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Effect of Y-junction nanotubes on strengthening of nanocomposites

M.Yu. Gutkin* and I.A. Ovid’ko

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Bolshoj 61, Vasilievskii Ostrov,

St. Petersburg 199178, Russia

Received 30 July 2009; revised 23 August 2009; accepted 23 August 2009
Available online 27 August 2009
A dislocation model is proposed which describes the strengthening effect of Y-junction nanotubes in nanocomposites. In the
model, nanotubes slip along the nanotube/matrix interface through the motion of prismatic dislocation loops. When such a loop
meets a Y-junction of nanotubes, it needs a critical shear stress to bypass the junction. It is shown that the critical stress increases
with decreasing nanotube radius and wall thickness. Thus, the thinnest nanotubes should provide the most effective strengthening
and toughening of such nanocomposites.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Ceramic nanocomposite bulk materials and coat-
ings showing outstanding mechanical properties (super-
strength, superhardness, good wear resistance) have
been the subject of rapidly growing research efforts (e.g.
[1–8]). In particular, in the last decade, a new generation
of advanced nanocomposites reinforced by carbon nano-
tubes (CNTs) has been fabricated for a range of potential
applications [9,10]. CNTs have been embedded into
metallic [11–16] and ceramic [10,17–23] matrices, and this
process has resulted in significant enhancements to their
mechanical properties such as hardness [10,12,15,22,23],
strength [10–18], Young’s modulus [11,13,14,23], fracture
toughness [10,17–22] and wear resistance [10,15,23]. The
very large increments (up to 300%) in toughness shown
by several CNT – ceramic nanocomposites [19–21] have
greatly stimulated interest in understanding micromecha-
nisms which hamper crack growth. The well-known rein-
forcement mechanisms of CNTs are CNT pulling-out,
CNT rupture, bridging and crack deflection [18]. Balani
et al. [22] have paid special attention to multidirectional
CNT bridges and anchors, CNT – ceramic interface and
Y-junction CNTs. Y-junction CNTs are representatives
of a large variety of branched nanotubes (C [24–27],
CNx [28], Al2O3 [29], etc.) which are produced mainly
for nanodevice applications. We believe that it might also
be possible to exploit Y-junction CNTs as strengthening
elements of nanocomposites. Due to their complex shape,
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such CNTs are expected to be more effective than their
conventional straight counterparts. The main aim of this
paper is to theoretically describe the strengthening effect
of Y-junction nanotubes (in particular, CNTs) in
nanocomposites.

Consider a simplified elastic model of a Y-junction
nanotube as a T-like junction of two hollow tubes
embedded to an elastic matrix (Fig. 1). Suppose that
the tube and matrix materials are elastically isotropic
and have different shear moduli (G1 and G2) and Poisson
ratios (m1 and m2). The tubes have identical cross-sections
of outer radius R and the same wall thickness h. The
outer surfaces of the tubes are in coherent contact with
the matrix, while their inner surfaces are free of stresses.
We will use the Cartesian coordinates with the origin on
the axis of the “vertical” tube (the y-axis) and with the
x-axis lying along the bottom line of the “horizontal”
tube surface.

Let the “vertical” tube be subject to an axial force
which tries to pull the tube out of the matrix during
the process of deformation or fracture of such a system.
Under the action of this force, a shear stress s appears at
the interface between the “vertical” tube and the matrix
far from the tube junction (Fig. 1). This shear stress can
relax through the mechanism of nucleation of a circular
prismatic dislocation loop with Burgers vector b, which
glides along the interface [30,31]. The Burgers vector b
can either be a vector of the matrix lattice, if the lattice
is properly oriented with respect to the tube axis, or
a vector of relative interfacial shear conserving the
sevier Ltd. All rights reserved.
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Figure 1. Circular prismatic dislocation loop (the closed dashed line at
y = 0) with Burgers vector b bypasses a Y-junction of nanotubes by a
mechanism of loop transformation to two semi-loops: (1) prismatic
and (2) glide ones. On the right-hand side, the cross-sections show the
changes in the configuration of prismatic semi-loop 1 at the points
h < y < R, y = R, and R < y < 2R � h (from bottom to top).
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tube–matrix interface crystallography, in which case we
deal with interface dislocation. Within our continual ap-
proach, these two cases differ by only the Burgers vector
magnitude b. However, our results will always be nor-
malized by b. Therefore, hereinafter we do not differen-
tiate between these cases. In any case, the tube junction
is an obstacle to the dislocation glide. To overcome this
obstacle and glide further, the dislocation loop must first
transform from a planar circle to a complex spatial loop,
which bypasses the surface parts of both the tubes in the
junction, and then to two closed circular loops, the pris-
matic one around the “vertical” tube and the glide one
around the “horizontal” tube. After that, the new
prismatic loop can glide further along the “vertical”
tube, while the new glide loop becomes an additional
obstacle for subsequent prismatic loops gliding along
the “vertical” tube. This mechanism of bypassing the
tube junction is similar to the Orowan mechanism of dis-
location bypass of precipitates in alloys and particles in
disperse composites.

Consider the conditions necessary for activation of
the proposed mechanism. This can be done through
investigation of the change in the system energy with
evolution of the shape of the dislocation loop (Fig. 1).
A rigorous solution of this problem is hardly possible,
so we will use the approximation of linear tension. This
approximation seems to be correct if the tube wall thick-
ness is much smaller than the tube radius: h << R. In
this case, the inside free surface of the tube is very close
to the dislocation line and provides a stronger screening
effect on the dislocation elastic fields compared to that
of the dislocation loop shape [30,31]. Therefore, to esti-
mate the dislocation strain energy, we can use a greatly
simplified planar model of a straight dislocation in the
interface between a semi-infinite substrate (matrix) and
a thin layer (tube wall).

In the initial state, when the prismatic dislocation
loop is pushed to the tube junction and lies in the plane
y = 0 (see the dashed circle in Fig. 1), its energy can be
written as:

W 0 ¼ 2pRb2ðwe1 þ �DÞ; ð1Þ
where b is the Burgers vector magnitude of the disloca-
tion loop, and b2we1 and b2 �D are the strain and core
energies, respectively, per unit length of a straight edge
dislocation with the Burgers vector lying in the sub-
strate–layer interface. The term we1 can be obtained
from the solution [32,33] for an edge dislocation in a
thin two-layer plate in the limiting case where the thick-
ness of one layer tends to infinity. After some algebra,
we have:

we1 ¼ D1
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where Di ¼ Gi=½pðki þ 1Þ�; ki ¼ 3� 4mi; i ¼ 1; 2;A ¼
ð1� CÞ=ð1þ k1CÞ; B ¼ ðk2 � k1CÞ=ðk2 þ CÞ; C ¼ G2=
G1; f y1ðsÞ ¼ �ð1 � AÞhs þ ðA � BÞ=2 þ E½Að1 � BÞhs�
ðA�BÞ=2�; f y2ðsÞ¼ð1�AÞhs�ð2�A�BÞ=2þE½Að1�BÞ
hs� ABþ ðAþ BÞ=2�; gy1ðsÞ ¼ E�ðh� bÞsþ Eþ½2Ahbs2�
Aðh� bÞs� ðA� BÞ=2� � E½2Ah2s2 � ðA� BÞ=2�; gy2ðsÞ ¼
�1þE�½1�ðh� bÞs� �Eþ½2Ahbs2�Aðhþ bÞsþðAþBÞ=
2�þE½2Ah2s2� 2AhsþðAþBÞ=2�; pðsÞ ¼ 1� 2E½2Ah2s2þ
ðAþBÞ=2� þE2AB; E¼ expð�2hsÞ; E� ¼ exp½�ðh� bÞs�,
and Eþ ¼ exp½�ðhþ bÞs�. The term �D can be estimated
[30,31] by �D¼ðD1þD2Þ=2¼D1½1þCð1�m1Þ=ð1�m2Þ�=2.

The energy of the spatial dislocation loop, which con-
sists of prismatic semi-loop 1 lying in the plane
0 < y < 2R and glide semi-loop 2 formed in the plane
x = R around the “horizontal” tube, is given by the
sum W(y) = W1(y) + W2(y), where the first term is the
energy of semi-loop 1 and the second term is the energy
of semi-loop 2. The first term is approximated by:

W 1ðyÞ ¼ b2L1ðyÞðwe1 þ �DÞ; ð3Þ
where L1(y) is the length of semi-loop 1. As follows from
geometry of the y-section of the tube junction (Fig. 1),
this length reads L1ðyÞ ¼ ð2þ pÞR� 2jR� yj þ 2R
arcsinðjR� yj=RÞ. It is easy to find that L1ð0Þ ¼
L1ð2RÞ ¼ 2pR and W 1ð0Þ ¼ W 1ð2RÞ � W 0. In the center
of the tube junction, at y ¼ R, the length of semi-loop 1
is minimal, L1ðRÞ ¼ ð2þ pÞR.

In calculating the second term, W 2ðyÞ, one must take
into account that semi-loop 2 is the line of mixed-type
dislocation with variable edge and screw components.
Within the line-tension approach, the integration of
the corresponding contributions to the dislocation
energy over the length of semi-loop 2 results in:

W 2ðyÞ ¼ Rb2½ðwe2 þ �DÞðP � QÞ þ ðws þ �GÞðP þ QÞ�:
ð4Þ

Here b2we2 and b2 �D are the strain and core energies,
respectively, per unit length of a straight edge disloca-
tion with the Burgers vector normal to the substrate–
layer interface; b2ws and b2 �G are the strain and core
energies, respectively, per unit length of a screw disloca-
tion lying in the substrate–layer interface; P ¼
p=2þ arcsinðy=R� 1Þ; Q ¼ ðy=R� 1Þ

ffiffiffiffiffiffiffiffi
y=R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� y=R

p
,

and �G ¼ ðG1 þ G2Þ=ð8pÞ.
The term we2 can be found in a similar way as we1, by

limiting transition from the solution [32,33], which gives:
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Figure 2. Dependence of the energy change DW on the normalized
path y/R of prismatic semi-loop 1 at the initial (a) and the whole (b)
region of the Y-junction at C ¼ 0:1, R ¼ 15b, and h ¼ 2b. The values of
the applied shear stress s are given at curves in units of G1=1000.
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Figure 3. Dependence of the critical shear stress sc on the normalized
nanotube radius R/b for C ¼ 0:1 and different values of the normalized
nanotube wall thickness: h/b = 2, 5 and 10 (from top to bottom). The
inset demonstrates the same dependence at C ¼ 0:1 and h/b = 2 in the
range of relatively small values of R/b.
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with fx1ðsÞ ¼ 1þ ð1� AÞhs� ðAþ BÞ=2þ E½Að1� BÞ
hsþAB� ðAþBÞ=2�; f x2ðsÞ ¼ ð1�AÞhsþ ðA�BÞ=2�E
½Að1�BÞhsþðA�BÞ=2�; gx1ðsÞ ¼�1þE�½1þðh� bÞs��
Eþ½2Ahbs2þAðhþbÞsþðAþBÞ=2�þE½2Ah2s2þðAþBÞ=2�;
gx2ðsÞ¼E�ðh�bÞs�Eþ½2Ahbs2þAðh�bÞs�ðA�BÞ=2�þ
E½2Ah2s2�ðA�BÞ=2�, and pðsÞ; E; E� and Eþ being the
same as in Eq. (2).

To calculate the screw dislocation strain energy b2ws,
one can use the approach of infinite series of image dis-
locations as suggested in Ref. [34]. Omitting the interme-
diate calculations, we obtain the final result:
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Thus, the sum energy W ðyÞ ¼ W 1ðyÞ þ W 2ðyÞ of the

spatial dislocation loop is determined by Eqs. (3)–(6).
The energy change due to the transformation of the pla-
nar prismatic dislocation loop into the complex spatial
dislocation loop, which consists of prismatic semi-loop
1 and glide semi-loop 2 (Fig. 1), is then given by:

DW ðyÞ ¼ W ðyÞ � W 0 � AðyÞ; ð7Þ

where A is the work done by the applied shear stress s to
shift the prismatic semi-loop 1 from the point y = 0 to
the point y. Neglecting the local change of the stress s
near the tube junction, we can approximate this work
by AðyÞ � 2pRbys.

Consider the energy change given by Eq. (7) in depen-
dence on y, for different values of s. In the majority of
nanocomposites reinforced by nanotubes, the nanotubes
are much harder than the matrix, so we take
C ¼ G2=G1 ¼ 0:1. We also put m1 ¼ m2 ¼ 0:3 for definite-
ness. As an exemplary case, we consider a Y-junction of
very thin nanotubes with the outer radius R ¼ 15b and
the wall thickness h ¼ 2b, which can serve as a first-or-
der-approximation model for the Y-junction of single-
wall carbon nanotubes (SWCNs).

The curves DW(y) are plotted in Figure 2, for the stress
values ranging from s ¼ 0 to s ¼ 16G1=1000. Here the ini-
tial value of the y-coordinate is the elementary shift of
semi-loop 1 by one atomic spacing b, i.e. y=R ¼ 0:067. It
is seen from Figure 2 that under a small value of s (here
at s ¼ 0), the energy change DW is positive for any y. This
means that a prismatic dislocation loop cannot bypass the
Y-junction of nanotubes under such a low stress. Under a
moderate value of s (here at s ¼ ð4 . . . 10ÞG1=1000), DW is
positive for small, but negative for large values of y
(Fig. 2a). Therefore, to bypass the Y-junction, the loop
must overcome an energy barrier of the height smaller
or about 0:02G1b2R ¼ 0:3G1b3. Under higher values of
s, this energy barrier disappears, the energy change DW
becomes negative for any y and monotonously decreases
until its minimum near y = 2R (Fig. 2b). In this case,
the dislocation loop freely bypasses the Y-junction by
the mechanism under discussion.
The critical stress value s ¼ sc, at which the barrier-
less bypass becomes energetically favorable, is deter-
mined in this case by the necessary condition
DW ðy ¼ bÞ ¼ 0 that immediately gives:

sc ¼
W ðy ¼ bÞ � W 0

2pRb2
: ð8Þ

The dependence scðR=bÞ is shown in Figure 3, for dif-
ferent values of the nanotube wall thickness h. The crit-
ical stress sc fast decreases with an increase in the
nanotube radius R in the range of relatively small R
(here at R smaller or about 200b � 60 nm for b � 0:3
nm) and slowly decreases with R in the range of larger
R. The critical stress values are not too high; for
R ¼ 50b � 15 nm, it varies from G1=200 to G1=189
depending on the wall thickness h. In the limiting case
of an extremely thin nanotube of radius R ¼ 10b � 3
nm and wall thickness h ¼ 2b � 0:6 nm, where our con-
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tinuum approach is still correct, the critical stress is al-
ready rather high, sc � G1=79 (see the inset in Fig. 3).

The interesting and unusual result is the increase of sc

with a decrease in the wall thickness h. On the first sight,
one can expect an inverse dependence because the en-
ergy of dislocation loop increases with h. However, as
we have carefully checked, the energy change DW is
not a monotonic function of h (the corresponding plots
are not shown here); first, it increases with h and reaches
its maximum at h = 2b, and after it decreases with h. As
a corollary, the critical stress sc decreases with h, too,
although this dependence is rather weak (Fig. 3).

In summary, we have proposed a dislocation model to
describe the strengthening effect of Y-junction nanotubes
in nanocomposites. Within the model, the nanotube
glides along the nanotube–matrix interface through gen-
eration and slip of prismatic dislocation loops. When such
a loop meets a Y-junction of nanotubes, it needs a critical
shear stress to bypass the junction via a loop transforma-
tion mechanism. The critical stress value increases with
decreasing radius and wall thickness of the nanotubes.
Therefore, the thinnest nanotubes like SWCNs are ex-
pected to provide the most effective strengthening and
toughening of such nanocomposites. This conclusion is
in agreement with the experimental results reported in
Refs. [19–21].
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[34] M.L. Övec�oğlu, M.F. Doerner, W.D. Nix, Acta Metall.

35 (1987) 2947.


	Effect of Y-junction nanotubes on strengthening of nanocomposites
	ack2
	References


