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AND  NANOCERAMICS  WITH  AMORPHOUS

INTERGRANULAR  LAYERS
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Abstract. A theoretical model is suggested which describes plastic flow in amorphous covalent
solids and amorphous intergranular boundaries in nanoceramics. On the basis of computer simu-
lations (M.J. Demkowicz, A.S. Argon // Phys. Rev. Lett. 93 (2004) 025505), it is supposed that
plastic flow in these amorphous structures is carried by liquid-like phase nuclei which form and
grow in size within solid-like matrix phase. The nuclei suffer plastic shears modeled as glide dislo-
cation loops. Energetics of formation and growth of the nuclei is examined in bulk amorphous
silicon, silicon nitride and nanocomposite nc-TiN/a-Si3N4 ceramics. Within the model, it is shown
that plastic flow in amorphous covalent solids tends to be localized at high stresses and low tem-
peratures. Also, it is revealed that plastic flow within intergranular amorphous layers of a-Si3N4 in
nanocomposite nc-TiN/a-Si3N4 can initiate cracks whose equilibrium and critical (Griffith) lengths
depend on grain size and temperature.

1. INTRODUCTION

Nanocrystalline metallic and ceramic materials
exhibit the outstanding mechanical properties highly
attractive for a wide range of applications; see, e.g.,
[1-18]. In particular, nanocrystalline ceramic bulk
materials and coatings are often characterized by
superstrength, superhardness and good wear re-
sistance [11-18]. These properties are strongly in-
fluenced by intergranular boundaries which often
have the amorphous covalent structure and occupy
very large volume fractions in nanocrystalline speci-
mens; see, e.g., experimental data [16-18] and
computer simulations [19,20]. In this context, there
is rapidly growing interest in understanding
micromechanisms for plastic flow in amorphous
intergranular boundaries of nanoceramics and their
“model” bulk analogs, the namely amorphous bulk
solids with covalent bonds (heareinafter called
amorphous covalent solids). In particular, recently

Demkowicz and Argon [21-23] have used computer
simulation to study the structure and mechanical
behavior of amorphous silicon. They have shown
that the structure is composed of regions of liquid-
like and solid-like material. Depending on the ve-
locity of solidification of liquid silicon in producing
the amorphous state, the volume fractions of the
liquid-like and solid-like materials change. Devia-
tion in the liquid-like and solid-like fractions leads
to changes in regimes of plastic flow. When the
liquid-like fraction increases, the plastic flow be-
comes more homogenous. Moreover, the liquid-
like fraction grows under mechanical loading. The
authors [21-23] have concluded that the regions of
liquid-like material are the carriers of plastic flow in
amorphous silicon. Since it is a typical example of
amorphous covalent solids, Demkowicz and Argon
[22] have suggested that these features are also
characteristic of other amorphous covalent struc-
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Fig. 1. Model for homogeneous generation of plas-
tic flow in covalent amorphous solids. Local shear
events are treated through glide dislocation loops
of strength (Burgers vector) s, which are sur-
rounded by ellipsoidal regions of liquid-like phase
having smaller shear moduli.

tures, in particular, of the amorphous intergranular
layers of Si

3
N

4
 between the TiN nanocrystallites in

nc-TiN/a-Si
3
N

4 
ceramic nanocomposites. Using

computer simulation, Demkowicz et al. [24] have
observed the formation and development of regions
of liquid-like phase in grain boundaries at plastic
deformation of nanocrystalline silicon.

In the present work, based on the results of
computer simulations [21-24], we suggest a
micromechanical model of plastic flow in covalent
amorphous materials and apply it to the case of
intergranular layers of Si

3
N

4 
in nc-TiN/a-Si

3
N

4 
ce-

ramic nanocomposites. We show that the initial
plastic flow in favorably oriented intergranular lay-
ers can stimulate either plastic flow or crack gen-
eration in neighboring intergranular layers, depend-
ing on temperature and grain size.

2. MODEL

A micromechanical model for structure of amor-
phous silicon under an external tensile stress σ is
shown in Fig. 1. Following Demkowicz and Argon
[21-23], we assume that the external loading leads
to formation of nuclei of liquid-like material in the
matrix of solid-like material. The nuclei are sup-
posed to have the shape of oblate ellipsoids ori-
ented along the maximum resolved shear stress
τ = σ/2. Every nucleus suffers a plastic shear by a
vector s due to its liquid-like structure. On the other
hand, this plastic shear is localized inside the
nucleus, in which case it is effectively described by
a glide dislocation loop with the Burgers vector s.
For the sake of simplicity of the following calcula-
tions, we consider the loop to be rectangular in
shape. Within our model, both the dimensions of
the nucleus and loop synchronously increase un-
der external loading. Moreover, the Burgers vector
s of the loop (hereinafter we call its magnitude ‘the
loop strength s’) increases, too. In other words,
under the action of an external shear stress τ, the
amorphous material is subjected to homogeneous
nucleation and extension of glide dislocation loops
of increasing strength s (from zero) which are en-
capsulated into ellipsoidal inclusions of liquid-like
material. (These processes are similar to local
shear events in metallic glasses [25]. Also, nucle-
ation and extension of glide dislocation loops in
amorphous covalent structures are similar to pro-
cesses of nucleation and extension of
nanodisturbances, “non-crystallographic” partial
dislocation loops (characterized by tiny Burgers
vector magnitudes) that bound generalized stack-
ing faults in crystalline solids [26-29]. Nucleation

of nanodisturbances and their transformations into
conventional “crystallographic” partials have been
recently observed in “in-situ” experiments during
plastic deformation of special titanium alloys [29].)

Consider the change in the total energy of the
system ∆W per one nucleus containing a disloca-
tion loop. In the framework of our model it is given
by

∆W W HV sS
L

= + − τ ,  (1)

where W
L
 is the strain energy of a rectangular glide

dislocation loop, H is the excess enthalpy of the
liquid-like phase of the amorphous material rela-
tive to its solid-like phase, V is the volume of the
liquid-like phase nucleus surrounding the disloca-
tion loop, and S is the area of the dislocation loop.
In writing formula (1), we did not take into account
the elastic interaction between dislocation loops.
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This approach is correct because the loop dimen-
sions are always smaller than or equal to the space
between the loop centers in the model, in which
case the energy of elastic interaction between two
neighboring loops is much smaller than the self
strain energy of a loop.

Let a dislocation loop have the dimensions p×q,
and its Burgers vector s is oriented along the seg-
ments of length p. Then the strain energy of the
loop W

L
 reads [30]
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where G is the effective shear modulus of the com-
posite materials consisting of the solid-like phase
(matrix) and liquid-like phase (oblate ellipsoidal in-
clusions), ν is the effective Poisson ratio of the
composite, r p q= +2 2 , and rc ≈ s is the cut-off
radius for the stress field of the dislocation loop
near its line. This formula is correct when p,q > r

c
.

The effective elastic moduli of the composite
can be estimated as follows. Let the inclusions,
which have the moduli different from those of the
matrix, be randomly distributed in the matrix. Let
every inclusion be contained in the matrix cubic
cell of dimension λ, and these cells occupy the
whole material without voids and intersections. In
our model, the inclusions are oriented along four
different directions where the resolved shear
stress is maximum, in which case we can approxi-
mate their orientation to be close to random. There-
fore, the effective shear modulus of such a com-
posite can be approximated by the well known for-
mula [31]

G G c
G G G G

G
m

m i m i

i

= −
+ −

+

η

η


 �
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 �1

,  (3)

where G
m
 and G

i
 are the shear moduli of the ma-

trix and inclusion, respectively, c << 1 is the vol-
ume fraction of inclusions, η = 0.5(7 - 5ν

i
)/(4 - 5ν

i
),

and ν
i
 is the Poisson ratio of the inclusion. The in-

clusion volume V is approximated by the area of
the dislocation loop, S = pq, multiplied by some
effective thickness t of the inclusion: V ≈ pqt. Then
the volume fraction of the inclusions is estimated
by c = V/λ3 ≈ pqt/λ3. Taking p ≤ λ, q  ≤ λ and t << λ,
we ensure that  c << 1. In order to estimate the
Poisson ratio of the composite, we use the sim-

plest mixture rule ν = cν
i
 + (1 + c)ν

m
, where ν

m
 is

the Poisson ratio of the matrix.
Thus, all quantities of Eq. (1) are determined.

Let us consider the energy change ∆W in depen-
dence on the dimension and strength of the dislo-
cation loop at relatively low and high temperatures.
We take amorphous silicon (Si) and silicon nitride
(Si

3
N

4
) as typical amorphous covalent materials.

3. RESULTS

3.1. Amorphous silicon

In considering the amorphous silicon, we have used
its characteristics calculated in computer simula-
tions [22,32,33] at room (T=300K) and higher
(T=1000K) temperatures. For room temperature,
Demkowicz and Argon [22] have reported the fol-
lowing values of elastic moduli for the solid-like
(here matrix) and liquid-like (here inclusion) phases:
(G

m 
≈ 34 GPa, ν

m
 ≈ 0.36) and (G

i
 ≈ 30 GPa, ν

i
 ≈

0.44). The excess enthalpy of the liquid-like phase
of the amorphous material relative to its solid-like
phase is given by the difference H = ∆H

i
 - ∆H

m
,

where ∆H
i
 and ∆H

m
 are the excess enthalpies of

the liquid-like and solid-like phases of amorphous
silicon relative to its crystalline state, respectively.
Using the data of [22], the latters can be estimated
as ∆H

i
 ≈ 0.30 eV/at and ∆H

m
 ≈ 0.18 eV/at at T ≈

300K, in which case we have H ≈ 0.12 eV/at.
For T = 1000K, we use the same values of elas-

tic moduli as for T = 300K, because they weakly
change within the considered narrow range of tem-
peratures. The excess enthalpy H has been esti-
mated on the basis of results of the earlier com-
puter model of Grimaldi et al. [32] (also cited by
Spinella et al. [33]). The authors [32] have found
the temperature dependences of the excess en-
thalpy of the amorphous silicon relative to the crys-
talline silicon for two different amorphous states,
relaxed and unrelaxed. Assuming that the relaxed
and unrelaxed states of amorphous silicon in com-
puter model of Grimaldi et al. [32] correspond to
respectively the solid-like and liquid-like phases of
amorphous silicon in computer model of
Demkowicz and Argon [22], one can get the esti-
mates ∆H

i
 ≈ 0.140 eV/at and ∆H

m
 ≈ 0.095 eV/at,

and therefore H ≈ 0.045 eV/at at T = 1000K.
For the sake of definiteness, we consider the

case of square dislocation loops (p = q) and as-
sume that the thickness of the surrounding nucleus
of the liquid-like phase (inclusions) increases with
the loop extension as t = b(0.7 + p b/3 ), where b

W
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Fig. 2. Maps of the energy change ∆W in the space
of the dislocation loop strength s/b and size p/b in
the case of Si under T = 300K and the applied shear
stress τ = 5 (a), 7 (b), 8 (c) and 9 GPa (d,e). The
energy values are given in eV.

'�(
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≈ 0.27 nm is the average interatomic distance. In
this case, at the initial stage of the loop nucleation
(at p ≈ 2b), the inclusion thickness will also be t ≈
2b, and further will slowly grow with the loop exten-
sion. For the matrix cell dimension λ = 20b and the
maximum possible size of the loop p = 20b, we
obtain the inclusion thickness t ≈ 3.4b. The corre-
sponding maximum volume fraction of inclusion in
this model is c ≈ p2t/λ3|

p=λ = t/λ ≈ 0.17 which proves
the correctness of Eq. (3) for calculating the effec-
tive shear modulus of the composite.

The results of numerical calculations, for tem-
peratures 300 and 1000K, are presented in Figs. 2
and 3, respectively, in the form of maps for the
energy change ∆W in normalized coordinates s/b

and p/b at some different values of the external
shear stress τ. When τ is small, the region of nega-
tive values of ∆W is separated from the area near
the coordinate origin by the region of positive val-
ues of ∆W. The region of positive ∆W values im-
ages the configuration of the energy barrier for the
nucleation of the dislocation loop in coordinates s/
b and p/b. The energy barrier reaches its minimum
value at the saddle point (see Figs. 2b and 3a).
This value is about 1.35 eV (Fig. 2b), for T = 300K
and τ = 7 GPa, and about 2.19 eV (Fig. 3a), for T =
1000K and τ = 4 GPa. The corresponding saddle
points have the coordinates (0.72, 4.3) and (0.47,
8.4), respectively. Therefore, in the first case, the
dislocation loop must grow up to ≈ 4b in size and

Fig. 3. Maps of the energy change ∆W in the space
of the dislocation loop strength s/b and size p/b in
the case of Si under T = 1000K and the applied
shear stress τ = 4 (a) and 6.8 GPa (b,c). The en-
ergy values are given in eV.
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Fig. 4. The ways of evolution in the space of the
dislocation loop strength s/b and size p/b in the
case of Si under T = 1000K and different values of
the applied shear stress τ shown at the lines in
GPa units.

≈ 3b/4 in strength to overcome the energy barrier.
In the second case, these values are p ≈ 8b and
s ≈ b/2. Let us estimate the probability of nucle-
ation of such inclusions with dislocation loops un-
der the given temperatures and stresses. As fol-
lows from their critical sizes, the number of atoms,
which must be involved into the nucleation process,
is about V/b3 ≈ p2t/b3. This gives approximately 37
atoms, for the room temperature, and 200 atoms,
for the higher temperature. If one distributes the
energy barrier value equally between these atoms,
then one gets about 0.038 eV and 0.011 eV in the
first and second case, respectively. The average
thermal energy kT (where k is the Boltzman con-
stant) per atom is ≈ 0.026eV for T = 300K and
≈ 0.087 eV for T = 1000K. Then, for T = 300K and
τ = 7 GPa, the nucleation probability is estimated
by ≈ 0.233 per atom and ≈ 3.9 × 10-24 per all 37
atoms. For T = 1000K and τ = 4 GPa, the probabil-
ity is ≈ 0.881 per atom and ≈ 9.9 × 10-12 per 200
atoms. One can conclude that the nucleation of
inclusions with dislocation loops by means of ther-
mal fluctuations is absolutely impossible under the
given temperature and stress conditions.

By increasing the external stress τ, one can
cancel the energy barrier in some area of initial
values of coordinates s/b and p/b (Figs. 2d,e and
3b,c). In the energy map, transition to the barrier-
less nucleation corresponds to the situation when
the zero-level contour (∆W = 0) touches the straight
line p = 2b related to the initial size of the disloca-
tion loop. This happens when the external stress τ
reaches a value about 9 GPa (Fig. 2d,e), for room
temperature, and when τ = 6.8 GPa (Fig. 3b,c), for
T = 1000K. The touching point has the coordinates
about (0.6, 2) in the first case and (0.3, 2) in the
second. Therefore, the liquid-like phase inclusion
with approximate dimensions 2b × 2b × 2b, which
is nucleated in the barrier-less regime, is expected
to contain the dislocation loop of strength ≈ 0.6b,
for T = 300K and τ = 9GPa, and ≈ 0.3b, for T =
1000K and τ = 6.8 GPa. The stress values 9 and
6.8 GPa can be considered as critical ones for the
barrier-less nucleation of such inclusions and loops
at the corresponding temperatures.

Sometimes one can use the energy maps to
tailor the most probable evolution of the inclusion
and loop under the critical or larger shear stress.
The thick arrows in Figs. 2e and 3c, which are
drawn from the touching (nucleation) points along
the lines of maximum gradient of the function
∆W(s,p), show how the inclusion and loop develop
in the space (s,p) under the corresponding critical
stresses. As is seen, they expand, and the strength

of dislocation loop simultaneously grows. Unfortu-
nately, in the case of room temperature (Fig. 2e),
the line of maximum gradient of ∆W(s,p) passes
through the area s ≥ p, where formula (2) is not
valid, and we can not tailor the system evolution.
On the other hand, this line can not go higher, in
the field p>s, where formula (2) is correct. There-
fore, although the evolution path can not be de-
scribed in detail, we expect that it goes somehow
in the area s ≥ p, in which case the loop strength s
increases faster than the loop size p. This situa-
tion can be treated as homogeneous nucleation of
superdislocation loops (within the liquid-like phase
inclusions) whose development results in hetero-
geneous plastic flow of amorphous silicon, which
typically occurs at relatively low temperatures and
high external stresses.

In the case of higher temperature, the situation
is easy to analyze. The evolution path is repre-
sented by a straight arrow (Fig. 3c) which shows
that both the inclusion and loop sizes grow faster
than the loop strength. In particular, the loop
strength s increases from ≈ 0.3b to ≈ 3b when its
size p grows from 2b to 20b. Thus, under high tem-
perature and critical shear stress, relatively low-
strength dislocation loops can homogeneously
nucleate and develop by increasing their size and
strength. In this situation, one expects occurrence
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of the homogeneous plastic flow of amorphous sili-
con by means of both massive nucleation and ex-
pansion of such dislocation loops (encapsulated
to the liquid-like phase inclusions) over the whole
volume of a sample.

The regime of homogeneous plastic flow of
amorphous solids is not stable relative to increas-
ing shear stress. The larger stress value stimulates
a transition to the heterogeneous regime of plastic
flow as demonstrated by atomistic simulation of
nanoindentation of amorphous silicon carbide [34].
In terms of our model, this would mean the faster

increase in the loop strength s. Indeed, when the
applied shear stress τ increases, the slope of evo-
lution path decreases as shown in Fig. 4, which
means that the loop strength s grows faster with
the loop size p.

3.2. Amorphous silicon nitride

Consideration of the case of amorphous silicon
nitride (Si

3
N

4
) leads to similar conclusions. Unfor-

tunately, this material has not been studied so com-
prehensively as amorphous silicon at the moment,

Fig. 5. Maps of the energy change ∆W in the space of the dislocation loop strength s/b and size p/b in the
case of Si

3
N

4
, α = 0.5 and the applied shear stress τ = 15 (a) and 23 GPa (b,c). The energy values are

given in eV.
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Fig. 6. Maps of the energy change ∆W in the space of the dislocation loop strength s/b and size p/b in the
case of Si

3
N

4
, α = 0.1 and the applied shear stress τ = 8 (a) and 12 GPa (b,c). The energy values are given

in eV.

and some necessary data are still absent. There-
fore we assume that elastic moduli of the liquid-
like and solid-like phases of amorphous Si

3
N

4 
are

approximately equal (G
m
 ≈ G

i
 ≈ G, ν

m
 ≈ ν

i
 ≈ ν) and

weakly depend on temperature. Recent precise
measurements [35] of the Young modulus E and
Poisson ratio ν have shown that E = 289 ± 12 GPa
and ν = 0.2 ± 0.05. Taking the average values, we
obtain G = E/[2(1 + ν)] ≈ 120 GPa and ν ≈ 0.2.

The excess enthalpy H of the liquid-like phase
relative to the solid-like phase is supposed to be
proportional to the excess enthalpy ∆H

m
 of the solid-

like phase of amorphous Si
3
N

4
 relative to its crys-

talline state: H = α∆H
m
, where α = α(T) is a dimen-

sionless parameter depending on temperature. It
seems natural to assume that α << 1 at high tem-
peratures and α ≤ 1 at low temperatures. Let us
consider two exemplary cases: α = 0.1 and 0.5.
The magnitude of ∆H

m
 is estimated [36] by 9.86

kJ/mole of atoms ≈ 0.102 eV/at. Thus, we have
used two values of H, 0.01 and 0.05 eV/at., in our
calculations.

To estimate an average interatomic distance b,
which is supposed to be equal to the length of the
bond between the closest Si and N atoms, we have
utilized the data of experiments [37-39],   b ≈ 0.173-
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0.175 nm, and computer simulation [40], b ≈ 0.174-
0.176 nm. For calculations, we have taken the av-
erage (and the latest [39]) experimental value b ≈
0.174 nm.

The results of numerical calculations are dem-
onstrated in Figs. 5 and 6, where the energy maps
are shown in the case of α = 0.5 (low tempera-
tures) and α = 0.1 (high temperatures), respectively.
In general, they are similar to the maps given in
Fig. 3, although the new maps differ by larger val-
ues of the applied shear stress τ as well as by the
slopes of the arrowed straights showing the evolu-
tion paths of the system.

In the case of α = 0.5 (low temperatures, Fig.
5), the critical stress τ

c
 is about 23 GPa. The

nucleus of the liquid-like phase grows in size with
simultaneous fast increase in the strength of the
dislocation loop: s ≈ 4b at p = 20b. Therefore, for
low temperatures, one expects the plastic flow to
occur at a high critical stress, when the liquid-like
phase nuclei are formed, grow in size and simulta-
neously suffer large plastic shears whose magni-
tudes are in direct proportion with the nucleus sizes.
In the given example, s ≈ 0.2p.

In the case of α = 0.1 (high temperatures, Fig.
6), the critical stress τ

c
 is approximately two times

smaller, ≈ 12 GPa, and the nucleus grows in size
with a much slower increase of the loop strength:

s ≈ b at p ≈ 20b. In other words, for high tempera-
tures, the plastic flow is expected to begin under
two times smaller stress, and the nuclei suffer rela-
tively small plastic shears in the process of growth.
The shear values remain in direct proportion with
the nucleus sizes, although the slope is much
smaller here, s ≈ 0.05p.

Under increasing stress values, the slope of
evolution path decreases (Fig. 7), thus demonstrat-
ing a step-by-step transition to the heterogeneous
regime of plastic flow as with the case of amor-
phous silicon.

3.3. Nanocomposite nc-TiN/a-Si3N4
ceramics

Based on the results of the previous section, one
can study the processes of plastic flow and crack
generation in amorphous intergranular layers of
silicon nitride (a-Si

3
N

4
) which separate

nanocrystallites of titanium carbide (nc-TiN) in
nanocomposite nc-TiN/a-Si

3
N

4
 ceramics.

Let us consider a specimen of such a
nanocomposite under a normal tensile stress σ
(Fig. 8a) with focuses placed on one of its amor-
phous interlayers (intergranular boundaries) of
length L and thickness h (Fig. 8b). The interlayer is
under the maximum resolved shear stress τ = σ/2
(Fig. 8b). It is assumed in the framework of our
approach that when the shear stress reaches a
critical value τ = τ

c
, a nucleus of the liquid-like

phase, which suffers a local plastic shear, is formed
in the barrier-less manner (Fig. 8b). The local plastic
shear is modeled as a glide dislocation loop of
strength s. Under the shear stress τ

c
, the nucleus

size p grows and finally gets the length L of the
amorphous interlayer (Fig. 8c). At the same time,
the loop strength s grows, too, and gets some value
B. Depending on the temperature and stress val-
ues, the magnitude of B can be so large that the
dislocation transforms into a superdislocation, that
is a dense pile-up of dislocations stopped against
the neighboring grain of nc-TiN. In the head of this
pile-up, a nanocrack of length l can be nucleated
and propagate along a neighboring amorphous
interlayer (Fig. 8c).

The necessary condition for this scenario is
given by the inequality F > 2γ [41], where F is the
energy release rate (the strain energy released
when a crack propagates over a unit distance) and
γ is the specific surface energy of the interlayer
material. The equation F = 2γ determines two char-
acteristic lengths of the crack: (i) its equilibrium
length l

eq
, if  ∂F/∂l| l=l

eq
< 0, and (ii) its critical (Griffith’s)

Fig. 7. The ways of evolution in the space of the
dislocation loop strength s/b and size p/b in the
case of Si

3
N

4
, α = 0.1 and different values of the

applied shear stress τ shown at the lines in GPa
units.
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Fig. 8. Model of plastic flow and crack nucleation within intergranular layers of amorphous Si
3
N

4
 in

nanocomposite nc-TiN/a-Si
3
N

4
 ceramics. (a) A model specimen of the nanocomposite under an applied

tensile stress σ. (b) Nucleation and development of a local shear event in a-Si
3
N

4
 interlayer is treated as

a glide dislocation loop of strength (Burgers vector) s, which is surrounded by an ellipsoidal region of
liquid-like phase. (c) The superdislocation loop of an increased strength B reaches the triple junctions of
neighboring a-Si

3
N

4
 interlayers and causes the nucleation of a crack of length l in one of them.

length l
c
, if ∂F/∂l| l=l

c

> 0. In dependence on the
stressed state of the region, where the crack is
nucleated and grows, there are some possibilities
for its development. First, the crack can be nucle-
ated and grow in the barrier-less regime if the con-
dition F > 2γ is valid for any l > l

0
, where l

0
 is some

minimal crack length (of the order of some inter-
atomic distances) at which the notion of a crack
has its sense [42]. Second, the crack can be nucle-
ated and grow in the barrier-less regime only until
its equilibrium length l

eq
 if F > 2γ and ∂F/∂l < 0 for

l
0
 < l < l

eq
 [41,42]. Third, the classical Griffith’s [43]

case is realized when the crack must overcome
an energy barrier at its length l

c
 to be nucleated

and grow further if F > 2γ and ∂F/∂l > 0 at l
0
 ≤ l

c
 < l.

Fourth, there exists a combination of the second
and third cases where the crack is nucleated
and grows in the barrier-less regime up to the
length l

eq
. After that, the crack can grow further

under the conditions of overcoming the energy

barrier and reaching the critical length l
c
. If the

criterion F > 2γ is not valid at any length of the
crack, one can guarantee that crack generation is
impossible in such stress field. Within our model,
this means that, instead of crack generation, the
plastic flow in the neighboring amorphous
interlayers of the nanocomposite is expected to
occur.

Let us use the criterion F > 2γ to estimate the
conditions necessary for generation of a nanocrack
in our model (Fig. 8c). In doing so, we take into
account the fact that the elastic moduli of nc-TiN
and a-Si

3
N

4
 are rather close. Indeed, the Young

modulus and Poisson ratio of the nanocomposite
ceramics are E ≈ 350 GPa and ν ≈ 0.25 [44], re-
spectively, and therefore the shear modulus is G ≈
140 GPa. The latter is rather close to the shear
modulus G ≈ 120 GPa of the a-Si

3
N

4
 (see Section

3.2). Thus, in the first approximation, we consider
the nanocomposite nc-TiN/a-Si

3
N

4
 ceramics as an

TiC
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elastically homogeneous isotropic material with the
elastic moduli G ≈ 140 GPa and ν ≈ 0.25.

For the sake of simplicity, we will use the fol-
lowing two-dimensional model. We take a cylinder
with the elliptic cross section instead of the oblate
ellipsoid for the shape of the liquid-like phase
nucleus, and a dipole of straight edge dislocations
with the Burgers vectors ± s instead of the glide
dislocation loop. Let the dipole arm p grow up to
the interlayer length L (Fig. 8c). Within the above
energetic approach, one can estimate the corre-

sponding magnitude of s, which is hereinafter called
B. For definiteness we take L = 100b that with b ≈
0.174 nm gives L ≈ 17 nm, the typical average
length of amorphous interlayers in the
nanocomposite nc-TiN/a-Si

3
N

4
 ceramics. The

maps of the energy change ∆W for the cases of
α = 0.1 and τ

c
 = 12 GPa (high temperatures, Fig.

9a) and α = 0.5 and τ
c
 = 23 GPa (low tempera-

tures, Fig. 9b) show that B ≈ 5b ≈ 0.87 nm for high
temperatures and B ≈ 21b ≈ 3.65 nm for low tem-
peratures. It is worth noting that the evolution paths
remain straight as before: B ≈ 0.05L for high tem-
perature and B ≈ 0.2L for low temperature.

Following Indenbom [41], the energy release
rate F, in the case shown in Fig. 8c, can be calcu-
lated as follows

F
D

yy xy
= +

l

8

2 2σ σ� �,  (4)

where D = G/[2π(1 - ν)] and σ
iy
 is the average

weighted stress (i=x,y) which acts in the segment
(0 ≤ x ≤ l, y = 0):

σ
π

σ
iy iy

x y
x

x
x= =

−�
2

0
0l l

l

, d .
 �  (5)

Here the stress σ
iy
 is a superposition of the dislo-

cation stress σ iy

d( )  and the applied stress σ iy

ex( ) :
σ

iy
=σ iy

d( )+ σ iy

ex( ) .
In the coordinate system (x’,y’) related to the

interlayer plane (Fig. 8c), the stress components
of the dislocation dipole are [45]
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Fig. 9. Maps of the energy change ∆W  in the space
of the dislocation loop strength s/b and size p/b in
the case of Si

3
N

4
; (a) α = 0.1 and τ = 12 GPa, and

(b) α = 0.5 and τ = 23 GPa. The energy values are
given in eV.
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Fig. 10. Dependence of the energy release rate F
on the crack length l, for different lengths L of the
a-Si

3
N

4
 interlayer (shown at the curves), at α = 0.1,

τ = 12 GPa, and θ = 45° (a), 75° (b), 105° (c), and
135° (d). The horizontal line shows the surface
energy level 2γ = 40 J m-2.

Using the transforms of coordinates, x’ = xcosθ +
ysinθ and y’ = -xsinθ+ycosθ, and stress compo-
nents,

σ σ σ σ σ θ

σ θ

yy x x y y x x y y

x y

= + − −

+

′ ′ ′ ′ ′ ′ ′ ′

′ ′

1

2

1

2
2

2

� � � �cos

sin ,
 (9)

σ σ σ θ σ θ
xy x x y y x y

= − +′ ′ ′ ′ ′ ′

1

2
2 2� �sin cos ,  (10)

we obtain the normal and shear stresses which act
in the plane of the nucleating crack:

σ θ
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θ θ
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σ τ θyy

ex( ) = +1 2sin ,
 �  (13)

σ τ θxy

ex( ) = cos .2  (14)

Introducing these stresses to the integral in Eq.
(5), we find the average weighted stresses which
can be written as

σ θiy

d

iy

DB L

c
f L( ) =

l

~
, ,� �  (15)

σ σiy
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iy

ex( ) ( )= ,  (16)
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Fig. 11. Dependence of the energy release rate F
on the crack length l, for different lengths L of the
a-Si

3
N

4
 interlayer (shown at the curves), at α = 0.5,

τ = 23 GPa, and θ = 45° (a), 75° (b), 105° (c), and
135° (d). The horizontal line shows the surface
energy level 2γ = 40 J m-2.
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and the following denotations are used: ~
L  = L/l,

~
h  = h/l, h L L= + +2 22 l lcos θ , ϕ = arcsin(sinθ/
~
h ).

With Eqs. (15)-(18), the energy release rate F
reads

F
DB BL

c
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sin cos
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Let us consider the validity of criterion F > 2γ at
high (B ≈ 0.05L) and low (B ≈ 0.2L) temperatures
of testing of our model specimen. Unfortunately,
we have failed to find in literature any reliable data
on the value of γ for a-Si

3
N

4
 interlayers. Therefore,

we take the estimate γ = 20 J m-2 which has been
utilized by Tsurula et al. [46] in computer simula-
tions of crack growth in nanoamorphous Si

3
N

4
 un-

der room temperature. There is also no informa-
tion concerning the temperature dependence of γ.
Based on the changes in the surface energy of
ceramic Si

3
N

4
 specimens, which are composed of

crystalline micro- and nanograins separated by
amorphous interlayers, one can state that in the
range of moderate temperatures (T < 1400K), the
γ value is weakly changed, diminishing with T within
30% [47]. In the range of higher temperatures, γ
can grow fast [47-49]. For definiteness, we assume
in our calculations that γ is constant (γ = 20 J m-2

[46]), keeping in mind that in the case of high tem-
peratures this will give us the upper estimate for
the equilibrium length l

eq
 of the crack and the un-

der estimate for its critical length l
c
.

The dependence of the energy release rate F
on the crack length l, for different values of the
dipole arm (interlayer length) L and the crack ori-
entation angle θ, is shown in Figs. 10 (high tem-
peratures, B ≈ 0.05L) and 11 (low temperatures,
B ≈ 0.2L).

In the case of high temperature, the validity of
criterion F > 2γ strongly depends on the interlayer
length L and the orientation angle θ (Fig. 10). For
relatively small angles [here θ = 45° (Fig. 10a) and
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75° (Fig. 10b)], the main factor is the length L which
is proportional to the average size of the crystallite
(grain) d:d ≈ 2L. When L is relatively large (here L
= 300b ≈ 52 nm and d ≈ 100 nm), the criterion F >
2γ is valid for any crack length l. This means that
there exist not energy barriers in the framework of
the present model, and the crack growth is ener-
getically favorable. When L is a bit smaller (here L
= 200b ≈ 35 nm and d ≈ 70 nm), the criterion F > 2γ
is valid for very small crack length l < l

eq
 (here l

eq
 ≈

2.5 nm at θ = 45° and ≈ 2 nm at 75°) and relatively
large crack length l > l

c
 (here l

c
 ≈ 7.5 nm at θ = 45°

and ≈ 13 nm at 75°). A crack of intermediate length
l
eq

 ≤ l ≤ l
c
 would be energetically unfavorable. When

L is medium (here L = 100b ≈ 17 nm and d ≈ 35
nm), the equilibrium length of the crack becomes
so small (l

eq
 < 0.5 nm) that one can not account for

it. At the same time, its critical length l
c
 approaches

the interlayer length (l
eq

 ≈ 13.5 nm at θ = 45°, Fig.
10a) or even exceeds it (at θ = 75°, Fig. 10b). There-
fore, the probability of crack generation abruptly
drops here. Finally, when L is very small (here L =
50b ≈ 9 nm and d ≈ 17 nm), the criterion F > 2γ is
not valid, and the crack generation is impossible
within our model.

At high temperature and relatively large angle θ
[here θ = 105° (Fig. 10c) and 135° (Fig. 10 d)], only
very short cracks can be generated in between
large and medium nanograins. For large L, the
equilibrium crack length l

eq
 is about 4 and 2.5 nm

at θ = 105° and 135°, respectively; for medium L, it
is approximately 1.5 and 1 nm (of the order of the
minimal possible crack length l

0
), respectively. At

the same angles and smaller grain size, the crack
generation is impossible.

In the case of low temperature, the situation
drastically changes (Fig. 11). At relatively small
angles [here θ = 45° (Fig. 11a) and 75° (Fig. 11b)],
the criterion F > 2γ is valid for any grain size, that
is, the crack generation and its unlimited growth
are barrier-less and energetically favorable. At me-
dium angles (here θ = 105°) and very small grain
sizes (here L = 50b ≈ 9 nm and d ≈ 17 nm), only
very short cracks (here with l

eq
 ≈ 1.7 nm) can be

generated, while at the larger grain sizes (here d ≥
35 nm), the barrier-less nucleation and unlimited
growth of cracks are still possible. At large angles
(here θ = 135°) and any grain size, the crack growth
is limited by its equilibrium length: l

eq
 ≈ 4, 12 and

21 nm, for L ≈ 17, 35 and 52 nm (d ≈ 35, 70 and
100 nm), respectively. When the grain size is very
small, one can state that the crack is not gener-
ated because its equilibrium length l

eq
 ≈ 1 nm is

either smaller than or of the same order as l
0
.

Thus, at low temperature of testing, our model
sample of nanocomposite nc-TiN/a-Si

3
N

4
 ceram-

ics is subject of cracking in much higher degree
than at high temperature. Within the model, it is
caused by much higher level of applied shear stress
τ necessary for the formation of nuclei of liquid-like
phase in amorphous interlayers, and by significantly
larger Burgers vectors of the superdislocations
stopped by the triple junctions of the interlayers. It
is shown that the interlayer length L (and there-
fore, the grain size d) exerts a strong influence upon
the possibility of crack generation in amorphous
interlayers. A decrease in L (refinement of
nanograins) leads to diminishing of both the
superdislocation Burgers vector and dipole arm, in
which case the dislocation stresses greatly de-
crease. As a result, the energy release rate F de-
creases as well, and the validity of criterion F > 2γ
can be violated. This is quite evident in the case of
high temperatures (Fig. 10) when the value of F is
commensurate with the fracture energy 2γ. At low
temperatures, the value of F in the most cases is
significantly larger than the estimate 2γ = 40 J m-2

[36] used in calculations (Fig. 11). Assuming that
this estimate is not exact and might be some times
larger, one can expect a strong influence of the
grain size upon the cracking at low temperature,
too. Our conclusion that grain refinement can pre-
vent the intergranular cracking well corresponds
to the experimental result that hardness of the co-
lumnar nanocomposite nc-TiN/a-SiN

x
 coatings no-

ticeably increases when the grain diameters de-
creases in the range from 100…150 nm to 20 nm
[50,51].

4. SUMMARY

We have suggested a theoretical model describ-
ing plastic flow in covalent amorphous solids and
amorphous intergranular boundaries in
nanoceramics. Based on atomic simulations of
Demkowicz and Argon [21-23], it is supposed that
the nuclei of liquid-like phase are formed and grow
in size within solid-like matrix phase under an ex-
ternal load. These nuclei suffer plastic shears mod-
eled through glide dislocation loops which are gen-
erated inside the nuclei and develop together with
them. Energetics of the formation and growth of
the nuclei has been studied in detail with applica-
tion to bulk amorphous silicon and silicon nitride,
and amorphous intergranular layers of silicon ni-
tride which separate nanocrystallites of titanium
carbide in nanocomposite nc-TiN/a-Si

3
N

4
 ceram-

ics. It is shown that when the applied shear stress
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reaches a critical value, the formation and growth
of the nuclei become energetically favorable. The
critical stress value strongly depends on tempera-
ture; the higher critical stress corresponds to the
lower temperature. Moreover, under low tempera-
tures, the strength (Burgers vector magnitude) of
the dislocation loop, which describes the plastic
shear inside a nucleus, grows faster than under
high temperatures. This means that under low tem-
peratures and relatively large applied stresses, one
expects the heterogeneous plastic flow which is
realized through generation and propagation of
several nuclei of liquid-like phase containing dislo-
cation loops of high strength. Since these nuclei
are strong sources of elastic strains, they can stimu-
late heterogeneous generation of new nuclei in the
shear plane, thus leading to the formation of pow-
erful shear bands. In the opposite case of high tem-
peratures and relatively small applied stresses, one
expects the homogeneous plastic flow which is
realized through multiple generation and extension
of many liquid-like phase nuclei with dislocation
loops of low strength. The important issue is that if
the applied stress exceeds the critical value, which
is characteristic of the given high temperature, the
dislocation strength grows faster, and the homo-
geneous regime of plastic flow can be replaced by
the heterogeneous regime that is in accordance
with results of atomic simulations of Szlufarska et
al. [34].

We have also proposed a theoretical model
which demonstrates that the nucleation and devel-
opment of liquid-like phase nuclei within intergranu-
lar layers of a-Si

3
N

4
 in nanocomposite nc-TiN/a-

Si
3
N

4
 ceramics can stimulate crack generation in

the neighboring a-Si
3
N

4
 interlayers. By using the

energy approach, we have investigated the nec-
essary conditions for the barrier-less and energeti-
cally favorable nucleation of mixed (I and II) mode
nanocracks under the stresses due to
superdislocation dipoles and external loading. The
equilibrium and critical crack lengths have been
calculated and studied in dependence on the tem-
perature, grain size, and crack orientation. Our
model shows that nanocomposite nc-TiN/a-Si

3
N

4

ceramics are inclined to intergranular cracking in
much higher degree at low temperature and large
grain size than at high temperature and small grain
size.
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