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Abstract. A theoretical model is suggested which describes the generation of nanocracks at
grain boundaries and their convergence into a catastrophic macrocrack in nanocrystalline
materials deformed by grain boundary sliding. The criterion for the convergence is revealed, and
the fracture strength of a nanocrystalline material is calculated which characterizes the formation
of a catastrophic macrocrack due to the convergence. Also, we estimated strain-to-failure controlled
by grain boundary sliding, generation of nanocracks and their convergence. It is shown that both
the fracture strength and strain-to-failure of a nanocrystalline material deformed through grain
boundary sliding are highly sensitive to the misorientation angles of grain boundaries that
dominate in the material.

1. INTRODUCTION

Nanocrystalline materials – solids consisting of
nanoscale grains (crystallites with the sizes below
100 nm) divided by interfaces (grain and interphase
boundaries) – represent the subject of intensive re-
search in various branches of science, including
solid state mechanics. Nanocrystalline materials
show outstanding mechanical properties attributed
to their structural features, first of all, nanoscale
sizes of crystallites and large amounts of interfaces
(grain and interphase boundaries); see, e.g., reviews
[1–7] and books [8,9]. In this context, mechanics
of nanocrystalline materials should definitely involve
in a detailed consideration their structure and its
evolution under a mechanical load. In particular, it

is effective to exploit the sinergetic approach in
mechanics of nanocrystalline materials. This ap-
proach focuses on evolution of both the
nanostructure and structural defects in mechanically
loaded nanocrystalline specimens, in parallel with
an analysis of stresses and their relaxation through
plastic deformation and fracture processes associ-
ated with the evolution. The sinergetic approach rep-
resents a modification/generalization of classical
mechanics [10–13] of conventional polycrystalline
solids under a mechanical load. In fact, this approach
involves representations of classical mechanics,
solid state physics and materials science.

Of particular importance for mechanics of
nanocrystalline materials and their structural appli-
cations are the strength and ductility of these mate-



64 N.F. Morozov, I.A. Ovid’ko, Yu.V. Petrov and A.G. Sheinerman

rials. The ultimate strength of nanocrystalline ma-
terials is commonly 2–10 times higher than that of
conventional polycrystals with the same chemical
composition [1-9]. At the same time, for most of
nanocrystalline materials, tensile strain-to-failure ε

f

does not exceed several per cent (ε
f
=0.02-0.03) [1–

9]. Low ductility of nanocrystalline solids (charac-
terized by small values of ε

f
) considerably limits prac-

tical applications of these high-strength materials.
At the same time, there are examples of
nanocrystalline solids showing good ductility (ε

f

≥0.08) in parallel with ultrahigh strength [14–21].
Besides, some nanocrystalline metals and ceram-
ics demonstrate a superplastic behavior (ε

f
>2) at

lower temperatures and higher strain rates compared
to their polycrystalline counteparts [22–27]. The na-
ture of ductility and superplasticity of nanocrystalline
solids is the subject of wide speculations (see, e.g.,
[1–9]). At the same time, there are no doubts in the
fact that ductility of nanocrystalline solids is highly
sensitive to their structural features causing the ac-
tions of the specific mechanisms of their plastic de-
formation and fracture. In these circumstances, the
identification of these mechanisms (which, gener-
ally speaking, are different from those operating in
conventional polycrystalline materials) is crucially
important for the progress in fabrication of
nanocrystalline materials with simultaneously ultra-
high strength and good ductility.

In this context, one of the key problems of
nanomaterials mechanics is an adequate theoreti-
cal description of the processes of nanoscale frac-
ture and the mechanisms responsible for the tran-
sition from nanoscale to macroscale fracture. One
treats that such mechanisms are different in
nanocrystalline and conventional polycrystalline
materials due to the difference in the structure be-
tween these materials (see, e.g., experimental data
[16,19–21,28–31], computer models [32–35] and
theoretical studies [36–43]). In particular, brittle frac-
ture of nanocrystalline metals with the face-centered
cubic crystal lattice (fcc metals) has been observed
in experiments [29–31]. At the same time, brittle
fracture of conventional polycrystalline fcc metals
under a quasistatic load is not typical. The specific
features of fracture processes of nanocrystalline
materials are first of all governed by their structural
peculiarities, namely the nanoscopic dimensions of
their grains and the very high volume fractions oc-
cupied by grain boundaries (GBs); for a review, see
[44]. In theoretical papers [36,37], the experimen-
tally observed brittle fracture of nanocrystalline sol-
ids was attributed to the catastrophic convergence
of nanocracks. These studies were mainly focused

on the derivation of the conditions for the conver-
gence of the existing nanocracks, whereas the pro-
cesses of nanocrack nucleation were not analyzed,
and the estimate of the fracture strength σ

B
 and

strain-to-failure ε
f
 was not made. The main aim of

this paper is to elaborate a detailed model describ-
ing multiple generation of nanocracks and their cata-
strophic convergence in deformed nanocrystalline
materials. Within the model, we examine nanocrack
generation in the course of GB sliding (one of the
dominant modes of (super)plastic deformation in
nanocrystalline materials) and estimate both the frac-
ture strength σ

B
 and strain-to-failure ε

f
.

2. MODEL

The nucleation and growth of a crack in a solid com-
monly occurs under the action of both the applied
stress and the stress fields created by defects, the
sources of internal stresses. Such defects can ei-
ther be present in a solid prior to its mechanical
loading or be created during its plastic deformation.
In general, several mechanisms of plastic deforma-
tion are active in nanocrystalline materials [1–9], in
contrast to the case of polycrystals where the con-
ventional slip of lattice dislocations in grain interiors
is dominant. Among various mechanisms of plastic
deformation of nanocrystalline materials, one can
distinguish GB sliding as the dominant deformation
mode under certain conditions. In particular, GB slid-
ing plays the key role in the processes of super-
plastic deformation of nanocrystalline materials (e.g.,
[9,24,27]). Also, GB sliding is considered as the
dominant or, at least, one of the principle deforma-
tion modes in nanocrystalline materials with fines
grains (with the size below 15 nm) [1–9], where the
volume fraction of GBs – carriers of GB sliding – is
particularly high. With the important role of GB slid-
ing in the processes of plastic deformation, we will
consider the generation and convergence of
nanocracks in nanocrystalline materials with finest
grains (d<15 nm), deformed primarily through GB
sliding. (According to experimental data [29–31], it
is precisely these materials that are particularly
prone to brittle fracture.)

In general, nanocrystalline materials can frac-
ture both due to the convergence of pre-existent
cracks/voids and as a result of the generation of
new nanocracks during plastic deformation. In the
following, we will consider nanocrystalline materi-
als without pre-existent cracks and voids. Within
the model, we examine two processes: (1)
nanoscopic fracture that manifests itself in
nanocrack generation at GBs in the course of GB
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sliding; and (2) the transition from nanoscopic to
macroscopic fracture owing to the convergence of
nanocracks in neighboring GBs and the formation
of a catastrophic macrocrack.

First, let us consider the generation of nano-
cracks in nanocrystalline solids during GB sliding.
To do so, we examine a nanocrystalline specimen
under a tensile applied load σ

yy
=σ (Fig. 1). Let this

specimen be plastically deformed through GB slid-
ing. In general, GB sliding leads to the formation of
two kinds of defects near triple junctions of GBs:
dislocations with large Burgers vectors and
disclination dipoles [45]. The formation of disloca-
tions is associated with the incompatibility of strains
at triple junctions, appearing in the course of GB
sliding. When dislocations are accumulated in triple
junctions, they induce high local stresses that pro-
vide strain hardening and promote nanoscopic frac-
ture. At the same time, dislocations under the ac-
tion of the applied stress can be emitted from triple
junctions into grain interiors. In this case, the dislo-
cations move far from triple junctions and, conse-
quently, do not significantly influence the processes
of GB sliding and nanocrack generation. In these
circumstances, for simplicity, in the following, we
will not account for the effects of dislocations on
these processes.

Along with dislocation formation, GB sliding re-
sults in the formation of disclination dipoles near
triple junctions [42,45]. The formation of disclination
dipoles is associated with the displacement of GBs
during GB sliding from the triple junctions of GBs to
their new positions [42,43]. Every such a disclination
dipole comprises a disclination at a triple junction
and a second opposite-sign disclination at a GB,
and the dipole arm (distance between its
disclinations) amounts to the jump of displacements
along a GB during GB sliding (Fig. 2b). In the case
of tilt boundaries, the disclinations are of wedge
character, and the disclination strengths are equal
by magnitude to the misorientation angles of the
moving boundaries or to the difference of the
misorientation angles from 2π/m, where m is the
order of the crystal symmetry axis. (For typical fcc
nanocrystalline metals, m=4.) Disclination dipoles
formed at GBs hinder GB sliding and thereby pro-
vide strain hardening of nanocrystalline materials
[42].

When the values of the dipole disclination
strengths and dipole arms are sufficiently high,
disclination stresses can initiate nanocrack genera-
tion [43]. Nanocracks nucleate in the nanoscopic
regions near disclination cores, where the dis-
clination-induced tensile stresses exceed the local
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Fig. 1. Nanocrystalline specimen under a one-axis
tensile load. The ellipse shows a disclination dipole
and nanocrack formed at a grain boundary due to
grain boundary sliding.

fracture strength and lead to the formation of free
surfaces. Our estimates based on the expressions
for the disclination dipole stress fields [46] show
that, in the considered case where the grain size
d<15 nm, the equilibrium nanocrack lengths are
much smaller than the grain size. This inequality is
valid even in the situation with very significant slid-
ing along a GB (characterized by the jump of dis-
placements equal to d). At the same time, these
nanocracks can serve as nuclei for the formation of
larger nanocracks with the size close to the grain
size d.

Let us consider the mechanism for the forma-
tion of such nanocracks (Fig. 2). Let a disclination
dipole form in a GB due to GB sliding (realized un-
der the action of a local shear stress τ) (Figs. 2a
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and 2b). Simultaneously, GB sliding results in the
formation of a triple junction dislocation which is
then emitted into the grain interior (Fig. 2b). When
the jump of displacements along a GB due to GB
sliding reaches a critical value, a nanocrack is gen-
erated at one of the dipole disclinations (Fig. 2c).
The subsequent GB sliding results in the shear of
the crack surfaces and crack elongation (Figs. 2d
and 2e). Then the crack surface becomes smoother
(Fig. 2f) owing to diffusion along this surface. (The
driving force for the crack surface diffusion is a de-
crease of the crack surface area leading to a de-
crease in the crack surface energy.) The following
GB sliding leads to the shear of the crack surfaces
and crack elongation to the triple junction, as shown
in Fig. 2g. Also, the crack can grow to the left, along
the rest of the GB, owing to GB diffusion (Fig. 2h) in
the stress field of the high local stresses near the
crack tip. Hereafter, we will assume that the above
mechanism gives rise to the formation of GB
nanocracks whose lengths are approximately equal
to the jumps of displacements in GBs resulting from
GB sliding.

Now let us consider the convergence of
nanocracks (generated at GBs due to GB sliding)
into a macrocrack. With an account for nanoscopic
crack lengths and high angles between the planes
of adjacent GBs, we suppose that the formation of
a nanocrack in a specified GB does not depend on
the formation of nanocracks in other GBs. In these
circumstances, the formation of a macrocrack – the
carrier of catastrophic fracture – is the result of the
independent events of nanocrack formation in vari-
ous GBs.

With these assumptions, the process of the
propagation of cracks along GBs can be described
using the mathematical methods of the percolation
theory. This theory connects macroscopic pro-
cesses of different origins in structured systems with
the characteristics of their elementary processes
and structure geometry [47–50]. Following the per-
colation theory [47–50], in the case under our con-
sideration, the formation of a macrocrack that goes
through the entire solid (that is, the formation of an
infinite cluster that consists of GBs containing
nanocracks) is possible, if the number fraction of
GBs containing nanocracks exceeds a critical value
n

c
.

Let all GBs have the same length d. We as-
sume that the nanocracks formed independently in
neighboring GBs converge, if the length of all such
nanocracks is equal d. Thus, the number fraction n
of GBs containing nanocracks that can converge
with nanocracks in neighboring GBs equals to the
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Fig. 2. Formation of a disclination dipole and grain
boundary nanocrack as a result of grain boundary
sliding in a deformed nanocrystalline material. (a)
Initial state of the grain boundary. (b) Disclination
dipole is generated in the grain boundary due to
grain boundary sliding. Simultaneously, a disloca-
tion forms in a triple junction. Then the dislocation
is emitted into the grain interior. (c) Nanocrack gen-
erates at one of the dipole disclinations. (d,e) Ow-
ing to grain boundary sliding the nanocrack changes
its shape and elongates. At the same time, the sec-
ond dislocation forms in the triple junction. Then
the dislocation is also emitted into the grain inte-
rior. (f) Nanocrack is smoothen up due to diffusion.
(g) Subsequent grain boundary sliding leads to the
shear of the crack surfaces and crack elongation to
the triple junction. (h) Crack growth to the left, along
the rest of the grain boundary, owing to grain bound-
ary diffusion.
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number fraction of GBs where the jump of displace-
ments amounts to d.

For estimate of the number fraction n of such
GBs we make the following assumptions:
(i) All GBs are tilt boundaries.
(ii) GBs are randomly oriented about the tension axis.
(iii) The jumps of displacements along GBs can vary

in the range o ≤ p ≤ d.
(iv) The jump of displacements along any specified

GB does not depend both on the jump of dis-
placements along other GBs and on the angles
made by this GB with the neighboring GBs. The
jump of displacements along a GB is controlled
only by the orientation of this GB with respect to
the tension axis and by the strengths of the
disclinations formed in this GB in the course of
GB sliding.

GBs are specified by a misorientation angle dis-
tribution. This distribution produces a distribution of
the absolute values of GB disclination strengths that
lie in the interval 0 < ω ≤ ωmax.

3. CHARACTERISTICS OF
NANOCRACK GENERATION
DURING GRAIN BOUNDARY
SLIDING

In this section we calculate the condition for the
generation of a GB nanocrack of length d. (Accord-
ing to our assumption, such a nanocrack can con-
verge with nanocracks in the neighboring GBs.)
Since we suppose that the nanocrack length is equal
to the jump of displacements along the GB in the
course of GB sliding, the latter condition is equiva-
lent to the relation p=d, where p is the jump of dis-
placements, which is also equal to the dipole arm.
To calculate the equilibrium value of p, we cast the
energy associated with both the GB sliding along
an individual GB and the formation of a disclination
dipole in this GB. Then the equilibrium value of p
will be found from the energy minimum condition.

Let us consider a GB containing a disclination
dipole formed due to GB sliding. Let the GB plane
make an angle θ with the tension axis, the dipole
arm equal to p, and the dipole disclination strengths
be equal to ω and -ω (Fig. 1). In order to estimate the
equilibrium dipole arm p, we calculate the energy
associated with disclination dipole formation. In so
doing, we take into account the fact that the applied
tensile load σ creates the shear stress τ=(σ/2)sin2θ
in the GB plane (see Fig. 1). The opposite shear
stresses create opposite jumps of displacements
along the GB. Therefore, without loss of generality,

in the following we will examine the GBs for which τ
is positive, that is, 0≤θ≤π/2.

We assume that along with the shear stress τ
which acts in the GB plane and induces GB sliding,
there exists an additional internal shear stress in
the GB plane, which is not associated with the for-
mation of disclination dipoles. This additional stress
characterizes resistance to GB sliding despite the
presence or absence of disclination dipoles. We
suppose that in the presence of GB sliding, this
internal shear stress acting in the GB does not de-
pend on the jump of displacements p along the GB
and is equal to τ

f 
. In this case, for τ<τ

f
, GB sliding

along the GB does not occur, while, for τ>τ
f
, an

effective shear stress τ-τ
f
 acts in the GB plane. This

effective shear stress  induces the formation of a
disclination dipole in the GB. With this assump-
tion, the energy variation (per unit disclination length)
associated with the GB sliding and the formation of
a disclination dipole is as follows (see Ref. [42] with
the correction made in [51]):

{ } ( )
2 2 3

ln ,
2 2

, .

f

f

D p R
W pd

p

R p

ω
∆ = + − τ − τ

τ > τ ≥
 (1)

In formula (1), R is the screening length of the
disclination dipole stress field, D=G/[2π(1-ν)], G is
the shear modulus, and ν is the Poisson’s ratio.
The first term on the right-hand side of formula (1)
describes the disclination dipole self-energy [46],
while the second term characterizes the work of
the effective shear stress τ-τ

f
 done to provide GB

sliding. In formula (1), the interaction between dif-
ferent disclination dipoles is accounted for by the
introduction of the screening length R of the
disclination dipole stress field. Formula (1) also
takes into account that an isolated disclination di-
pole in an infinite solid does not interact with the
constant applied stress.

Assume that the growth of the dipole arm is en-
ergetically favored if ∂∆W/∂p<0. Then the equilib-
rium dipole arm is derived from the relation ∂∆W/
∂p=0, which in combination with formula (1) yields:

2

ln 1 .
f

Dp d

d p

ω κ
τ = τ + + 

  
 (2)

In formula (2), we use the denotation κ=R/d. Eq. (2)
has a solution at τ

f
≤τ<τ

f
+Dω2κ. If τ≤τ

f
, GB sliding

along the GB does not occur (p=0), while, for
τ>τ

f
+Dω2κ, GB sliding can go on until it is stopped
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by the neighboring triple junctions. We assume that,
when τ>τ

f
+Dω2κ, the jump of displacements along

the GB is equal to d (p=d). The formation of a
disclination dipole with the arm d is energetically
favorable provided that the shear stress  is not smaller
than that necessary to form a disclination dipole
with the equilibrium arm d, that is, if

2 (ln 1).
f

Dτ ≥ τ + ω κ +  (3)

For simplicity, we suppose that the stress τ
f
 act-

ing in a GB does not depend on its misorientation
angle. In this case with an increase of the applied
stress, GB sliding starts to occur along the favor-
ably oriented GBs making the angles close to π/4
with the tension axis. As the applied stress σ ap-
proaches the yield strength σ=σ

y
, the relation τ=τ

f

should hold in these GBs. Since τ=(σ/2)sin2θ and,
consequently, τ=σ/2 at θ=π/4, one obtains that τ

f
=

σ
y
/2.
With substitution of the relations τ

f
=σ

y
/2 and

τ=(σ/2)sin2θ to inequality (3), we rewrite this inequal-
ity as sin2θ≥f(ω), where

22 (ln 1)
( ) .

y D
f

σ + ω κ +
ω =

σ
 (4)

The inequality sin2θ≥f(ω) determines the conditions
for the formation of a disclination dipole with the
arm d in a GB characterized by the angle θ. As a
result, this inequality also determines the condition
for the formation of a GB nanocrack that can con-
verge with nanocracks in the neighboring GBs.

4. CRITICAL PARAMETERS FOR
CATASTROPHIC CONVERGENCE
OF NANOCRACKS IN THE
COURSE OF GRAIN BOUNDARY
SLIDING

Let us analyze the conditions for the catastrophic
convergence of nanocracks in the course of GB slid-
ing in nanocrystalline solids. In order to calculate
the number fraction n of GBs containing nanocracks
with the length d, following [36,37], we introduce
the distributions of GBs over the angles θ and mag-
nitudes ω of disclination strengths. Assume that
GBs are randomly oriented and define the distribu-
tion density of GBs, ρθ(θ), over the angles α as
ρθ(θ)=2/π, where 0≤θ≤π/2. We introduce the deno-
tation t=sin2θ and come from the distribution den-
sity ρθ(θ) to the distribution density ρ

t
(t). Since, for

0<t<1, one value of t corresponds to two different

values of θ from the interval 0≤θ≤π/2, the distribu-
tion density  can be presented as

2

2 ( ) 2
( ) ( sin2 ) .

| / | 1
t

t t
dt d t

θρ θ
ρ = = θ =

θ π −
 (5)

Suppose that the absolute values ω of disclination
strengths, which vary in the range 0<ω≤ω

max
, obey

the normalized beta distribution ρω(ω):

1 1

max max

max

( / ) (1 / )
( ) ,

( , )B

α− β−

ω

ω ω − ω ω
ρ ω =

ω α β  (6)

where α and β are constants, and B(α,β) is the beta
function. The parameter β is related to the param-
eter α and the mean value ω of the magnitude ω of
disclination strengths as β=α(ω

max
/ω-1). For a speci-

fied ω, the parameter α determines the distribution
dispersion αβ/[(α+β)2(α+β+1)], which decreases
with an increase in α. In the examined case of α>1,
the distribution density ρω(ω) becomes zero at ω=0
or ω=ω

max
 and has a single maximum in the range

0<ω≤ω
max

.
The number fraction of GBs containing

nanocracks that can merge with nanocracks in
neighboring GBs is calculated as [52]

max

0

( ) ( ( )) ,n P t f d
ω

ω= ρ ω > ω ω∫  (7)

where P(t>f(ω))is the probability that t>f(ω). The
probability  is given by

1

( )

( ( )) (1 ( )) ( )

2
(1 ( ))arccos ( ),

t

f

P t f f t dt

f f

ω

> ω = Θ − ω ρ =

Θ − ω ω
π

∫
 (8)

where Θ(x) is the Heaviside function equal to 1 at
x>0, and to 0 otherwise.

The function Θ(1-f(ω)) figuring in formula (8) is
not equal to 0, if f(ω)<1. The latter relation can be
rewritten as ω<ω

c
, where

.
2 (ln 1)

y

c
D

σ − σ
ω =

κ +
 (9)

With the inequality  and formulas (6) and (8) substi-
tuted to formula (7), one obtains the following final
expression for the number fraction of GBs contain-
ing nanocracks:
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max

max

11min{ , }

0 max max

2

( , )

1 arccos ( ) .
c

n
B

f d

β−α−ω ω

=
πω α β

ω ω
− ω ω

ω ω

×

   
   
   

∫

Now the criterion of macrocrack formation has
the form n>n

c
, where the critical number n

c
 of frac-

tion of the GBs “conducting” the nanocracks de-
pends on the grain shape. In the examined case of
a nanocrystalline solid, the analysis based on the
percolation theory [47–50] gives: n

c
≈0.125.

Formula (10) allows one to relate the number
fraction n of the GBs “conducting” the nanocracks
with the applied tensile stress σ and to calculate
the critical stress σc=σ(n=nc) for the brittle fracture
of the nanocrystalline solid. Another important char-
acteristic of nanocrystalline materials is strain-to-
failure ε

f
. In the case under our consideration, ε

f
 is

defined as the plastic strain at which a catastrophic
macrocrack forms in the nanocrystalline solid:
εf=ε(n=nc). In order to estimate εf, we calculate the
dependence of the strain ε=ε

yy
 of the nanocrystalline

solid on the applied stress σ.
For the calculation of ε, we consider a model

two-dimensional nanocrystalline solid consisting of
square grains with the side length d, whose bound-
aries make the angles θ and π/2-θ with the tension
axis. Let a dipole of disclinations with the strengths
±ω form at every GB and the applied tensile stress
induce sliding along every GB characterized by the
jump of displacements p. Then sliding along the GBs
that make the angle θ with the tensile load direction
induces plastic shear by the angle p/d, which, in
turn, creates plastic strain 

(1)

yy
ε =psin2θ/(2d). Sliding

along the GBs making the angle  with the axis of
the applied load also creates plastic shear by the
angle  and induces plastic strain (2)

yy
ε = (1)

yy
ε =psin2θ/

(2d). The total strain due to sliding along two fami-
lies of GBs is equal to (1)

yy
ε + (2)

yy
ε . Using the denota-

tion t=sin2θ and introducing another denotation
ε(t,ω)= (1)

yy
ε + (2)

yy
ε , we obtain: ε(t,ω)=pt/d.

As it has been shown above, the jump of dis-
placements p is equal to 0, for τ≤τ

f
; p is calculated

from equation (2), for τ
f
<τ<τ

f
+Dω2(lnκ+1) (that is, for

t<f(ω)); and p amounts to d at τ≥τ
f
+Dω2(lnκ+1) (that

is, at t≥f(ω)). With formula (2) as well as the rela-
tions τ=(σ/2)t, τ

f
=σ

y
/2 and ε(t,ω)=pt/d, one finds that

at ε(t,ω)=0, t≤σ
y
/σ, ε(t,ω)=t at t≥f(ω), and ε(t,ω) is

the smallest of the two roots of the equation

 (10)
2

( , )
ln 1

( , ) 2

y
tt t

t t D

σ − σε ω κ
+ =

ε ω ω
 
  

 (11)

in the case of σy /σ<t<f(ω). Solving equation (11) for
ε(t,ω) and selecting the smallest of its two roots
yields:

2
1 [ ( ) / 2 ] ,

0, /

( , ) / ( ),

, ( ),

y

y

W t eD

y

t

t te t f

t t f

+ − σ −σ κ ω

≤ σ σ

ε ω = κ σ σ < < ω

≥ ω





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 (12)

where W(z) is the special function defined as the
smallest of the two roots of the equation z=WeW in
the case of -1/e<z<0.

Now let us consider a deformed nanocrystalline
solid with randomly oriented GBs and various val-
ues ω of disclination strength magnitudes. The av-
erage plastic strain ε=ε

yy
 in such a solid is found by

averaging the strain ε(t,ω) over both various GB ori-
entations and disclination strengths ω. The averag-
ing procedure gives:

max

max

1

0 0

1

2
0max

1 1

0 max max

( ) ( ) ( , )

2

( , ) 1

1 ( , ) .

t
t dt t d

dt

B t

t d

ω

ω

α− β−ω

ε = ρ ρ ω ε ω ω =

×
πω α β −

ω ω
− ε ω ω

ω ω

   
   
   

∫ ∫

∫

∫
 (13)

With formulas (4), (10), (12), and (13), we plot
the dependences n(ε) and n(σ) in the case of
nanocrystalline Ni characterized by the following
values of elastic moduli [53]: G=73 GPa and ν=0.31.
We also put κ=3, ω

max
=π/4 and σ

y
=0.8 GPa. The

dependences n(ε) and n(σ) are presented in Figs. 3
and 4, respectively, for various values of ω and α.
The horizontal lines in these figures show the value
of n

c
 (n

c
≈ 0.125).  The formation of a catastrophic

macrocrack is possible in the regions where the
curves n(ε) or n(σ) lie higher than the horizontal line
n=n

c
.

As it is seen in Fig. 3a, the curves n(ε) plotted
for different values of the average modulus ω of
disclination strength practically coincide, that is, the
number fraction n of GBs conducting cracks does
not depend on ω at a fixed strain ε. As a conse-
quence, the strain-to-failure ε

f
 (determined by the

point of the intersection of the corresponding curve
n(ε) with the horizontal line n=n

c
) does not depend
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on ω as well. In contrast, for a preset applied stress
σ, the value of n decreases with rising ω(see Fig.
4a). As a result, with an increase in ω, the ultimate
strength σ

B
 (determined by the point of the intersec-

tion of the corresponding curve n(σ) with the hori-
zontal line n=n

c
) of the nanocrystalline solid also

increases. As it follows from Figs. 3b and 4b, an
increase in the parameter α (which corresponds to
the shrinking of the distribution of disclinations over
strengths ω) leads to an increase in both strain-to-
failure ε

f
 and ultimate strength σ

B
.

Notice that the value of the ultimate strength σ
B

substantially depends on the structure of GBs of
the nanocrystalline solid and grows with an increase
in the fraction of high-angle GBs. If high-angle GBs
dominate in nanocrystalline Ni, then the calculated
values of σ

B
 (see Fig. 4) appear to be higher than

the corresponding experimental values. Also, the
calculated values of strain-to-failure ε

f
 in deformed

nanocrystalline Ni (17–19%; see Fig. 3) significantly
exceed the corresponding experimental values [29].
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Fig. 3. Dependences of the fraction n of the grain
boundaries conducting cracks in nanocrystalline Ni
on strain ε. (a) α=1.5; ω=7, 10 and 15o (the curves
corresponding to different ω practically merge). (b)
ω=10o; α=1.5, 2 and 2.5 (curves 1, 2 and 3, respec-
tively).

The possible reasons for the above discrepancies
are the absence of the account for stress concen-
tration near nanocrack tips as well as for the pres-
ence of the pre-existent, fabrication-produced voids
and other imperfections. These factors reduce the
values of the critical parameters ε

f
 and σ

B
, in which

case they can be close to the corresponding ex-
perimentally measured values [29].  At the same
time, the above discrepancies show that the strain-
to-failure  and strength  in nanocrystalline materials
free from fabrication-produced voids and other im-
perfections can be larger (or even significantly larger)
than those in nanocrystalline materials containing
fabrication-produced flaws. As a corollary, one ex-
pects that there are perspectives in fabrication of
nanocrystalline materials with simultaneously ultra-
high strength and good ductility.

Fig. 4. Dependences of the fraction n of the grain
boundaries conducting cracks in nanocrystalline Ni
on applied tensile stress σ. (a) α=1.5; ω=7, 10 and
15o (curves 1, 2, and 3, respectively). (b) ω=10o;
α=1.5, 2 and 2.5 (curves 1, 2 and 3, respectively).

σB

σB

ε
f

ε
f
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5. CONCLUDING REMARKS

Thus, the analysis performed in this paper shows
that GB sliding in deformed nanocrystalline materi-
als with finest grains can lead to the generation and
subsequent convergence of GB nanocracks. Dur-
ing plastic deformation, the number fraction of GBs
containing nanocracks grows, and, when the ap-
plied stress and strain reach their critical values,
nanocracks converge and form a macrocrack re-
sulting in the catastrophic fracture of the
nanocrystalline solid. The critical stress for the brittle
fracture of the nanocrystalline solid (ultimate
strength) significantly increases with an increase in
GB misorientation angles. Therefore, in order to in-
crease the ultimate strength of nanocrystalline sol-
ids, it is desired that they primarily contain high-
angle GBs with high misorientation angles.

Notice that the calculated values of the ultimate
strength σ

B
 and strain-to-failure ε

f
 in deformed

nanocrystalline Ni (see Figs. 3 and 4) are higher
than the corresponding experimental values. The
above discrepancies can be in part attributed to re-
ducing both strength σ

B
 and strain-to-failure ε

f
 in most

of real nanocrystalline materials due to the effects
of the pre-existent, fabrication-produced voids and
other imperfections. At the same time, the above
discrepancies show that the strain-to-failure ε

f
 and

strength σ
B
 in nanocrystalline materials free from

fabrication-produced voids and other imperfections
can be larger (or sometimes significantly larger) than
those in nanocrystalline materials containing fabri-
cation-produced flaws. In these circumstances,
there are perspectives in fabrication of
nanocrystalline materials with simultaneously ultra-
high strength and good ductility as those free from
fabrication-produced flaws. This view is in a good
agreement with experimental papers [19–21,45] re-
porting on fabrication of such nanocrystalline mate-
rials.
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