nanocomposites may also be calculated
through a direct solution of boundary-value problems
of the theory of elasticity.
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